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Quick start
Use idsgrep much as you would use grep:

idsgrep [⟨options⟩] ⟨pattern⟩
[⟨file⟩ . . .]

Its general function is to search one or more files
for items matching a pattern, like grep [8] but with
a different pattern syntax. Although potentially us-
able for an unlimited range of tasks, idsgrep’s moti-
vating application is to searching databases of Han
script (Chinese, Japanese, etc.) character descrip-
tions. It provides a much more powerful replace-
ment for the “radical search” feature of dictionaries
like Kiten [10] and WWWJDIC [6].

The syntax for matching patterns, and the range
of command-line options available, are complicated.
Later sections of this document explain those things
in detail; for now, here are some examples.
idsgrep 萌 dictionary

A literal character searches for the decompo-
sition of that character, exact match only.

idsgrep -d 萌
The -d option with empty argument searches
a default collection of dictionaries.

idsgrep -dtsuku 萌
The -d option can be given an argument to
choose a specific default dictionary. Note the
argument must be given in the same argv-
element with the -d; the syntax -d tsuku with a
space would mean “Use the default dictionar-
ies and search for the (syntactically invalid)
pattern ‘tsuku.’ ”

othersoft | idsgrep 萌
Standard input will be used if no other input
source is specified.

idsgrep -d ...日
Three dots match their argument anywhere,
so this will match 日, 早, and 萌.

idsgrep -d '?'
A question mark, which will probably require
shell quoting, matches anything. This is most
useful as part of a more complex pattern.

idsgrep -d '⿱?心'
Unicode Ideographic Description Characters
can be used to build up sequences that also in-

corporate the wildcards; this example matches
characters consisting of something above 心,
such as 忽 and 恋 but not 応.

idsgrep -d '[tb](anything)心'
There are ASCII aliases for operators that
may be inconvenient to type; this query is
functionally the same as the previous one.

idsgrep -d '&!萌...|日月'
Boolean prefix operators include & (AND), |
(OR), and ! (NOT). This example matches
anything that contains 日 or 月 but is not 萌.

idsgrep -d '*⿰日?'
Asterisk makes children match in any order;
this example matches 日 at left or right.

idsgrep -d '@⿱⿱?日?'
At-sign treats an operator as associative; this
example matches both ⿱⿱?日? and ⿱?⿱日?.

idsgrep -d '.../(femoral)'
Slash invokes Perl-compatible regular expres-
sion matching, which might be useful for the
EDICT2-based meaning dictionary.

idsgrep -d '...=?'
Equals escapes matching operators; this ex-
ample searches for a literal question mark any-
where in the tree.

idsgrep -d '\X840C'
Several kinds of backslash escapes allow en-
tering characters that might not otherwise be
available.

idsgrep -d -c indent 萌
The -c option selects “cooked” or pretty-
printed output modes.

idsgrep -d -C 萌
The -C option selects colourized output for
ANSI terminals (and, implicitly, cooked
mode).

idsgrep -d -f FontFile.otf '#1'
The -f option reads the character set of an
OpenType font and makes it available as a
user-defined matching predicate accessed with
the hash-mark; in the example, it looks up
each character in the default dictionaries.

idsgrep -U '?'
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The -U option generates a list of Unicode char-
acters.

idsgrep -Uxdb '?'
An optional argument to -U specifies informa-
tion to include in the generated list entries:
x for hexadecimal value, d for decimal, b for
block name.

idsgrep -U -f FontFile.otf '#1'
Combine -U and -f to list the characters in a
font.
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Introduction
The Han character set is open-ended. Although
a few thousand characters suffice to write the
languages most commonly written in Han script
(namely Chinese and Japanese) most of the time,
popular standards define tens of thousands of less-
popular characters, and there are at least hundreds
of thousands of rare characters known to occur in
names, historical contexts, and in languages like Ko-
rean and Vietnamese that may still use Han script
occasionally despite now being written primarily in
other scripts.

Computer text processing systems that use fixed
lists of characters will inevitably find themselves
unable to represent some text. As a result, there
is a need to describe characters in a standard way
that may have no standard code points of their own.
A similar need for descriptions of characters arises
when looking up characters in a dictionary; a user
may recognize some or all the visual features of a
character (such as its parts and the way they are
laid out) without knowing how to enter the charac-
ter as a whole.

IDSgrep’s main function is to query character
description databases in a flexible way. This need
was identified during development of the Tsukuri-
mashou font family [17]; there, the visual appear-
ance of Han character glyphs corresponds directly
to the MetaPost code implementing them, and the
desire for code re-use and consistency often moti-
vates a close examination of the existing work to
answer questions like “What other characters con-
tain this shape, and how did we implement it last
time?” Standard tools like grep [8] can sometimes
be applied to answer such questions by searching for
subroutine names in the source code, but the related
question of “What other characters, not yet imple-
mented, could we build that would use this shape?”
requires comparing with some external database of
the characters commonly used in the language. How
can we run grep on the writing system itself?

Someone confronted with an unknown character
and wanting to look it up in a more ordinary dic-
tionary to find the meaning may, similarly, want

to search for characters based on specific features
while leaving others unspecified, with questions like
“What characters exist that have the common 心
shape at the bottom, with the upper part divided
into two things side by side? The two things at
the top are shapes I don’t recognize, printed too
small for me to identify them more precisely.” Ex-
isting dictionary-query methods are not adequate
for some reasonable queries of this nature.

For instance, the radical-and-stroke-count
method of traditional character dictionaries re-
quires identifying the head radical and counting
strokes, both of which may be difficult; dictionary
codes like SKIP and Four Corners key on some
layout attributes but not all; multi-radical search
allows the user to choose whichever radicals they
recognize, but it ignores layout entirely; and
computer handwriting recognition generally works
well if and only if the user is sure of the writing of
the first few strokes in the character. Furthermore,
these search schemes often are implemented only
in heavy, non-portable, GUI software that cannot
be automated and mixes poorly with standard
computing environments. IDSgrep can answer
the example query correctly with a single, simple
command line (idsgrep -d '[tb][lr]??心'). This
software is intended to bring the user-friendliness
of grep to Han character dictionaries.

Some passages in this manual are marked with �
the Knuthian “dangerous bend” sign in the margin.
These cover obscure or difficult aspects of the soft-
ware, less likely to be of interest to first-time users.
Beginners are encouraged to skip these parts on the
first reading, then come back and check them out
later if interested.

What’s new
Version 0.5 was pushed out in a bit of a hurry
because of the discovery of a bug in the version
0.4 bit-vector generator that, although it rarely
would make any difference in practical applica-
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tions,∗ nonetheless invalidated the results of some
experiments I was running. In order to be able to
publish results referring to a released version with
the correction, it seemed appropriate to change the
planned schedule of the 0.5 release.

The main new items in version 0.5 are:
• support for CJKVI, which is a third-party

cleaned-up version of more or less the same
data as CHISE IDS (this database now ships
with IDSgrep);

• colourized output in cooked mode via the
--colour option;

• line wrapping in cooked mode;
• fixes for some obscure bugs in matching and

database compilation;
• nearly full test coverage (everything except

the TTF/OTF reader).
And then, demonstrating that haste makes

waste, issues were discovered in version 0.5, neces-
sitating some more patching and an extra release a
few days later. New stuff in version 0.5.1:

• Patched infelicities in handling of bit vec-
tor filters for unordered match: 0.5 would
build the lambda filter for an unordered-
match query differently depending on whether
BDDs were compiled in. I think it’s likely that
both results were correct (they just put the
Bloom-filter slop in different places), but it
resulted in differing filter hit counts depend-
ing on settings that would not normally be
expected to affect the hit count, and it was a
problem for testing.

• New options for run-time control of the two fil-
tering layers (to make speed comparisons and
testing easier).

• Build system adjustments to make it easier to
build without BDD support.

Download, build, test, and install
IDSgrep is distributed under the umbrella of the
Tsukurimashou project on OSDN Japan [17], http:
//tsukurimashou.osdn.jp/. Releases of IDSgrep will
appear on the project download page; development
versions are available by SVN checkout from the
trunk/idsgrep subdirectory of the repository. For
the convenience of Github users, the Tsukurimashou

∗The issue was that because of an array index written as 0
where it should have been 1 in a seldom-visited line of code,
the bits for the first child of the first child of a ternary root
would be recorded as if they were for a child, not grandchild,
of the root. That resulted in incorrect filtering in roughly
0.0006% of my test queries.

(and thus IDSgrep) repository is also mirrored into
a Github repository [18], but the project on OSDN
Japan and its SVN repository remain the main pub-
lic locations for IDSgrep development and all bug-
tracker items should be filed there.

A minimal default build and install could run
something like this:
tar -xzvf idsgrep-0.5.tar.gz
cd idsgrep-0.5
./configure
make
su -c 'make install'

IDSgrep can build dictionaries from the Tsukuri-
mashou font package, which is available through
the same OSDN Japan project as IDSgrep; from
the KanjiVG database available at http://kanjivg.
tagaini.net/ [3]; from the CHISE IDS database
available at http://chise.zinbun.kyoto-u.ac.jp/dist/
ids/ [1]; from the CJKVI database available
at https://github.com/cjkvi/cjkvi-ids [11]; or from
the EDICT2 database available at http://www.csse.
monash.edu.au/~jwb/edict.html [5]. For an ideal com-
plete installation of IDSgrep, one would download
all those packages, build Tsukurimashou first, and
make it and the dictionaries available to the IDS-
grep configure script. The CJKVI dictionary data
(current as of March 22, 2014) is included in the
IDSgrep package, so need not be downloaded ex-
cept to update it.

Regular expression matching requires build-
ing with the Perl-Compatible Regular Expression
(PCRE) library available at http://www.pcre.org/ [9].
Many Linux distributions install this library by
default. Without PCRE, the regular-expression
matching features will not be included, and any at-
tempt to do regular-expression matching will result
in a fatal error.

Getting maximum benefit from the bit vector
indexing features requires building with the BuDDy
binary decision diagram library available at http:
//sourceforge.net/projects/buddy/ [12]. Many Linux
distributions install this library by default. Without
BuDDy, bit vectors will still work, but will not speed
up IDSgrep by as great a factor.

The configure script will by default make a rea-
sonable effort to find the dependencies; in many
common cases it is not necessary to specify them on
the command line. Here is a more complete instal-
lation process relying on configure to find Tsukuri-
mashou in a sibling directory and the other dictio-
naries in the current directory:
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unzip tsukurimashou-0.5.zip
cd tsukurimashou-0.5
./configure
make
# install of Tsukurimashou not needed by IDSgrep
cd ..
tar -xzvf idsgrep-0.5.tar.gz
cd idsgrep-0.5
ln -s /some/where/else/kanjivg-20120219.xml.gz .
ln -s /some/where/else/edict2.gz .
ln -s /some/where/else/chise-ids-0.25 .
./configure
make
make check
su -c 'make install'

It is necessary to at least configure Tsukuri-
mashou, if not fully build it, before building IDS-
grep. The IDSgrep build will then invoke the
Tsukurimashou build to create just the files needed
by IDSgrep. It is not necessary to configure or build
CHISE IDS (which would require first installing
other parts of the larger CHISE system and proba-
bly XEmacs as well); IDSgrep only needs to look at
the CHISE IDS data files.

