Icemap

Matthew Skala

November 17, 2017

Visit the Icemap home page at http://tsukurimashou.osdn.jp/icemap.php

Icemap user manual
Copyright (©) 2015 Matthew Skala

This document is free: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document. If not,
see http://www.gnu.org/licenses/.

http://tsukurimashou.osdn.jp/icemap.php
http://www.gnu.org/licenses/

Contents

Introduction 4
Quick start example 7
Icemap control language 8
Core SYNEAX . . v v v i e e e e 8
Include files e e 9
Contexts and mapping arrowst ot e e e e e e 9
Generating mapso e e e 10
Writing to files o L e 10
Built-in mappings e e e 10

Introduction

This manual describes Icemap, which is a C code
generator for static maps. That is a programming
tool used in building computer software. It solves a
specific and somewhat obscure problem. Icemap is
part of the Tsukurimashou Project, which focuses
on Japanese-language fonts; a need for something
like it happened to come up several times in different
parts of the project, so it made sense to create the
tool. It is hoped that it may also be useful to others.

The use case for Icemap is as follows. Let F
be a function or partial function specified as tabu-
lar data. It takes an input and produces an output,
and although it might in principle be possible to cal-
culate the output by doing arithmetic on the input,
it is more convenient to just list the values. Such a
function might look something like this.

n out

3 “fizz”

5 “buzz”

6 “fizz”

9 “fizz”

10 “buzz”
12 “fizz”

15 | “fizz-buzz”

Suppose it is desired to embed this function in a
C program. Other code will be frequently invoking
the function on different inputs and using the result
in some way. We want it to be efficient, both in
space and time. We don’t expect the function to
change often, maybe never at all; at the very least,
we don’t expect the user to be changing the function
at run time. We will call this kind of function a
static map.

It makes sense for the function to be hardcoded:
written into C-language source code that will be
processed by the compiler and made into an integral
part of the program. Icemap is a tool for generating
such source code.

The obvious thing would be for a human being
to write the C code implementing the static map.
Fine. If we are doing it only once, that may work
well. When the table is small, there will be very lit-
tle human work involved; possibly just cutting and

pasting the table values from wherever they come
from into a C file and adding some punctuation to
put it into valid C syntax. We can imagine a num-
ber of different algorithms and data structures for
storing and looking up the function values. In the
fizz-buzz example, where inputs are integers up to
15 and outputs are strings, the simplest thing might
be to build a char *array[16], and do simple ar-
ray indexing. If we wanted to save space we could
do smarter things, like offsetting the indices, or even
doing the modulo operations to compute instead of
looking up the function values. This all works as
long as we are working on a reasonable-sized func-
tion, willing to spend human effort on it, and we
never change the function.

But consider:

e larger function tables, with perhaps a few

thousand rows;

e lazy humans; and

e functions that do change from time to time,

though not often.

There are a number of such tables in the
Tsukurimashou Project. Most of them derive from
Unicode Consortium data products. IDSgrep uses a
built-in table of character widths for word-wrapping
mixed Japanese-English dictionary entries in the a
terminal window; this table derives from the Uni-
code EastAsianWidth.txt file. FontAnvil has a
number of built-in tables for translating among
character encoding formats; as well as various static
maps used in parsing script files and text-based font
formats.

FontAnvil’s tables are in legacy code descended
from an earlier package called PfaEdit. They were
apparently handwritten by the original author of
PfaEdit. Exactly where he got the data is not clear
(certainly not well documented). Some of the code
looks like it may have been generated by some kind
of automated generator, but if so, that original gen-
erator has been lost. Some of the tables include
clever optimizations human-designed for the specific
tables and depending on the structure of the func-
tion in question. For instance, the table from Shift-

JIS to Unicode is implemented by doing some bit
shifting to convert Shift-JIS to JIS, then looking up
in either the JIS table or some other table depend-
ing on something, and then doing multiplication and
modulo to squeeze the two-dimensional JIS array
into a more memory-efficient layout. Other tables
use other optimizations, such as cascading lookups
through multiple layers of arrays that point at each
other. The lookup processes include some built-in
undocumented choices on how to handle ambiguous
cases. Updating the data for a new Unicode version,
or changing those choices, is effectively impossible.