If the default search fails, the filenames of
KanjiVG (.xml or .xml.gz), EDICT2 (.gz), and
the directories containing extracted distributions
of Tsukurimashou and CHISE IDS can be spec-
ified on the configure command line with the
--with-kanjivg, --with-edict2, --with-tsuku-build, and
--with-chise-ids options. For other options, run
configure --help. It’s a reasonably standard GNU
Autotools [7] configuration script, albeit with a lot
of options for inapplicable installation directories re-
moved to simplify the help message.

The EDICT2-based dictionary should prefer-
ably include character decompositions from some
other dictionary; which one is selectable by the
--enable-edict-decomp option. Allowed values include
chise, kanjivg, tsuku, cjkvi-j (other CJKVI languages
besides Japanese may also be specified, but might
not make much sense), and no; the default is cjkvi-j.
The value no corresponds to simply mapping every
character to itself without further decomposition;
that is obviously not as informative as might be de-
sired, but it will still allow for regular expression
searches.

The “check” Makefile target runs the IDSgrep
test suite. Some tests require the dictionary files
and will be skipped if those are not present. There
is also a test that will use Valgrind [16] if available,

to check for memory-related problems; if Valgrind
is not found in the PATH, this test will be skipped.

The IDSgrep installation process will attempt to �
build and install bit vector indices for whatever dic-
tionaries it installs. Doing that entails running the
idsgrep binary for the target system on the build
system, and so it is unlikely to work in the case
of Autotools-mediated cross-compilation. Cross-
compilation has not been tested at all and would
likely fail anyway, but this point seemed worth men-
tioning for the benefit of anyone who might be try-
ing to push the limits. Similarly, the bit vector
index files are architecture-specific. An idsgrep bi-
nary that encounters bit vector files for a foreign
architecture will ignore them and use the unfiltered
matching algorithm; unfiltered matching is much
slower, though otherwise harmless. If you share
parts of your installation between multiple architec-
tures (for instance, on a heterogenous LAN), and
you wish idsgrep binaries on every architecture to
benefit from bit vectors, or if you are just finicky in a
general way about keeping architecture-specific files
and “pure” data separate from each other, then you
may wish to pay close attention to where your dic-
tionaries and indices are stored, and place bit vec-
tors and dictionaries in architecture-specific space.

The configure script supports an --enable-gcov �
switch to enable meta-testing of the test suite’s cov-
erage. This feature requires that the Gcov coverage
analyser be installed. To do a coverage analysis,
run configure with --enable-gcov and any other de-
sired options, then do make clean (necessary to be
sure all object files are rebuilt with the coverage in-
strumentation) followed by make check. Most people
would not want to install the IDSgrep binary itself
when built under this option. As of version 0.5, the
current test suite is not expected to achieve full cov-
erage on most installations (though it should come
close), so do not report failure of this test as a bug
nor get too concerned about it.

Unicode IDSes
Although IDSgrep uses a more elaborate syntax,
it is well to know about the Unicode Consor-
tium’s “Ideographic Description Sequences” (ID-
Ses), which are a subset of IDSgrep’s. These
are documented more fully in the Unicode stan-
dard [21].

• A character from one of the Unified Han or
CJK Radical ranges is a complete IDS and
simply represents itself. For instance, “大” is
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a complete IDS.
• The Ideographic Description Characer (IDC)

code points U+2FF0, U+2FF1, and U+2FF4
through U+2FFB, whose graphic images look
like ⿰⿱⿴⿵⿶⿷⿸⿹⿺⿻, are prefix binary op-
erators. One of these characters followed by
two complete IDSes forms another complete
IDS, representing a character formed by join-
ing the two smaller characters in a way sug-
gested by the name and graphical image of the
IDC. For instance, “⿰日月” describes the char-
acter 明. These structures may be nested; for
instance, “⿰言⿱五口” describes the character
語.

• The IDC code points U+2FF2 and U+2FF3,
which look like ⿲⿳, are prefix ternary oper-
ators. (Unicode uses the less-standard word
“trinary” to describe them.) One of them can
be followed by three complete IDSes to form
an IDS that describes a character made of
three parts, much in the same manner as the
binary operators. For instance, “⿱⿲糸言糸夂”
describes the character 變.

• As of Unicode 6.1, IDS length is unlimited.
Earlier versions specified that an IDS could
not be more than 16 code points long overall
nor contain more than six consecutive non-
operator characters. This rule appears to be
have been intended to make things easier for
systems that need to be able to jump into the
middle of text and quickly find the starts and
ends of IDSes.

• IDSes non-bindingly “should” be as short
as possible and should reflect “the natural
radical-phonetic division for an ideograph if
it has one.”

The Unicode standard does not mention vari-
ation selectors in any IDS-related context, except
that it offers the possibility of prefixing U+303E,
the “ideographic variation mark,” to the entire se-
quence to indicate a variation. Such a prefix is ex-
plicitly defined not to be counted as part of the IDS.

My opinion is that Unicode did not intend to
permit variation selectors inside IDS syntax. Vari-
ation selectors arguably exist to patch over encod-
ing inadequacies resulting from Unicode’s internal
politics. When a code point is not really specific
enough, because it refers to two or more things
which you think are not actually the same thing,
then you can add a variation selector to indicate
which thing you really mean. IDSes, on the other

hand, bearing in mind that they are imported from
GBK, operate at a lower level to specify characters
in terms of parts that are assumed to be adequately
encoded. If a code point to be used in an IDS is
not specific enough, then that element should be
described with a smaller fragment of IDS syntax
instead of by using the ambiguous code point. If
the closest match possible is still not perfect, then
it is time to use U+303E. The fact they offer the
U+303E mechanism for specifying variations offers
further support to the idea that they did not intend
to allow variation selectors inside IDSes.

However, it’s a difficult question because IDSes,
by addressing the visual appearance of characters
instead of their semantics, fundamentally challenge
the basic Unicode principle that code points specify
characters and not glyphs. The distinction between
characters and glyphs simply cannot be made per-
fectly in all cases. For use in cases where variation
selectors appear to be appropriate, both CHISE IDS
and IDSgrep extend IDS syntax in such a way as to
allow them in some way.

Interface to CJKVI
Taichi Kawabata and the CJKVI Project [11] main-
tain a database of Unicode IDSes derived from the
CHISE IDS database (next subsection) and marked
up for the difference between Han-script languages
(Chinese, Japanese, Korean, etc.). Subsequent to
the bundling of CJKVI data in IDSgrep 0.5, some
documentation of the data has been added to the
GitHub repository’s README file. Handling of
CJKVI data in IDSgrep has been changed a little
in version 0.6, to reflect the new information.

The CJKVI IDS data is based on CHISE-IDS,
and follows their licensing, which is the GNU GPL
version 2 or later. As of IDSgrep version 0.6, it is
bundled with IDSgrep and is the suggested default
dictionary. It contains about 80000 entries in an ex-
tended IDS syntax more or less the same as CHISE
IDS’s, converted to IDSgrep EIDS during IDSgrep
installation.

As extensions to Unicode IDS, CJKVI allows
some additional characters not allowed by Uni-
code (but allowed by IDSgrep) to occur in its ex-
tended IDSes. First of all, it allows compatibility
characters, typically to clarify the interpretation in
cases where the unified character may be ambigu-
ous. Compatibility characters, in particular, may
occur in the expansions of other compatibility char-
acters. CJKVI allows some characters it calls “non-
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ideographs” to occur as components; these include
some of the CJK Strokes range (which I think Uni-
code may have allowed anyway), and a few Greek
letters and geometric shapes.

When there is no better way to encode a
component, CJKVI will use a circled number,
like ③, representing the number of strokes. It
also includes some references to characters that
are encoded by CDP and not Unicode, in a
format that looks like “&CDP-XXXX;” (CJKVI syn-
tax), translated to “<CDP-XXXX>;” (IDSgrep syn-
tax). The XXXX represents a four-digit hexadec-
imal code point in an encoding derived from Big5
and inherited from CHISE. There is a Japanese-
language article discussing these in GlyphWiki at
|http://glyphwiki.org/wiki/Group:CDP

For most characters, the CJKVI database con-
tains a single IDS assumed to represent that charac-
ter in all languages. When there is more than one
IDS for a character, usually the IDSes are tagged
with non-overlapping combinations of letters in the
set {G, T, J, K, V, A, X}, for simplified Chinese,
traditional Chinese, Japanese, Korean, Vietnamese,
Adobe Japan, and “virtual” shapes, respectively.
“Virtual” means that the shape does not actually
appear in the Unicode tables but possibly matches
a code point according to Annex S of the Unicode
specification. The letters H and U also occur, but
I’m not sure what they signify.

A typical database entry might include two
slightly different IDSes with one tagged [G] and the
other tagged [TJK]. In such a case IDSgrep’s dictio-
nary compiler will use the first for simplified Chi-
nese; the second for traditional Chinese, Japanese,
and Korean; and exclude that entry entirely for any
other languages, such as Vietnamese. However, ex-
ceptions to this scheme exist. There are entries with
more than one untagged IDS for a character. There
are entries with more than one IDS sharing a tag.
There are entries with a mixture of tagged and un-
tagged IDSes.

The bundled version of the database is in the
file cjkvi-ids.txt. Overwrite that file with a new
version of the CJKVI Project’s ids.txt file, if they
release one and you want to use it (new releases are
rare now that the data is mature). IDSgrep’s build
system will expect to find this file included in the
source directory.

Because of the language tagging, it is possible
to build more than one dictionary from CJKVI IDS
data. The --enable-cjkvi-style option to configure

takes a string of lowercase letters in the set {g,
t, k, j, v, x, h, a, u} and will build one dictio-
nary for each letter specified. For example, an
argument value of “gtk” would build the simpli-
fied and traditional Chinese dictionaries and the
Korean dictionary. The default is “j.” Dictionar-
ies are placed in files with names like cjkvi-g.txt,
cjkvi-t.txt, cjkvi-k.txt, and so on.

Note that since version 0.6, IDSgrep does not
treat the language tag “a” as special.

When building a dictionary, for each code point
the dictionary builder will use the first IDS on the
line in cjkvi-ids.txt that matches the specified tag; if
no IDS specifically mentions the specified tag, then
it will use the first IDS on the line at all, should that
one have no tag; and otherwise it will not include
that code point in the dictionary.

Interface to CHISE IDS
The CHISE project [1] maintains a database of Han
characters covering multiple languages as part of a
larger processing environment that also includes a
version of XEmacs [22] modified to follow the princi-
ples of the UTF-2000 initiative [14]. It also has con-
nections to GlyphWiki [2]. These systems are doc-
umented primarily in Japanese; English-language
documentation is sparse and not necessarily up to
date.

For IDSgrep’s purposes, the most interesting
part of CHISE is a module called CHISE IDS, which
includes a database of about 140000 characters (ex-
act count depending on the version), with decompo-
sitions in its own extension of Unicode IDS syntax.
The main purpose of this IDS database is to provide
a search capability within the modified XEmacs;
there is also code for a Web search form. From
examination of the database files it appears that
the rules for CHISE IDS’s extended IDS syntax are
more or less as follows.

• Generally, Unicode IDS rules apply.
• An XML entity-like sequence of the form

&NAME; counts as a single ideograph. The field
indicated by NAME is a symbolic identifier or
database key defined internally by the project.
Such identifiers have been observed to contain
uppercase ASCII letters, numerals, hyphens,
and plus signs; they usually consist of a short
alphabetic prefix, a hyphen, and a number.
These entity references are usually used to re-
fer to characters for which CHISE has an en-
coding and Unicode doesn’t.
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• A Unicode variation sequence (an ideograph
followed by a variation selector) counts as a
single character.

Although CHISE IDS’s extensions to IDS per-
mit strings that would not be valid IDSgrep EIDS
syntax, it is easy to convert them into EIDS for-
mat. IDSgrep includes a chise2eids Perl script for
that purpose. The configure script will look for
CHISE IDS in a directory named chise-ids-* in
a short list of likely places, or use the value of
the --enable-chise-ids command-line option if one is
given. This directory should simply be an unpacked
CHISE IDS distribution tarball, or a checkout from
the CHISE IDS Git repository. It is not necessary
to run CHISE’s Makefile, which would require also
having and installing other parts of the larger sys-
tem.

As of this writing (March 6, 2013), the CHISE
IDS distribution tarballs are available from http:
//chise.zinbun.kyoto-u.ac.jp/dist/ids/, and there is
a Git repository at http://git.chise.org/git/chise/
ids.git. However, on March 5, there was an an-
nouncement posted to the CHISE Project’s mail-
ing lists in English and Japanese saying that on
March 11 all the servers at chise.org (which in-
cludes the mailing lists themselves) will cease to
operate. It is not clear to me whether that is in-
tended to be something temporary, or the perma-
nent end of the project, but given that nothing
seems to have happened in CHISE in years, I fear
the worst. I have posted a snapshot of the cur-
rent CHISE IDS Git repository in my own Github
account at https://github.com/mskala/chise-ids; that
should be a long-term stable source of the data used
by IDSgrep.

The last distribution tarball of CHISE-IDS was
version 0.25 dated June 2010. The Git versions are
more recent and may be preferable. The directory
created by checking out a Git version will probably
not have a name recognized automatically by the
build system, so it should be given on the configure
command line with --enable-chise-ids.

Roughly 6% of the entries in the CHISE IDS
database include invalid extended IDS syntax—
most often in the form of too many children for
the operators used, or less often, too few. Most but
not all of the errors occur in the IDS-HZK??.txt files,
which are unmaintained. It appears that the native
search tools for the database generally work on the
basis of pure substring searches, where the higher-
level syntax errors that would be detected by the

IDSgrep parser can go unnoticed. The chise2eids
program generates a chise.errs file during build, list-
ing all the syntax errors it finds (11748 of them in
the current Git version as of this writing); invalid
entries are otherwise ignored and will not appear
in the main output file chise.eids. Although 6%
may sound like a lot of errors, the invalid entries
are generally in sufficiently obscure character com-
ponents that it should have little practical effect on
the quality of dictionary lookups: at worst, some
character components may end up not broken down
into pieces as small as would otherwise be possible.

CHISE IDS refers to individual characters in
a more general way than just by single Unicode
code point: sometimes it uses a variation sequence
consisting of a kanji code point followed by a
variation selector in the U+FE00 to U+FE0F or
U+E0100 to U+E01EF ranges, and sometimes it
uses a string that looks like an XML character en-
tity reference, along the lines of “&NAME;.” Both
of these map naturally to IDSgrep’s concept of a
multi-character head. The two-code-point sequence
U+840C U+E0101 is translated to the IDSgrep syn-
tax “<\X840c\X{E0101}>;,” and the XML-like syntax
“&FU-123;” is translated to “<FU-123>;.” CHISE IDS
does not seem to refer to the same character in
different ways (for instance, a code point with no
variation selector somehow matching as a default
to the same code point with a variation selector,
which might be plausible under Unicode’s definition
of what variation selectors signify) and chise2eids
does not attempt to accomodate anything like that.

The CHISE IDS database is covered by the GNU
GPL version 2 or later, which is basically compati-
ble with the GNU GPL version 3 used by IDSgrep.
IDSgrep 0.4 included a bundled copy of the dictio-
nary derived from CHISE IDS, but as of version
0.5, that has been replaced by a bundled copy of
the CJKVI database.

Interface to KanjiVG
The KanjiVG project [3] maintains a database of
kanji (Han characters as used by Japanese) in an ex-
tended SVG format, which implies that it is XML.
The kvg2eids Perl script, included as part of IDS-
grep, is capable of reading this database and con-
verting it to Extended Ideographic Description Se-
quences (EIDSes). As described above, if a reason-
ably recent version of KanjiVG’s compressed XML
file is available to configure, then IDSgrep’s build
will create such a dictionary and make install will
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install it.
KanjiVG describes characters primarily in terms

of strokes, not multi-stroke components, and it at-
tempts to follow the official stroke order and ety-
mological component breakdown. That approach
results in some peculiarities from the point of view
of dictionary searching. For instance, in the kanji
園, the official stroke order is to write two strokes of
the enclosing box, then the central glyph, then the
bottom of the box. KanjiVG’s XML file lists two
“elements” identified with the kanji 囗, one for the
first two strokes and one for the final stroke, with
additional attributes specifying that they are actu-
ally two parts of the same element. KanjiVG has
changed its own standard for how to represent this
information in the recent past, and not all entries
have been updated to the latest standard yet. The
current version of kvg2eids does not correctly process
園 nor some other characters with parts written in
nonsequential order. On that particular one it gen-
erates a special functor containing debugging infor-
mation; for some others, it may actually generate
an EIDS with the same radical appearing multiple
times, following the structure described in KanjiVG
whether it’s what was intended or not. As a result,
not all entries in the dictionary will be right. How-
ever, only a few are affected by this issue.

As of March 2012, I (Matthew Skala, the author
of IDSgrep) have become a member of the KanjiVG
project and there is some possibility that KanjiVG’s
database design will change in a way that makes it
easier to recover spatial organization for searching
with IDSgrep.

With the current versions of IDSgrep and Kan-
jiVG, the KanjiVG-derived dictionary contains 6660
entries covering all the popularly-used Japanese
kanji. Note that the KanjiVG input file, and pre-
sumably the resulting format-converted dictionary,
are covered by a Creative Commons Attribution–
ShareAlike license, distinct from the GNU GPL ap-
plicable to IDSgrep itself.

Interface to EDICT2
Jim Breen’s JMdict/EDICT project maintains a
file called EDICT2 [5] which is more like a tradi-
tional dictionary, with words and meanings, than
a database of kanji. Such dictionaries are not the
primary target of IDSgrep and IDSgrep’s query syn-
tax is not perfectly suited to them. However, the
regular-expression matching features may make it
practical to search EDICT2 with IDSgrep, and there

is some value in being able to do sub-character
structural searches on multi-character words.

If another dictionary besides EDICT2
is available (subject to configuration by
--enable-edict-decomp), then the build system
will generate and install a dictionary file called
edict.eids which represents a database join of
EDICT2 with the other dictionary. With no other
dictionary, the file can still be generated but will
contain no character decomposition information. A
sample entry might look like this:
【明】,<明>⿰日月｟[みん] (n) Ming (dynasty of China)｠

The head for the entire entry is the head from
the EDICT2 entry. Then the tree is a binary tree
with a comma as the functor and the first child be-
ing the entire decomposition dictionary entry for
the first character. The second child represents the
rest of the entry. With a two-character or longer
head, this child would also be a binary comma
with the second character of the entry head as its
first child. In this way the characters of the entry
head are all represented as left children of commas,
forming a linked-list structure (much like a Prolog
linked-list with commas instead of dots as the func-
tors). The final child at the bottom is a nullary
node containing as its functor simply the rest of the
EDICT2 entry.

The rationale for this syntax is that it allows
a relatively simple way of querying multi-character
words in EDICT2 using the existing IDSgrep query
types. To find an exact match, just query the
head (which will require head brackets and a semi-
colon if the query is more than one character long),
as in idsgrep -de '<教育>;'. To search for the first
few characters, commas can be imagined as sep-
arators (though their actual function is quite dif-
ferent) with a comma at the start and a question
mark at the end, as in idsgrep -de ',教,育?'. These
queries can be combined with the sub-character
breakdown queries already supported by the de-
composition dictionaries. For instance, idsgrep -de
',教,...|日月!,??' will search for, and give defini-
tions of, words of exactly two characters in which
the first is 教 and the second character contains 日 or
月 anywhere. The restriction to exactly two charac-
ters is accomplished by the sub-query “!,??”, which
fails to match on the binary comma that would be
present at that point in a longer word.

EDICT2 is under the Creative Commons
Attribution–ShareAlike license. Since KanjiVG is
as well, that license would presumably also apply
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to a combined dictionary made from EDICT2 and
KanjiVG. An EDICT2-only dictionary with no de-
compositions from other sources should similarly be
under Creative Commons Attribution–ShareAlike.
It might not be legal to distribute outside one’s
own organization a dictionary formed by joining
EDICT2 with CHISE IDS or Tsukurimashou, be-
cause those sources are covered by versions of the
GNU GPL, which is not compatible with the Cre-
ative Commons license.

Interface to Tsukurimashou
IDSgrep is closely connected with the
Tsukuimashou font family [17]. They have
the same author; it was largely for use in Tsukuri-
mashou development that IDSgrep was developed
at all; and IDSgrep’s source control system is a
subdirectory within Tsukurimashou’s. Building
IDSgrep in conjunction with Tsukurimashou allows
IDSgrep to extract from the Tsukurimashou build
system a dictionary of character decompositions
as they appear in Tsukurimashou. The Tsukuri-
mashou fonts are also necessary to build this
IDSgrep user manual. However, IDSgrep is also
distributed as a separate package, because it will
be of use to non-users of Tsukurimashou, and the
Tsukurimashou build system will not recurse into
IDSgrep’s directory and build IDSgrep by default;
only if requested.

IDSgrep is one of several parasite packages of
Tsukurimashou, using a mechanism introduced in
Tsukurimashou 0.7 and IDSgrep 0.4. Previous ver-
sions used a different interface.

To build Tsukurimashou with IDSgrep: specify
the “--enable-parasites” option to Tsukurimashou’s
configure script with an appropriate value, such as
“--enable-parasites=idsgrep”. See the Tsukurimashou
documentation for other possible values of this op-
tion. Building Tsukurimashou will then implicitly
build IDSgrep. It should be possible to pass IDS-
grep configure options to Tsukurimashou’s configure
script and have them automatically passed down
the chain (in the standard Autotools sub-package
fashion) but that is not well-tested.

To build Tsukurimashou without IDSgrep: this
is the default when you run the Tsukurimashou
build from the root of the Tsukurimashou distri-
bution. The IDSgrep source is included as a subdi-
rectory in distributions of Tsukurimashou, but only
built on request.

For a more customized build of IDSgrep, with

or without Tsukurimashou: you can also run IDS-
grep’s configure in its own directory, and then do
make (and the usual targets) there. It will look for
Tsukurimashou (specifically, a build directory in
which Tsukurimashou’s configure has already been
executed) as the parent directory and in a few other
places, or you can specify the location of a Tsukuri-
mashou build with the “--with-tsuku-build” option
to IDSgrep’s configure. If Tsukurimashou is not
available, IDSgrep will build without creating the
Tsukurimashou-derived dictionary file.