In the history of PfaEdit’s evolution into Font-
Forge and then FontAnvil, there have been at least
two rounds of attempts to reverse-engineer the en-
coding tables and create code generators to help
maintenance. Those code generators sit abandoned
in the FontForge source tree with fragmentary doc-
umentation. Some of FontForge’s other static map-
ping needs (in particular, the lookup table from Uni-
code numbers to character names) have been spun
off into separately-maintained libraries, twice, with
an internal political dispute over which of the two
spun-off libraries to actually use, and some copy-
right licensing implications.

Meanwhile, in IDSgrep, the character width ta-
ble descends from EastAsianWidth.txt. The data
is stored as a transition table for a finite state ma-
chine, with a fragment of C code that traverses
the table for a character input until it can deter-
mine the width. There is a separate program that
reads the Unicode Consortium’s data file and uses
binary decision diagram techniques to generate an
optimized transition table. This system at least is
documented, and in the event of changes to the Uni-
code data or differing preferences on how to resolve
ambiguities, it can be maintained. However, it is
highly specific to the particular function it calcu-
lates. It would require significant rewriting to work
with anything else. It also makes use of certain
secrets of black magic about which man was not
meant to know. IDSgrep also embeds the Unicode
blocks list, in a handwritten C array, with docu-
mentation but no automated support for changing
it.

Icemap is intended to replace all the static
maps in the Tsukurimashou project, including
FontAnvil’s encodings, parser tables, and charac-
ter names, IDSgrep’s width and Unicode block ta-
bles, and any future static maps needed by Tsukuri-
mashou C programs, with code from a single auto-

mated generator. Automation should go all the way
back to the original data sources. It should be possi-
ble to just download a new EastAsianWidth.txt or
other original third-party data file, run make with an
appropriate target, and have the build system up-
date all the code without further human attention.
Optimizations like the cascading lookups of PfaEdit
or the minimized finite state machine of IDSgrep
should be available transparently, in all maps where
they are useful, without requiring human labour to
implement them every time.

The function of Icemap can be seen as compara-
ble to that of lex, yacc, or gperf. It is intended to
run as part of the build process for some other soft-
ware package, but even parties who are compiling
and modifying the other software will not necessar-
ily need to use Icemap directly; it is upstream in
the overall build process and will not run during an
ordinary build.

Suppose Ulrich is a third-party publisher of
static map data (such as character code tables) and
Alice is the original author of Fizzbuzz, a software
package which needs to embed this data. Then:

e Alice writes a control file for Icemap describ-
ing how to find key-value pairs in Ulrich’s dis-
tributed file format, and runs Icemap with the
control file and Ulrich’s data file, to gener-
ate C code implementing the static map. She
puts the generated C code into the Fizzbuzz
tarball and distributes it, like the rest of the
Fizzbuzz C source code. The Icemap control
file also goes into the tarball for use by peo-
ple like Dave, below, but will not be used in
ordinary compilation.

e Bob is building a copy of Fizzbuzz from
source. He does not need to use Icemap. He
just compiles the C code like any other C pro-
gram.

e Carol is using a packaged binary, possibly
built by Bob. She does not touch Icemap nor
the C code at all.

e Dave wants to update the static map with new
data from Ulrich. He needs to run Icemap
with the new data file, but (assuming Ulrich’s
file format has not changed), he can still use
Alice’s control file, which tells Icemap how to
read the data.

e Ellen is modifying Fizzbuzz in a more elabo-
rate way: for instance to use static map data
from Valerie instead of Ulrich, supplied in a
different file format. Ellen needs to modify or

rewrite the control file and re-run Icemap.
Things notably absent from these stories: no-
body needs to reverse-engineer the lookup code,
write new lookup code, nor manually convert Ul-
rich’s file format into C.