During IDSgrep’s build, if it can access a
Tsukurimashou build directory, it will recursively
call make eids on Tsukurimashou’s build system.
That is a hook that causes Tsukurimashou’s build
system to generate the EIDS decomposition dic-
tionary, which is then copied or linked back into
IDSgrep’s build directory and can be installed with
IDSgrep’s make install. IDSgrep’s build will also
look in Tsukurimashou’s build directory for the font
“Tsukurimashou Mincho” which is needed to build
this user manual, and will make recursive calls to
make for Tsukurimashou to build that if necessary.
This kind of upward-callback make invocation is a lit-
tle inefficient (in particular, it does not handle job-
server mode well) so it is better, if you want both
packages, to use the centralized Tsukurimashou
build system, which will do its own thing first and
then call IDSgrep’s build near the end in a better-
integrated way. If you want to run “make install”
just on IDSgrep and not on Tsukurimashou (which
might be a reasonable thing to want because of op-
erating system font installation issues), you should
run just “make” in Tsukurimashou’s directory, then
cd to IDSgrep’s directory and run “make install.” �A note on TrueType/OpenType
This version of IDSgrep is designed to read True-
Type or OpenType files (the distinction between
the two is not relevant at this level) for character
map information. The specification for the True-
Type/OpenType file format reads like a parody.
I’d like to take a moment to complain about a few
things.

• Although the format contains binary fields
which must be read in a specific byte order,
one of the two magic numbers that can iden-
tify the file format (for a single font as opposed
to a “collection”) is 0x4F54544F, which is a
palindrome at the byte level and thus useless
for detecting byte order problems.
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• The other possible magic number for non-
collection files is 0x00010000, which is quite
likely to occur in files that are not True-
Type/OpenType files, making it harder to de-
tect when one may have been passed a bad
file.

• Many decades of research on error detec-
tion codes were ignored in the design of
the OpenType checksum algorithm, which
(among other issues) cannot detect any re-
ordering of 32-bit words unless it crosses a ta-
ble boundary. At least the algorithm produces
its meaningless results fast; yay, efficiency!

• There are 32-bit byte offsets referenced to the
start of the file. There are 32- and 16-bit byte
offsets referenced to the start of the current
table. There are 32- and 16-bit byte offsets
referenced to the locations of the offset fields
themselves, so a field at offset 0x1234 referring
to another field at offset 0x5678 will contain
0x4444. There are also indices measured in
units other than bytes.

• There are variable-length objects not tagged
with their lengths except indirectly: they are
presumably contained entirely within larger
objects that are tagged with lengths.

• Consider the cmap format 4 subtable, which
Microsoft says is their preferred format. It
includes four variable-length arrays each con-
taining segCount number of two-byte entries.
The value of segCount is not directly recorded
anywhere, but these values are all required in
the header:

◦ 2 · segCount;
◦ 2 · 2⌊log2 segCount⌋;
◦ log2(2 · 2⌊log2 segCount⌋/2) (which is de-

scribed like that in the spec); and of
course

◦ 2 · segCount − 2 · 2⌊log2 segCount⌋.
• The bizarre length-derived values in the for-

mat 4 header (and other similar sets of table-
size-logarithm numbers that occur elsewhere
in the file format) appear to be designed to
support someone’s binary search code. In-
stead of computing those numbers itself start-
ing from the length, the search code can just
use values straight from the table to initial-
ize its variables. Consider what would hap-
pen if someone actually did that as the de-
signers apparently intended, and the num-
bers happened to be incorrect in the file.

If, for instance, numbers in the file were
swapped around on 32-bit boundaries, the
checksums wouldn’t detect a problem; and
the speed demons who think they need pre-
computed logarithms probably aren’t wasting
time checking checksums anyway. The code
isn’t checking whether the numbers are con-
sistent (because to do that you would have
to calculate them fresh, and then why bother
storing them in the first place?), so it will end
up “searching” into random areas of the file, or
into uninitialized memory beyond. Now think
about the relative costs of disk reads, net-
work transfer, and arithmetic, and consider
whether having those values precalculated and
stored in the file would actually save any time
even if they could be trusted.

• The cmap format 4 subtable consists of, in
this order: fixed-length stuff totalling 14
bytes; one variable-length array of length
2 · segCount bytes; one more two-byte fixed-
length field; three more variable-length arrays
each of length 2 · segCount bytes; and finally,
one more variable-length array whose length
is not directly specified anywhere but could
presumably be inferred by subtracting from
the known size of the overall table. The four
2 · segCount-byte arrays are actually the re-
arranged slices of a single logical array whose
elements are four-field structures; but the ex-
tra reserved two bytes stuck in the middle of
the table make a straightforward transposi-
tion impossible. Four-tuples of the same kind
with the same four fields also occur in the for-
mat 2 subtable; but there, they occur as a
single array with each record written in an 8-
byte block.

• It is an intended, documented feature that
some of the variable-length arrays in True-
Type/OpenType may overlap with each
other. As a result, bounds-checking, in ad-
dition to being intrinsically difficult because
of the lack of information, would cause the
reader to reject some files that the specifica-
tion claims are legitimate.

• Code-injection bugs allowing execution of ar-
bitrary code in a privileged context have been
reported in software that implemented this file
format without bounds-checking. This should
surprise no one.

IDSgrep attempts to do all reasonable bounds-
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checking on the fields it needs, and to ignore fields
it does not need; given a bad TrueType/OpenType
file, it is intended that IDSgrep should be able to
make the best of it and at worst fail gracefully with
an error message. It should not be possible to crash
IDSgrep by giving it a bad font file to read.

However, the nature of the file format means
that at least in the current version, we can’t be con-
fident all possible problems have been foreseen and
excluded. Let me know if you find a font file that
makes IDSgrep crash and I’ll try to fix it. IDSgrep
probably should not be allowed to read font files
supplied by untrusted sources such as Web users.
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Invoking idsgrep
The command-line idsgrep utility works much like
most other command-line programs, and like grep [8]
in particular. It takes options and other arguments.
The first non-option argument is an EIDS represent-
ing the matching pattern, and any remaining non-
option arguments are taken as filenames to read. If
there are no filenames, idsgrep will read from stan-
dard input. Output always goes to standard output.

When there is more than one file being read (ei-
ther by direct specification or indirectly with the -d
dictionary option), idsgrep will preface each EIDS in
its output with “:⟨filename⟩:” to indicate in which
file the EIDS was found. Note that under the EIDS
syntax rules, that creates a unary node senior to
the entire tree, so that the output remains in valid
EIDS format, except in the case of filenames con-
taining colons, which will be handled via backslash
escapes in the future when those are fully imple-
mented for output.

Command-line options

-c, --cooking Select the output generation and in-
put canonicalization mode. Requires one ar-
gument, which may be one of the keywords
raw, rawnc, ascii, cooked, or indent, to specify a
preset mode; or a string of up to twelve dec-
imal digits to control the output in more de-
tail. The default mode is raw. See the section
on “cooked output” in this manual for more
details.

-d, --dictionary Read a dictionary from the stan-
dard location. There is a pathname for dictio-
naries hardcoded into the idsgrep binary, gen-
erally {prefix}/share/dict, and if this option
is given, its argument (which may be empty)
will be appended to the dictionary directory
path, followed by “*.eids,” and then treated
as a shell glob pattern. Any matching files
are then searched in addition to those other-
wise specified on the command line. A small
added wrinkle is that when more than one file
is searched (resulting in :filename: tags on the

output lines), any of them that came from the
-d option will be abbreviated by omitting the
hardcoded path name. The purpose of this op-
tion is to cover the common case of searching
the installed dictionaries. Just specifying “-d”
will search all the installed dictionaries; speci-
fying an abbreviation of the dictionary name,
as “-dt” or “-dk,” will search just the match-
ing one; and it remains possible to specify a
file exactly or use standard input in the usual
grep-like way.

-f, --font-chars Read a font file and make its char-
acter coverage available as a user-defined
matching predicate through the “#” match-
ing operator. In the current version, this fea-
ture can only read TrueType and OpenType
files that contain Unicode (or near equivalent)
mappings described with cmap subtable types
0, 2, 4, 12, or 13. This option may be spec-
ified multiple times, with successive invoca-
tions corresponding to user-defined predicates
1, 2, 3, and so on. The maximum number of
user-defined predicates is limited to the num-
ber of bits in the largest integer type available
to the C compiler; 32 or 64 on many systems.

-h, --help Display a short summary of these op-
tions.

-C, --colour, --color Colourize the output with
ANSI terminal escape sequences. The long
form takes an optional argument which may
be “always,” “auto,” or “never.” The default is
“auto” if the long form option is specified with
no argument, and the short form -C which
does not take an argument is equivalent to
--color=auto, but not specifying a colour op-
tion at all is the same as specifying “never.”
In “auto” mode, IDSgrep will colourize if and
only if standard output is a terminal.

-G, --generate-index Instead of searching for trees �
that match a matching pattern, generate and
write to standard output a bit vector index of
the specified file or files. This index, if writ-
ten to a filename with a .bvec extension and
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placed alongside the input that generated it in
a correspondingly-named .eids file, may speed
up future searches. This feature is normally
invoked automatically during program instal-
lation; users will only need to use it directly if
they are building their own dictionaries. No
matching pattern will be taken from the com-
mand line; all non-option arguments will be
read as filenames. The -U option will be ig-
nored. If there is more than one input file, the
results for them will be concatenated, which
is unlikely to be useful. See the chapter on bit
vector indices in this manual for more infor-
mation.

-I, --ignore-indices Do not look for or use any bit
vector indices.

-U, --unicode-list Generate a dictionary of Unicode
code points, and read that before reading any
other dictionaries or input files that may be
specified. The generated dictionary consists
of a single line for each of the code points
U+0000 through U+10FFFF in ascending or-
der, excluding the surrogates but not any
other invalid or non-character code points; on
each line, there is a tree whose head is the
character and whose body is either a nullary
semicolon or (if the optional argument to -U
was specified) a nullary functor containing
semicolon-separated pieces of information se-
lected by the characters of the optional ar-
gument. Characters permitted in the argu-
ment are “b” for the Unicode block name;
“d” for the decimal value of the code point;
and “x” for the hexadecimal value with “U+.”
For example, specifying “-Uxdb” will generate
and scan a dictionary that includes the line
“<A>(U+0041;65;Basic Latin).” This option is in-
tended to be used together with -f to produce
font coverage lists.

Bit vector indexing is of no use for the�
internally-generated Unicode list, but when
the query tree has a head, IDSgrep will gen-
erate only the at most one dictionary entry
that could match that query, giving some-
thing very much like the benefit of bit vector
indexing. This option generates the entries
as EIDS trees in an internal format, not as
a byte stream, bypassing the input parser, so
output from -U is always cooked even when a
raw mode is selected with -c to be used for
real input.

-V, --version Display the version and license infor-
mation for IDSgrep.

--bitvec-debug Report detailed bit vector debugging �
and performance information to standard er-
ror. The information reported is terse, un-
documented, and probably not of interest
to most users. Whereas in ordinary opera-
tion, idsgrep will silently switch to plain tree-
matching should the bit vector index be un-
available or invalid, with this option the ab-
sence of a valid bit vector index for an input
file will be treated as a fatal error.

--disable-bdd Disable the BDD filtering layer (op- �
tion exists only on binaries that contain this
layer in the first place). Index files will still
be read, and a BDD filter will still be con-
structed, but the code that invokes the BDD
filter will instead return a hardcoded “possible
match” result. This option is intended only
for testing and debugging purposes. To dis-
able bit vector filtering entirely (and, in par-
ticular, to avoid opening and reading any in-
dex file), use -I.

--disable-lambda Disable the lambda filtering layer. �
Index files will still be read, and a lambda fil-
ter will still be constructed, but the code that
tests the lambda filter will return a hardcoded
“possible match” result. Like --disable-bdd,
this option is intended only for testing and
debugging purposes.

--disable-tree-match Disable the tree matching op- �
eration; print all trees that pass the filters.
This option is intended only for testing and
debugging purposes. Note that with this op-
tion in effect IDSgrep may print incorrect re-
sults, even when operating correctly with no
bugs, because the filtering layers by design
may match some trees that do not match the
query string entered on the command line.

--statistics Report a line of machine-readable per- �
formance information to standard output at
the end of the run. This may be useful in opti-
mizing the bit vector features. See the chapter
on bit vectors in this manual for more infor-
mation about the format and significance of
the statistics.

Environment variables
The idsgrep utility recognizes just one environment
variable, IDSGREP_DICTDIR, which if present specifies a
directory for the -d option to search instead of its
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hardcoded default.
Note that idsgrep does not pay attention to any

other environment variables, and in particular, not
LC_ALL and company. The input and output of this
program are always UTF-8 encoded Unicode regard-
less of locale settings. Since the basic function of
this program is closely tied to the Unicode-specific
“ideographic description characters,” it would be
difficult if not impossible for it to work in any non-
Unicode locale. Predictability is also important be-
cause of the likely usefulness of this software in au-
tomated contexts; if it followed locale environment
variables, many users would have to carefully over-
ride those all the time to be sure of portability. In-
stead of creating that situation, idsgrep by design
has a consistent input and output format on all sys-
tems and users are welcome to pipe things through
a conversion program if necessary.
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Technical details
This section is intended to describe IDSgrep’s syn-
tax and matching procedure in complete precise de-
tail; and those things are, in turn, designed to be
powerful rather than easy. As a result, the descrip-
tion may be confusing for some users. See the ex-
amples in the “Quick start” section for a more ac-
cessible introduction to how to use the utility.

The system is best understood in terms of three
interconnected major concepts:

• an abstract data structure;
• a syntax for expressing instances of the data

structure as “Extended Ideographic Descrip-
tion Sequences” (EIDSes);

• a function for determining whether two in-
stances of the data structure “match.”

Then the basic function of idsgrep is to take one
EIDS as a matching pattern, scan a file containing
many more, and write out the ones that match the
matching pattern. The three major concepts are de-
scribed, one each, in the following sections. A final
section describes options for how the command-line
idsgrep program generates EIDS syntax on output.

The data structure
An EIDS tree consists of the following:

• An optional head, which if present consists of
a nonempty string of Unicode characters.

• A required functor, which is a nonempty
string of Unicode characters.

• A required arity, which is an integer from 0 to
3 inclusive.

• A sequence of children, of length equal to the
arity (no children if arity is zero). Each child
is, recursively, an EIDS tree.

Trees with arity zero, one, two, and three
are respectively called nullary, unary, binary, and
ternary.

Note that these “nonempty strings of Unicode
characters” will very often tend to be of length
one (single characters) but that is not a require-
ment. They cannot be empty (length zero); the
case of a tree without a head is properly described
by “there is no head,” not by “the head is the empty

string.” At present no Unicode canonicalization is
performed, that being left to the user, but this may
change in the future. Zero bytes (U+0000) are in
principle permitted to occur in EIDS trees, but be-
cause Unix passes command-line arguments as null-
terminated C strings, they can only be entered in
matching patterns via backslash escape sequences.

Typically, these trees are used to describe kanji
characters. The literal Unicode character being de-
scribed will be the head, if there is a code point for
it; the functor will be either an ideographic descrip-
tion character like ⿱ if the character can be sub-
divided, or else nullary ; if not. Then the children
will correspond to the parts into which it can be de-
composed. Some parts of the character may also be
available as characters with Unicode code points in
their own right; in that case, they will have heads
of their own.

EIDS syntax
Unicode’s IDS syntax serves a similar purpose to
IDSgrep’s extended IDS syntax, but it lacks suffi-
cient expressive power to cover some of IDSgrep’s
needs. Nonetheless, EIDS syntax is noticeably de-
rived from that of Unicode IDSes. Broadly speak-
ing, EIDSes are IDSes extended to include heads
(which we need for partial-character lookup); brack-
eted strings as functors (which we need for captur-
ing arbitrary data); and with arbitrary limits on
allowed characters and length relaxed (needed for
complex characters and so that matching patterns
can be expressed in the same syntax).

Here are some sample EIDSes:
大
⿱田⿰虫⿱土土
⿸厂⿱今止
【萌】⿱艹<明>⿰日月
【店】⿸广<占>⿱卜口
⿱艹⿰日?
&...男...女
[tb]艹[or][lr]?日[lr]日?

The first three of these examples are valid in the
Unicode IDS syntax. The next two contain heads,
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and are typical of what might exist in a dictionary
designed to be searched by the idsgrep command-
line utility. The last three might be matching pat-
terns a user would enter.

EIDS trees are written in a simple prefix nota-
tion that could be called “Polish notation” inasmuch
as it is the reverse of “reverse Polish notation.” To
write a tree, simply write the head if there is one,
the functor, and then if the tree is not nullary, write
each of the children. Heads and the functors of trees
of different arity are (unless otherwise specified be-
low) written enclosed in different kinds of brack-
ets that indicate the difference between heads and
functors, and the arity of the tree when writing a
functor.

The basic ASCII brackets for heads and functors
are as follows:

head < > <example>
nullary functor (0) ( ) (example)
unary functor (1) . . .example.
binary functor (2) [ ] [example]
ternary functor (3) { } {example}

Note that the opening and closing brackets for
unary functors are both equal to the ASCII period,
U+002E.

Some sequences of Unicode characters beginning
with “\” (ASCII backslash, U+005C) are treated
specially. Backslash followed by a character from
a short list of ASCII Latin letters introduces an
escape sequence used to substitute for a character
that would otherwise be hard to type; backslash
followed by any other character (including a sec-
ond backslash) is equivalent to the other character,
but without any special meaning it would otherwise
have had. Thus, backslash can be used for instance
to include literally in a bracketed string the closing
bracket that otherwise would mark the end of the
string.

The backslash-letter escapes are listed below.
Note that the letters identifying the type of es-
cape sequence are case-sensitive, and all are lower-
case except “\X.” However, for sequences that take
a parameter, the parameters are not case-sensitive.
Note that all characters inside an escape sequence
must be literal ASCII, except in the “default” case
of a single backslash used to escape a single non-
ASCII character. It is not permitted to use recur-
sive backslash escapes to create some of the charac-
ters that make up a multi-character escape sequence
like “\x{}.”

\a ASCII BEL (U+0007)
\b ASCII BS (U+0008)
\cX ASCII control character X
\e ASCII ESC (U+001B)
\f ASCII FF (U+000C)
\t ASCII HT (U+0009)
\n ASCII LF (U+000A)
\r ASCII CR (U+000D)
\xHH two-digit Unicode hex
\XHHHH four-digit Unicode hex
\x{Hx} \X{Hx} variable-length Unicode hex

The \c escape takes a parameter consisting of
a single ASCII Latin letter character (only); it is
equivalent to typing Ctrl plus that letter (case in-
sensitive) on a standard keyboard, that is the ASCII
control code in the range U+0001 to U+001A ob-
tained by subtracting 64 from the uppercase letter’s
ASCII code or 96 from the lowercase letter’s ASCII
code.

The hexadecimal escapes \x and \X offer a
choice of two-digit, four-digit, or variable-length
(enclosed by curly braces) hexadecimal specification
of Unicode code points. The hex codes are case-
insensitive. Values greater than 10FFFF, and there-
fore outside the Unicode range, will be replaced
by the Unicode replacement character U+FFFD.
The closing curly brace that terminates a variable-
length Unicode hex sequence will not also terminate
a curly-brace-enclosed bracketed string in which it
might happen to occur.

Parsing of bracketed strings has a few features
worth noting. First, there is no special treatment
of nested brackets. After the “<” that begins a
head, for instance, the next unescaped “>” will
end the head, regardless of how many other in-
stances of “<” have been seen. However, because
no head or functor can be less than one character
long, a closing bracket immediately after the open-
ing bracket (which would otherwise create an illegal
empty string) is specially treated as the first charac-
ter of the string and not as a closing bracket. Thus,
“())” is legal syntax for a functor equal to a closing
parenthesis, in a nullary tree; and “...” is a func-
tor equal to a single ASCII period in a unary tree,
an important example because it is the commonly-
used match-anywhere operator. A bracket character
specified via a backslash escape, whether by pre-
ceding the literal character with a backslash or by
giving its hexadecimal code in a “\x” or “\X” con-
struction, is never taken to start or end a bracketed
string.
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Each pair of ASCII brackets also has two pairs
of generally non-ASCII synonyms, as follows:

< > 【 】 〖 〗
( ) （ ） ｟ ｠
. . : : ・ ・
[ ] ［ ］ 〚 〛
{ } 〔 〕 〘 〙

The closing synonymous brackets for functors
of unary trees are always identical to the open-
ing brackets. A string may be opened by any of
the three opening bracket characters for its type
of string; but then it must be closed by the clos-
ing bracket character that goes with the opening
bracket. Brackets from other pairs are taken lit-
erally and do not end the string. For instance,
“【<example>】” is a head whose value consists of
“<example>” including the ASCII angle brackets.
There are several reasons for the existence of the
synonyms:

• They look cool.
• There is an established tradition of using

【lenticular brackets】 for heads in printed
dictionaries, which is exactly their meaning
here.

• Allowing ASCII colons to bracket unary-node
functors makes possible a more appealing and
grep-like syntax for idsgrep’s output in the case
of processing multiple input files.

• Allowing more than one way to bracket each
kind of string makes it easier to express
bracket characters that may occur literally in
a string.

• The non-ASCII brackets may be easier to type
without switching modes in some input meth-
ods.

• On the other hand, keeping an ASCII option
for every bracket type allows matching pat-
terns to be entered on ASCII-only terminals.

• Multiple bracket types allow for creating
human-visible computer-invisible distinctions
in dictionary files, for instance to flag pseudo-
entries that contain metadata, without need-
ing to create a special syntax for comments.

If a character other than an opening bracket
occurs unescaped in an EIDS where an opening
bracket would be expected, it is treated in one of
three ways.

• ASCII whitespace and control characters,
U+0000 to U+0020 inclusive, are ignored. In
the future, this treatment might be extended
to non-ASCII Unicode whitespace characters,

which are best avoided because of the uncer-
tainty.

• Some special characters, such as “⿰,” have
“sugary implicit brackets.” If one of these
characters appears outside of brackets, it will
be interpreted as a functor whose value is
a single-character string equal to the literal
character, and a fixed arity that depends on
which character it is. For instance, “⿰” and
“[⿰]” will be parsed identically. A list of
characters getting this treatment is below.