Quick start example

Icemap control language

This chapter describes the syntax and function of
the Icemap control language, using a somewhat in-
formal variant of Backus-Naur Form which I do not
propose to define precisely, but which should be
clear to anyone familiar with such language descrip-
tions. The grammar described here is ambiguous
(in the technical sense), but I include some informal
notes on how the parser resolves the ambiguities.
To summarize the notation:
(angle bracketed names) denote mnonterminals
(language constructions defined elsewhere); double
colon equals ::= denotes the definition of a nonter-
minal; ‘quoted typewriter font’ denotes literal
single characters or C-style backslash escapes for
control characters; unquoted typewriter font
denotes strings of literal characters (keywords).
The star *, plus +, and question mark ? denote
respectively zero or more, one or more, and zero or
one copies of the preceding symbol, as in typical
Unix regular expressions. The star is not greedy.
Similarly, dot . and square bracketed character
classes like [a-z] are interpreted as in Unix regular
expressions. Giving multiple definitions for a
nonterminal means any of the definitions could
apply; such optionality is also denoted by the

pipe |.

Core syntax
Whitespace, defined as in the Unix C locale, is
generally ignored in Icemap control files, except
that whitespace separates tokens, and end-of-line
sequences are special to the definitions of line-based
comments and here documents. Whitespace will
only be mentioned in syntax rules where it is rel-
evant.

(whitespace) ::= (ws char)*
(ws char) == ‘0| \t" | \v | \f’ | \r’ | (EOL)
(EOL) ::= ‘\n’

Icemap accepts C-like slash-star comments and
shell-like line-based comments introduced by the
hash character. C comments do not have any spe-
cial handling of nesting (as in C itself), and either

kind of comment is treated like whitespace by the
parser. Comments will not be further mentioned
in syntax rules; they are implicitly allowed between
tokens.

{comment) ::= (C comment) | (hash comment)

(C comment) == ¢/ %> * ¥)
(hash comment) == ‘# ["\n]* (EOL)

Statements generally end with an optional semi-
colon. There are some cases where using it removes
some ambiguity in parsing, for instance between
two successive multi-map arrow statements, but its
main purpose is to enable earlier detection of typing
errors. The semicolon (if not safely inside a string)
causes an error anywhere except at the end of a
statement. Multiple semicolons may be used.

() =

Apart from whitespace, comments, and optional
semicolons, Icemap control files are sequences of to-
kens. There are three kinds of tokens: “words”
(which serve semantically as both keywords and
identifiers); strings; and integers. Strings and in-
tegers are called value tokens; words and strings are
called ids.
(value) ::=

(id) = (word) | {string)

Words are sequences either of alphabet letters
and underscores, or of punctuation marks (basi-
cally, anything not a letter, numeral, or underscore).
Punctuation-mark words are preempted by other
uses of the characters in question; for instance, mi-
nus before a digit becomes part of a negative-valued
integer token, and two less-thans will introduce a
here document. The detailed definition of which
characters count as punctuation in which contexts is
thus complicated, and not given here. Note that nu-
meric characters are not allowed in words, and will
be parsed separately as integer tokens even if not
whitespace-separated from a preceding word; sim-
ilarly, whitespace is not necessary to separate an
alphabetic word from a punctuation word. Words
are not case sensitive and are transformed to lower

(string) | (integer)

case during parsing, a fact which may be signifi-
cant when defining C identifiers that will appear in
Icemap’s output.

(word) = [a-zA-Z_]+

(word) ::= [~a-zA-Z0-9_]+

Strings may be quoted with double quotes, in
which case they accept C-like backslash escapes, or
as line-based “here documents” as in the shell. I
will not attempt to give BNF for exactly how es-
caping works inside quoted strings, but all the usual
backslash escapes from C are accepted. Hexadeci-
mal escapes like \x1F must have exactly two digits
and octal escapes like \037 exactly three; the more
complicated end-of-sequence detection rules of C do
not apply. Character codes in escapes refer to byte
values (not UTF-8). Zero bytes are used as end-of-
string markers internally and thus cannot usefully
be included in strings.

Here documents are much as in the shell. They
start with two less-thans and a tag that will be used
to mark the end of the string, such as <<EQF. Semi-
colon after the tag is optional, but there must be
nothing further on the line. The parser actually
accepts a few other strings as tags beyond the for-
mal definition of “word” above, but only alphabetic
words are recommended for use. After defining the
tag, subsequent lines of input are captured into the
string, without other interpretation (in particular,
comments are not removed), up to but not includ-
ing a line consisting of only the tag. Note that the
end-of-line characters at the ends of lines, including
the last line, are included in the here document (so
it is impossible to enter a string this way that does
not end in an end-of-line, unless it is empty).

(string) = (quoted string) | (here document)
(quoted string) = " * v

(line) = ["\n|* (EOL)

(here document) = ‘<" ‘<’ (word) (;) (EOL)

(line)* (word) (EOL)

Integers may start with an optional minus sign,
and then are hexadecimal (indicated by the prefix
0x or 0X), octal (indicated by an initial zero), or
decimal (otherwise), much as in C.

(integer) = (decimal int) | (octal int) | (hex int)

(decimal int) ::= ‘=7 [1-9] [0-9]*
(octal int) == =77 ‘0’ [0-T]*
(

hex int) ::= ‘=7 ‘0’ [xX] [0-9a-fA-F]*

At the top level, control files consist of sequences
of statements.
(control file) = (statement)*
Include files
Other control files can be included with the keyword
include. The string value given will be wildcard
expanded as a shell pattern via wordexp(), and all
matching files will be included. Includes may be
nested.
(statement) ::=

include (string) (;)

Contexts and mapping arrows

Curly braces open and close contexts. Contexts may
be nested, and there is an implicit outer context
surrounding the entire input. Because of the way
the parser works it is technically possible (though
certainly not recommended) to “close” the implicit
outer context with an unbalanced closing brace; af-
ter that the parser will enter a state where the only
allowed actions are to include a file and to open a
new outermost context with an opening curly brace.
Similarly, at the end of the input (EOF of the out-
ermost file, outside any includes), all currently-open
contexts will be automatically closed as if an appro-
priate number of closing braces had been inserted,
but it is undesirable to depend upon this behaviour
either.

(statement) ::= {* (statement)* ‘}’ (;)

Contexts contain a number of different pieces of
information, and in general, whenever a context is
opened, it inherits copies of everything in its par-
ent at that moment. Changes within a context af-
fect that context, and any children or descendants
opened after the change, but do not affect the par-
ent or further ancestors.

When a context is closed, that will usually re-
sult in the creation of a map, that is, chunks of
code to be written to the output C and H files. If
so, Icemap increments a “leaves generated” counter
on all ancestors of the context that generated the
map. A non-zero value for this counter prevents a
context from generating a map itself when it closes.
The counter is always initialized to zero when the
context opens, not inherited from the parent con-
text. The effect of this behaviour is that, in the or-
dinary course of things, only the bottom-level con-
texts which have no children of their own will actu-
ally result in output to the C and H files. Higher-
level contexts would typically be used to set default
values to be shared among their children. Some de-

tails of how this works can be overridden by other
statements described later.

The most important thing a context may con-
tain is a collection of key-value pairs, where the key
and the value may each be an integer or a string.
The arrow statement adds a single such pair to the
current context.

(statement) ::= (value) ‘= *> (value) (;)

It is also possible to add several pairs at once,
by listing all the keys followed by => and the cor-
responding values. The two lists may each contain
single strings or integers, and ranges of integers in-
dicated by a start and end with .. in between,
which is equivalent to listing all the integers from
the start to the end inclusive as single items. The
list of keys and list of values must contain the same
number of items after evaluation of ranges.

(statement) ::= (vrange)™ ‘=" >’ (vrange)* (;)
(vrange) ::= (value)
(vrange) ::= (integer) .7 .7 (integer)

Generating maps
The id statement sets a C-language identifier for
the generated mapping code, to allow distinguishing
multiple maps in the same source files. The default
is “map.” The value may be specified as an unquoted
word token, in which case it must be valid as such,
or as a string, in which case as far as Icemap is
concerned it may be anything. To be useful, it ought
to consist of characters accepted in C identifiers.
(statement) ::= id (id) (;)

The generate statement chooses the algorithm
used by the mapping code. The “nothing” option
means no map will be generated by the current con-
text, and the generated-leaves counters of ancestor
contexts will not be incremented; that may be use-
ful in a context created for its side effects and not
intended to be used directly as a map.