• Any other non-bracket character has a
“syrupy implicit semicolon.” That means it
will be interpreted as a complete nullary tree
with a single-character head equal to the lit-
eral character, and a single semicolon as the
functor. For instance, “x” and “<x>(;)” will
be parsed identically. Because semicolon it-
self has sugary implicit nullary brackets, we
could also write “<x>;” for the same effect.

Here are all the characters that have sugary
implicit brackets, with the brackets they imply:
(;) (?) .!. ./. .=. .*. .@. .#. [&] [,] [|] [⿰] [⿱]
[⿴] [⿵] [⿶] [⿷] [⿸] [⿹] [⿺] [⿻] {⿲} {⿳}

Note that the sugary and syrupy implications of
a character are only relevant when the character oc-
curs where an opening bracket of some type would
otherwise be required; inside a bracketed string,
characters are taken literally unless they end the
string or make up escape sequences. Characters cre-
ated by escape sequences are always syrupy outside
a string and always literal inside a string; they never
start or end bracketed strings nor have any special
sugary meaning they would otherwise have.

Characters, for the purposes of EIDS parsing,
are strictly single Unicode code points. Such things
as combining accents and variation selectors are
parsed as separate characters from the bases to
which they may be applied. The sugary and syrupy
parsing rules apply only to single characters. Thus,
appropriate brackets are necessary whenever a se-
quence containing more than one code point is to
be treated as a single head or functor.

It is an intentional consequence of these rules
that all syntactically valid Unicode IDSes are syn-
tactically valid EIDSes, but the converse is not true.
CHISE IDS extended IDSes can easily be converted
to this syntax but in general are not valid IDSgrep
EIDSes in themselves.

Although it is technically not a parsing issue but
rather a transformation applied to the tree after
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parsing, there is one more issue to mention: some
functors have aliases. If a functor and arity matches
one of the aliases on the following list, it will be
replaced with the indicated single-character func-
tor. The idea is to provide verbose ASCII names
for single-character functors of special importance
to the matching algorithm. Note that the single-
character versions are always the canonical ones,
and although the brackets are shown explicitly for
clarity, they are nearly all characters from the “sug-
ary implicit” list. This feature may be disabled or
modified using some settings of the “-c” command-
line option; see the section on output cooking for
more information.

(anything) ⇒ (?) .anywhere. ⇒ ...
.not. ⇒ .!. .regex. ⇒ ./.
.equal. ⇒ .=. .unord. ⇒ .*.
.assoc. ⇒ .@. .user. ⇒ .#.
[and] ⇒ [&] [or] ⇒ [|]
[lr] ⇒ [⿰] [tb] ⇒ [⿱]

[enclose] ⇒ [⿴] [wrapu] ⇒ [⿵]
[wrapd] ⇒ [⿶] [wrapl] ⇒ [⿷]
[wrapul] ⇒ [⿸] [wrapur] ⇒ [⿹]
[wrapll] ⇒ [⿺] [overlap] ⇒ [⿻]
{lcr} ⇒ {⿲} {tcb} ⇒ {⿳}

The idsgrep command-line utility attempts to�
follow Postel’s Law with respect to byte sequences
that are not valid UTF-8: “be conservative in what
you do, be liberal in what you accept from oth-
ers.” [15] Jesus of Nazareth stated a similar princi-
ple somewhat earlier.∗ Accordingly, invalid UTF-8
on input is not in general treated as a fatal error.
Handling of invalid UTF-8 represents a delicate bal-
ance of security issues: if invalid UTF-8 is treated
as completely fatal, that creates the possibility for
denial of service attacks, but if it is permitted to
too great an extent, it can create opportunities for
things like buffer overflows. In general, the idsgrep
utility will not itself break when given bad UTF-8,
nor will it make matters worse compared to a sys-
tem that did not include idsgrep, but idsgrep cannot
be counted on to actively protect some other piece
of software that would otherwise be vulnerable to
bad UTF-8.†

The parser will skip over (as if they did not exist
at all) byte sequences that are not valid UTF-8, in-
cluding the forbidden bytes 0xC0, 0xC1, and 0xF5

∗“There is nothing from without a man, that entering into
him can defile him: but the things which come out of him,
those are they that defile the man.” (Mark 7:15, KJV)

†Genesis 4:9.

through 0xFF; continuation bytes outside valid
multibyte sequences; “overlong” sequences (those
that would otherwise be valid, but encode a given
code point other than in the shortest possible way);
surrogates; and sequences that encode code points
outside the Unicode range. Depending on where
they occur within a multibyte sequence, some of
these things may result in the whole sequence be-
ing skipped instead of just the bad bytes, with the
parser making its best guess as to what that means.
Be aware that some other software may treat some
of these things as valid.

When a code point outside the Unicode range,
or a surrogate, is specified using a backslash hex-
adecimal escape, the parser will interpret it as if
the substitute character U+FFFD had been speci-
fied instead. All UTF-8 sequences actually gener-
ated by the idsgrep program are guaranteed to be
valid UTF-8, barring serious programming errors;
and matching operations including PCRE matches
occur only on the parsed internal representation
which is valid UTF-8. Note that PCRE, despite
having a deprecated syntax for sub-encoding byte
matching, cannot be used to detect invalid bytes
that the idsgrep parser skipped; it sees only what
the parser validly parsed. However, since in its de-
fault mode the idsgrep program will echo through
to the output the exact input byte sequence that
was parsed to create a tree, not the internal repre-
sentation, it is possible that non-UTF-8 input could
result in non-UTF-8 output. Several cooked output
modes, in which idsgrep generates its own UTF-8
from the internal representation and provides guar-
antees of valid UTF-8 or even valid ASCII output,
are available but non-default.

Some byte sequences that are valid UTF-8 but
not valid Unicode, for instance the sequence that
encodes a reversed byte order mark, may possibly
go undetected in the input and be allowed in the
output, even when cooked, by the current version
of idsgrep. It is intended that idsgrep should detect
that kind of thing where it is reasonable to do so,
and future versions may do it better than this one
does; but some higher-level errors in Unicode usage,
such as misuse of combining characters or variation
selectors, will probably never fall within the scope
of idsgrep.

Matching
The basic function of the idsgrep command-line util-
ity is to evaluate each item in the database against a
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matching pattern. The matching patterns are sim-
ilar in spirit to the “regular expressions” common
throughout the Unix world; however, for theoretical
and practical reasons standard regular expressions
would be unsuitable for the applications considered
by IDSgrep.

The main theoretical issue is that IDSes,
whether IDSgrep-style “extended” or Unicode-style
traditional ones, belong to the class of context-
free languages. They describe tree-like structures
nested to arbitrary depth, similar in nature to
programming-language expressions containing bal-
anced parentheses although balanced parentheses as
such are not actually part of EIDS syntax. The nat-
ural way to parse these involves an abstract machine
with a stack-like memory that can assume an infi-
nite number of different states. Regular expressions
can only be used to recognize the smaller, simpler
class of regular languages, parsable by an abstract
machine with a finite-state memory. It is not pos-
sible to write a correct regular expression that will
match balanced parentheses. Some advanced soft-
ware implementations of so-called “regular expres-
sions” (for instance, Perl’s) contain special features
that make them more powerful than the standard
theoretical model, so that they are capable of recog-
nizing some languages that are non-regular, includ-
ing balanced parentheses. It is also possible to fake
a stack with a finite depth limit by writing a com-
plicated regular expression, and that may be good
enough in some practical cases. Some users may
also settle for just doing a substring query with grep
and calling the result close enough. But IDSgrep
tries to do it in a way that is really right, and that
is described precisely in this section.

We will define a function match(x, y) which
takes two EIDS trees as input and returns a Boolean
value of true or false. We call x the pattern or
needle and y the subject or haystack. The idsgrep
command-line utility generally takes x from its com-
mand line and repeatedly evaluates this function for
each EIDS it reads from its input; it then writes out
all the values of y for which match(x, y) is true.

The match(x, y) function is defined as follows:
• If x and y both have heads, then match(x, y)

is true if and only if their heads are identical.
Nothing else is examined (in particular, not
the children). Then the two cases below do
not apply.

• If x and y do not both have heads, then
match(x, y) = match′(x, y), whose value gen-

erally depends on the functor and arity of x.
The match′ function has many special cases
described in the subsections below, expressing
different kinds of special matching operations.
These operations roughly correspond to the
ASCII characters with sugary implicit brack-
ets in EIDS syntax. They are shown with
brackets for clarity in the discussion below,
but users would generally type them without
the brackets and depend on the sugar in ac-
tual use.

• If none of the subsections below applies, then
match′(x, y) is true if and only if x and
y have identical functors, identical arities,
and match(xi, yi) is true recursively for all
their corresponding children xi, yi. Note that
match′ recurses to match, not itself, so there
is a chance for head matching on the children
even if it was not relevant to the parent nodes.

Match anything The value of match′((?), y) is al-
ways true. Thus, ? can be used as a wildcard in
idsgrep patterns to match an entire subtree regard-
less of its structure. Mnemonic: question mark is a
shell wildcard for matching a single character. The
verbose ASCII name for “(?)” is “(anything).”

Match anywhere The value of match′(...x, y) is
true if and only if there exists any subtree of y
(including the entirety of y) for which match(x, y)
is true. In other words, this will look for an in-
stance of x anywhere inside y regardless of nest-
ing level. Mnemonic: three dots suggest omitting a
variable-length sequence, in this case the variable-
length chain of ancestors above x. The verbose
ASCII name for “...” is “.anywhere..”

Match children in any order The value of
match′(.*.x, y) is true if and only if there ex-
ists a permutation of the children of y such that
match(x, y′) is true of the resulting modified y′. For
instance, *[a]bc matches both [a]bc and [a]cb. This
is obviously a no-operation (matches simply if x
matches y, as if the asterisk were not applied) for
trees of arity less than two. Mnemonic: asterisk is
a general wildcard, and this is a general matching
operation. The verbose ASCII name for “.*.” is
“.unord..”

NOT The value of match′(.!.x, y) is true if and
only if match(x, y) is false. It matches any tree

23



not matched by x alone. Mnemonic: prefix excla-
mation point is logical NOT in many programming
languages. The verbose ASCII name for “.!.” is
“.not..”

AND The value of match′([&]xy, z) is true if and
only if match(x, z)∧ match(y, z). In other words, it
matches all trees that are matched by both x and y;
the set of strings matched by [&]xy is the intersec-
tion of the sets matched by x and by y. Mnemonic:
ampersand is logical or bitwise AND in many pro-
gramming languages. The verbose ASCII name for
“[&]” is “[and].”

OR The value of match′([|]xy, z) is true if and
only if match(x, z) ∨ match(y, z). In other words,
it matches all trees that are matched by at least
one of x or y; the set of strings matched by [|]xy
is the union of the sets matched by x and by y.
Mnemonic: ASCII vertical bar is logical or bitwise
OR in many programming languages. The verbose
ASCII name for “[|]” is “[or].”

Literal tree matching If x and y both have heads,
then the value of match′(.=.x, y) is true if and only
if those heads are identical. Otherwise, it is true if
and only if x and y have identical functors, identi-
cal arity, and match(xi, yi) is true for each of their
corresponding children.