FIXME talk about available choices

The special contexts created inside remap state-
ments do not generate maps directly nor in the ordi-
nary way. The remapping behaviour is implemented
by setting the same internal field that would be set
by generate to a special value not available through
the control-file generate statement. The generate
statement should not be used inside such contexts;
if used, it will convert the inner context into an or-
dinary child context as if “remap” had not been in
force.

If no generate value is chosen for an ordinary

10

context that would normally generate a map, then
Icemap will attempt to choose one automatically
that is appropriate to the types and ranges of keys
and values in the map.

Using generate in a context resets that con-
text’s leaves generated counter to zero, so that it
will in fact generate a map, even if it had children,
provided nothing else changes. This behaviour cre-
ates two important use cases for generate in a par-
ent context: use it before defining the children, and
it will set a default map type for them while the par-
ent generates no map of its own; or use generate
after the children to force the parent to generate a
map of its own and set the type of that map.
(statement) ::= generate (maptype) (;)

(maptype) ::= basic_array | cascade |

wide_cascade | nothing

Writing to files
Icemap generates its map code into two files, a C file
(C language implementation) and an H file (C lan-
guage header). The names for these files can be set
by the cfile and hfile statements in the control
file (whose values are automatically inherited into
child contexts). Global default filenames can also
be set with command-line options when Icemap is
invoked, but the statements within the control file
override the command-line options. It is a fatal er-
ror to do something that requires writing to the C
and H files if names for them have not been set in
at least one of these places.

(statement) ::= cfile (string) (;)

(statement) ::= hfile (string) (;)

Arbitrary chunks of C source code, such as li-
censing comments and header-file includes, can be
included in the C and H files with the cwrite and
hwrite statements. Note that these take effect im-
mediately, using the current values of the C and H
filenames, when the write statements are parsed—
even if the current context is a generate nothing
context or similar, and creates no map when it
closes.

(statement) ::)
)

)

cwrite (string) (

)

(statement) ::= hwrite (string) (

Built-in mappings
Icemap offers built-in encoding and decoding of
UTF-8. These statements are intended for use in-
side remap blocks, to convert a mapping table in the
parent context from referring to Unicode code point

numbers (integers) to the literal characters (short
strings) or vice versa. The encode utf-8 state-
ment is equivalent to a sequence of 1114112 arrow
statements mapping each single-character (possibly
multi-byte) string as a key to its equivalent code
point number (as an integer), and the decode utf8
statement is equivalent to the same sequence of ar-
rows in the opposite direction. Note that “utf-8” is
a bit of syntactic trickery; the parser actually looks
for the word token utf followed by an integer to-
ken that could be equal to 8 or -8. Omitting the
space between them, and spelling the eight in deci-
mal instead of some other way, are just suggestions
for making the code readable.

(statement) ::= encode utf (integer) (;)

(statement) ::= decode utf (integer) (;)

(statement) ::= keytype (id) (;)

(statement) ::= valtype (id) (;)

(statement) ::= parserx (id) (;)

(statement) ::= skiprx (id) (;)

(statement) ::= rxparse (FIXME) (;)

(statement) ::= priority (priority) (;)

(priority) ::= error | first | last | min | max

(statement) ::= quote (FIXME) (;)

(statement) ::= remap (rmdir) ‘{’ (statement)* ‘}’
(z)

(rmdir) ::= values | vals | keys

11

Index

arrow
multiple (=>), 10
single (->), 10

BNF, 8

case sensitive
words aren’t, 8
comments, 8
contexts, 9
inheritance, 9
curly braces, 9

generate, 10
basic_array, 10
cascade, 10
don’t use inside remap, 10
nothing, 10
wide cascade, 10

here documents, 9
id, 10

include, 9
integers, 9

leaves generated, 9

semicolons, 8
strings, 9

tokens, 8

whitespace, 8
words, 8

12

	Title Page
	Copyright
	Contents
	Introduction
	Quick start example
	Icemap control language
	Core syntax
	Include files
	Contexts and mapping arrows
	Generating maps
	Writing to files
	Built-in mappings