The effect of this operation is to ignore any spe-
cial match′() semantics of x’s functor; the trees are
compared as if that functor were just an ordinary
string, regardless of whether it might normally be
special. Note that the full match() is still done on
the children with only the root taken literally; to
do a completely literal match of the entire trees it
is necessary to insert an additional copy of .=. above
every node in the matching pattern, or at least ev-
ery node that would otherwise have a special mean-
ing for match′(), and even then heads will continue
to have their usual effect of overriding recursion.‡
Mnemonic: equals sign suggests the literal equality
that is being tested rather than the more compli-
cated comparisons that might otherwise be used.
The verbose ASCII name for “.=.” is “.equal..”

For instance, this feature could allow searching
‡It may be interesting to consider how one could write

a pattern to test absolute identity of trees, with each node
matching if and only if its head or lack thereof is identical to
the desired target as well as the functors and arities matching
and the same being true of all children.

for a unary tree whose functor actually is !, where
just specifying such a tree directly as the matching
pattern would instead (under the rule for “NOT”
above) search for trees that do not match the only
child of !. In the original application of searching
kanji decomposition databases this operation is un-
likely to be used because the special functors do
not occur anyway, but it seems important for po-
tential applications of IDSgrep to more general tree-
querying, because otherwise some reasonable things
people might want to look for could not be found at
all.

Associative matching The value of
match′(.@.x, y) is calculated as follows. Cre-
ate a new EIDS tree x′, initially equal to x, which
has the property that its root may be of unlimited
arity. Then for every child of x′ whose functor
and arity are identical to the functor and arity
of x, replace that child in x′ with its children,
in order. Repeat that operation until no more
children of x′ have functor and arity identical to
the functor and arity of x. Compute y′ from y by
the same process. Heads are discarded during this
process; neither x′ nor y′ will have a head. Then
match′(.@.x, y) = match(.=.x′, y′).

This matching operator is intended for the case
of three or more things combined using a binary op-
erator that has, or can be said to sometimes have,
an associative law. For instance, the kanji 怠 could
be described by “⿱⿱厶口心” (⿱厶口 over 心) or by
“⿱厶⿱口心” (厶 over ⿱口心). Unicode might encour-
age use of the ternary operator ⿳ for this particular
case instead, but that does not cover all reasonably-
occurring cases, and the default databases seldom if
ever use the Unicode ternary operators.

The difference between the representations is
sometimes useful information that the database
should retain; for instance, in the case of Tsukuri-
mashou, “⿱⿱厶口心,” “⿱厶⿱口心,” and “⿳厶口心”
would correspond to three very different stanzas of
MetaPost source code, and the user might want a
query that separates them. On the other hand,
the user might instead have a more general query
along the lines of “find three things stacked verti-
cally with 心 at the bottom” and intend that that
should match both cases of binary decomposition.
The at-sign matching operation is meant for queries
that don’t care about the order of binary operators;
without it, matching will by default follow the tree
structure strictly.
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Note that even with .@., IDSgrep will not con-
sider binary operators in any way interchangeable
with ternary ones; users must still use .|. to achieve
such an effect if desired. Although the at-sign is
fully defined for all arities, it is only intended for
use with binary trees. Note also that .@. and .*.
behave according to their definitions. Incautious at-
tempts to use them together will often fail to have
the desired effects, because the definitions do not
include special exceptions that some users might
intuitively expect for these two operators happen-
ing to occur near each other. In a pattern like
“*@[a][a]bcd,” .*. will recognize .@. as the functor
of a unary tree and expand the single permutation
of its one child, and so that pattern will match the
same things as if the asterisk had not been present,
namely “[a][a]bcd” and “[a]b[a]cd]” but not, for in-
stance, “[a][a]dcb.” In a pattern like “@[a]b*[a]cd,”
.@. will recognize .*. as a different arity and func-
tor from [a] and choose not to expand it in x′,
with the result that that pattern matches the same
things as if the at-sign had not been present, namely
“[a]b[a]cd” and “[a]b[a]dc” but not “[a][a]bcd” nor
“[a][a]bdc.”

When considered as an operation on trees, what
.@. does is fundamentally the same thing as the
algebraic operation that considers (a+ b)+ c equiv-
alent to a+ (b+ c), and for that reason it is called
“associative” matching. The mnemonic for at-sign
is that it is a fancy “a” for “associative.” The ver-
bose ASCII name for “.@.” is “.assoc..”

Regular expression matching If x and y both
have heads, then match′(./.x, y) is true if and only
if the head of x, considered as a regular expression,
matches the head of y. If x and y do not both have
heads, then match′(./.x, y) is true if and only if x
and y have the same arity, the functor of x con-
sidered as a regular expression matches the func-
tor of y, and match(xi, yi) is true for each of their
corresponding children. This operation is basically
the same as the default matching operation, except
that regular expression matching is used instead of
strict equality for testing the heads and functors.
Mnemonic: slash means regular expression match-
ing in Perl. Verbose ASCII name: “.regex..”

Regular expression matching for the purposes of�
this operator is as defined by the Perl Compati-
ble Regular Expressions library, in whichever ver-
sion was linked with the idsgrep utility. Strings are
passed into PCRE as UTF-8, and are guaranteed

(because the EIDS parser decodes and re-encodes
idsgrep’s input for internal use) to be valid UTF-8
when PCRE sees them regardless of user input; as
such, PCRE is given the option flags that make it
read UTF-8 without doing its own validity check.
Use of the PCRE “\C” syntax for matching indi-
vidual octets within UTF-8 is strongly not recom-
mended. All other PCRE options are left to the
defaults chosen when PCRE was compiled, even if
those are silly. The character tables are PCRE’s “C
locale” defaults, not generated at runtime from the
current locale. Things like case sensitivity can be
controlled within the pattern using PCRE’s syntax
for doing so. In the event that idsgrep was com-
piled without the PCRE library (which is not rec-
ommended, but is possible), or that PCRE was com-
piled without UTF-8 support, then an attempt to
evaluate the slash operator will trigger a fatal error.

A matching pattern given to PCRE will have
already passed through the EIDS parser, which re-
moves one level of backslash escaping. The pattern
may also have been passed as a command-line ar-
gument to idsgrep by a shell, which may have un-
done another level of backslash escaping. Thus, it
may be necessary to escape characters as many as
three times in order to match them literally with
the slash operator. Each of these levels may differ
from the others in terms of the escape sequences it
supports and their exact meanings. In many cases it
doesn’t really matter which level of processing eval-
uates the escaping. For instance, “idsgrep "/(\t)",”
(shell evaluates “\t,” EIDS and PCRE see a literal
tab); “idsgrep "/(\\t)",” (shell removes one back-
slash, EIDS evaluates “\t,” PCRE sees a literal tab);
and “idsgrep "/(\\\\t)",” (shell removes two back-
slashes, EIDS removes one, PCRE evaluates “\t”)
will all match the same things. If it matters, how-
ever, then caution is necessary.

PCRE because of the limitations of its API effec-
tively forbids zero bytes (U+0000) in its matching
patterns, whereas EIDS allows them to exist within
strings in general. The complexities of PCRE pat-
tern syntax make it impractical for idsgrep to au-
tomatically escape zero bytes before passing the
strings to PCRE; there are too many different cases
possible for the context in which a zero byte might
occur. Since the idsgrep utility takes its matching
patterns from the Unix command line anyway, and
Unix itself forbids literal zero bytes in command-
line arguments, the case of literal zero bytes in a
matching pattern can only occur when they are cre-
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ated deliberately by escape sequences at the level of
the EIDS parser; and the simplest advice to users
is “don’t do that!”

Python, which like EIDS allows strings to con-
tain zero bytes but has PCRE bindings and so faces
the same issue, briefly attempted to work around
this PCRE API limitation by auto-escaping. They
eventually gave it up as too complicated and con-
fusing. The consequence of PCRE’s API design is
that if the string given as a matching pattern con-
tains a literal zero byte then the regular expression
to be matched will consist of the prefix of the string
up to but not including the first zero byte; anything
after that will be ignored. Zero bytes are, nonethe-
less, permitted in the matching subject, and PCRE
can search for them, but not by means of literal
zero bytes in the pattern. For instance, the PCRE
syntax “\000” (or just “\0” if the next character will
not be an octal digit) matches a zero byte. As dis-
cussed above, additional escaping might be needed
to ensure that PCRE, and not EIDS nor the shell,
interprets the backslash escape.

User-defined matching predicates It is assumed
that by some out-of-band means, we have defined
a family of functions Ui() for i from 1 up to some
k. These functions take EIDS trees as input and
return Boolean values (hence “predicates”).

Then the value of match′(.#.x, y) is determined
as follows. First, an integer i is computed. If x has
a head, its initial characters will be parsed as an
ASCII decimal number using the C library’s atoi(3)
function; i is the resulting value, if it is positive. If
x has no head, the head of x cannot be parsed, or
the head of x is parsed as zero or negative, then i
is defined to be 1. Having defined i, if Ui() exists
then match′ = Ui(y). If Ui() does not exist then
match′ is false. Mnemonic: hash-mark is used for
parameter substitution in languages such as TEX,
and this matching operation causes the matching
pattern to take something external (the user-defined
predicate) as a parameter.

In the current version, the functions Ui() are al-
ways defined using the “-f” command-line option
(or its long-named equivalent) and correspond to
the character coverage of TrueType or OpenType
fonts. The predicate returns true if and only if y
has a head consisting of a single Unicode character
that is covered by the font.

Cooked output
The default mode of operation for the idsgrep
command-line utility is that whenever a match-
ing tree is detected, the exact sequence of bytes
that were parsed to generate that tree (including
no skipped whitespace before it, and all skipped
whitespace after it but before the next tree) will
be copied through to the output. This mode of op-
eration is called “raw.” Raw mode is easy to un-
derstand, efficient, preserves distinctions like differ-
ent kinds of brackets in the input, and is as analo-
gous as reasonably possible to the operation of grep.
However, preserving the exact input bytes may pre-
serve invalid UTF-8, valid but weird EIDS syntax,
or non-ASCII characters users may find difficult to
type or display, that may have existed in the in-
put. The “-c” (“--cooking”) command-line option
provides a wide range of ways for idsgrep to gener-
ate new EIDS syntax of its own, guaranteed to be
valid, from the internal representation generated by
the parser. The cooked output modes force the out-
put into a well-behaved format independent of what
the input looked like. Input canonicalization (such
as the translation from “[lr]” to “⿰”) can also be
controlled through this interface.

The “-c” option can be given a (lowercase ASCII
Latin, unabbreviated) keyword as its argument, to
select a preset output mode. That is the only rec-
ommended way to use this option. The available
preset modes are as follows:
raw Raw mode: write out the exact input byte se-

quence that was parsed to generate the match-
ing tree, even if it is not valid UTF-8. This is
the default.

rawnc Raw with no canonicalization: raw mode out-
put, but without the canonicalization trans-
formation during input parsing.

ascii ASCII-only: all non-ASCII characters and
ASCII control characters are replaced by es-
cape sequences or subjected to the reverse
of the input canonicalization transformation,
to produce a result that should pass through
most limited-character-set channels. Note
that the plainest ASCII space (U+0020) is
not escaped in this mode when EIDS syntax
does not require it to be. This mode gener-
ally uses a lot of hexadecimal escapes and, in
a dictionary-lookup context, may be useful for
finding the hexadecimal code point value of an
unknown character.

cooked Generic cooked mode: render trees as reason-
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ably clean and appealing Unicode text similar
but not necessarily identical to what appears
in the pregenerated dictionary files. This will
escape characters outside the Basic Multichar-
acter Plane; characters in all Private Use Ar-
eas; and any other characters that EIDS syn-
tax requires must be escaped; but no oth-
ers. It will choose an appropriate escaping
method depending on the type of character.
Generally, it will use black lenticular brackets
for top-level heads, ASCII brackets elsewhere,
and syntactic sugar and syrup to avoid brack-
ets where possible (except for top-level heads).

indent Write trees on multiple lines with two-space
indentation to show their structure as clearly
as possible. One blank line (two newlines) be-
tween trees. In other ways this is similar to
“cooked.”

If not given a preset keyword, “-c” can be given�
a string of ASCII decimal digits. The decimal-string
interface allows precise control of how output syntax
will be generated, but it is somewhat experimental,
very complicated, and may change incompatibly in
future versions of this software. Use of this feature
is not recommended. Nonetheless, the remainder of
this section will attempt to document it.

The format specifier may be up to twelve digits
long. If it is shorter than that, it is taken as a prefix
with unspecified digits copied from the default spec-
ifier, which is “100000913250” and equivalent to the
“cooked” preset. The two raw presets are handled
as special cases; of the remaining cooked presets,
“ascii” is equivalent to “000000913551” and “indent”
is equivalent to “100000223250.”

The first digit specifies the type of brackets to
be used for the head of the root of the tree: 0 for
“<>,” 1 for “【】,” or 2 for “〖〗.” The second digit
specifies the type of brackets for the head of any
non-root node, using the same code.

The third digit specifies the type of brackets
for nullary functors: 0 for “(),” 1 for “（）,” or 2
for “｟｠.” Similarly, the fourth digit specifies the
brackets for unary functors: 0 for “..,” 1 for “::,”
or 2 for “・・”; the fifth digit specifies the brackets
for binary functors: 0 for “[],” 1 for “［］,” or 2 for
“〚〛”; and the sixth digit specifies the brackets for
ternary functors: 0 for “{},” 1 for “〔〕,” or 2 for
“〘〙”.

The seventh digit describes how to insert new-
lines and indentation to pretty-print the tree struc-
ture. If it is 0, that will not be done. Any decimal

digit from 1 to 7 specifies the number of spaces per
level of indentation. If it is 8, trees will be pretty-
printed using one tab character per level; the num-
ber eight is a mnemonic for the fact that people gen-
erally expect those to be equivalent to eight spaces
each. If it is 9, trees will be wrapped to 76 columns
by inserting newlines, with three-space indentation
of all but the first line of each tree. The added white
space will only be inserted where it does not change
the semantics of the output, i.e. between and not
within bracketed strings. One consequence is that
bracketed strings longer than one line, such as oc-
cur in the EDICT2-derived dictionary, will not be
split, but may be moved onto lines of their own.
The right margin of 76 will probably become an ad-
justable option in a future version.

The eighth digit specifies the separator printed
between trees: 0 for a null byte (U+0000), 1 for a
newline, 2 for two newlines, or 3 for no separator at
all.

The ninth digit specifies the circumstances un-
der which the sugary and syrupy features of EIDS
syntax should be used. It is a sum of binary flags:
add 4 to use a syrupy semicolon when possible at the
top level; 2 to use a syrupy semicolon when possible
at other levels; and 1 to use sugary implicit brackets
wherever possible.

The tenth digit specifies which characters should
be escaped. Literal backslashes, and (within a
bracketed string) literal instances of the close-
bracket character that would otherwise end the
string, must always be escaped. When the tenth
digit is 0, those are the only characters that will be
escaped. Other values add escaping for the follow-
ing categories of characters, and do so cumulatively
with each digit also escaping everything that would
be escaped by all lesser digits.
1 Escape characters from the astral planes; that

is, characters with code points greater than
U+FFFF and thus outside the Basic Multi-
lingual Plane.

2 Escape characters from the BMP Private Use Ar-
eas, U+E000 to U+F8FF. The other Private
Use Areas are already escaped at level 1 by
virtue of being outside the BMP.

3 Escape all non-ASCII characters (U+0080 and
up) except the core Unified Han range
(U+4E00 to U+9FFF).

4 Escape the core Unified Han range.
5 Escape the ASCII control characters (U+0000 to

U+001F).
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6 Escape closing brackets at the start of bracketed
strings, which otherwise escape escaping be-
cause of a special case in the syntax definition.

7 Escape all characters. Depending on the value
of the next digit, however, the ASCII Latin
alphabet still might not be escaped.

The eleventh digit specifies how to escape what-
ever characters were selected for escaping by the
tenth digit. The available values are as follows.
0 Use a single backslash followed by the literal char-

acter, only. The ASCII Latin alphabet cannot
be escaped in this way and under this option,
or options 1 or 5 which fall through to this
case, will not be escaped at all. Since the lit-
eral characters remain in the text, this option
is not suitable for sending output through any
channel that is not clean for the full range of
UTF-8 characters. However, unlike raw mode,
this and all other cooked modes do guarantee
to produce valid UTF-8, not arbitrary byte
sequences.

1 Use a backslash-letter sequence for ASCII control
characters U+0001 to U+001B, and otherwise
follow option 0.

2 Use variable-length hexadecimal “\x{}” sequences
for all characters that are selected to escape.
This syntax can escape any character.

3 Use two-digit “\xHH” sequences wherever possi-
ble (that is, for ASCII and ISO-8859-1 char-
acters), four-digit “\XHHHH” sequences for
other characters on the Basic Multilingual
Plane, and variable-length hexadecimal se-
quences otherwise.

4 Use four-digit “\XHHHH” sequences wherever
possible (that is, for all characters on the
BMP), and variable-length hexadecimal se-
quences otherwise.

5 Attempt to choose the simplest type of escape
for each character depending on its value, just
like option 3 except with backslash-letter es-
capes where possible (U+0001 to U+001B)
and backslash-literal escapes for ASCII non-
control characters (U+0020 to U+007E ex-
cluding the Latin alphabet). The ASCII Latin
alphabet will not be escaped at all under this
option.

The twelfth digit specifies canonicalization pro-
cessing; that is, the translations on both input
and output between alphabetic functor aliases like
“(anything)” and their symbolic equivalents like
“(?).” Note that in all cases the symbolic ver-

sions are the matching operators; if you disable in-
put canonicalization and enter a matching pattern
of “(anything)” it will be matched as an ordinary
nullary functor containing a string of eight ASCII
letters, not as the match-anything operator which
is always named “(?).” The digit value is a sum of
binary flags: add 4 to disable the default transfor-
mation of alphabetic aliases to symbolic names on
input; plus 2 to enable a translation from alphabetic
aliases to symbolic names on output, which is gen-
erally only meaningful if 4 was selected; plus 1 to
enable a transformation from symbolic names back
to alphabetic aliases on output. �Character widths and line wrapping
The line wrap feature involves a grossly dispropor-
tionate amount of support code because of wide
characters. On a character-cell terminal, a char-
acter like “A,” called “narrow,” takes up one cell of
horizontal space. The line length is assumed to be
80 cells, so we can print 80 of those characters per
line. But there are other characters like “あ,” called
“wide,” that take up two cells each. Note that these
wide characters are distinct from, although related
to, C-language values of the type wchar_t, which are
also sometimes called wide characters. If we print
more than 40 wide characters without a line break,
we run off the edge of the terminal. Moreover, if we
are one cell away from the end of the line, we can’t
print a wide character even though there is some
space remaining. Since IDSgrep’s output usually
includes a mixture of wide and narrow characters,
correct line wrapping requires attention to these is-
sues.

The width of control characters cannot necessar-
ily be defined (how “wide” is carriage return?), but
there are also things that are not exactly control
characters but seem like they should have widths
other than one or two. For instance, combining
characters seem like they should have zero width;
there are multi-em dashes like U+2E3B which seem
like they should have width greater than two; the
variable-length sequence of code points correspond-
ing to a spelled-out Korean syllable seems like it
should be two cells wide as a whole, with no mean-
ingful breakdown of which code points correspond
to which fraction of that; there are issues with bidi
(mixing left-to-right and right-to-left scripts); lan-
guages like Thai and Mongolian present their own
problems; and so on. All in all, it probably just isn’t
possible to do correct typewriter-style line break-

28



ing on general Unicode text. IDSgrep nonetheless
makes the attempt, at least for the kinds of text
expected to occur in its dictionaries.

There is no standardized list of which charac-
ters are wide and which are narrow. Pre-Unicode
CJK character sets had the simple rule that those
characters encoded with one byte were narrow, one-
cell characters, and those encoded with two bytes
were wide, two-cell characters. The “wide Latin”
and “narrow katakana” character ranges originate
in that distinction. But IDSgrep does everything in
Unicode.

Unicode provides, in a “Standard Annex” [13],
some default rules for deciding whether a code point
should be treated as narrow or wide. There is a field
in the Unicode character database specifying the
treatment of each character. Unfortunately, that
field does not just say “wide” or “narrow”; Unicode
allows six different values for it including “neutral”
and “ambiguous,” and the treatment for those is ex-
plicitly left to application developers to decide ac-
cording to context.

POSIX provides a library function called
wcwidth(3), which is supposed to answer the ques-
tion of how many columns wide a character might
be. However, it has some problems for use with
IDSgrep. It takes a wchar_t as its argument, not nec-
essarily a Unicode code point. So IDSgrep would
have to convert its internal representation (which
is always UTF-8) into whatever wchar_t might be
on the particular platform, making portability that
much more difficult. A wchar_t is usually a Unicode
code point on modern installations, but there is no
promise of that, and it is a recipe for headaches. It
would also introduce an undesired, though maybe
necessary, dependence of IDSgrep’s behaviour on
the local host’s i18n configuration. The idea of con-
verting to Shift-JIS and then counting the bytes has
similar issues.

On my own installation, wcwidth(3) would not
even produce correct results. It seems to follow
the Unicode rules with decisions on the unspeci-
fied points that are not appropriate for IDSgrep.
For instance, my installation’s wcwidth(3) claims that
some but not all enclosed characters, like ①②③, are
one-cell characters, because Unicode classes them
as Ambiguous, treated as narrow by default, be-
cause both CJK and non-CJK character sets have
historically included things that are now mapped
to those code points. But in IDSgrep output they
should definitely be counted as two-cell characters,

because they would almost certainly derive from
CJK sources and the relevant fonts make them the
same size as Han characters.

IDSgrep’s solution to these issues is messy, and
quite possibly will be ripped out and replaced with
something else in the future, but it at least pro-
duces reasonable results on my own installation, and
since the consequences are mostly cosmetic anyway,
I consider it good enough for the moment.

The file widthtab.c, distributed as part of the
IDSgrep package, contains the knowledge of which
characters are narrow or wide (or zero-width). Most
of this file is the transition table of two finite state
automata that make the decision by examining the
UTF-8 representation of the character (not its code
point). The automata are encoded in a complicated
way intended to be efficient in both time and space:
each state specifies the index of a bit in the UTF-
8 representation, and then the three bits starting
from that point are used to choose from among eight
transitions, which could consist of accepting, reject-
ing, or going to another state to look at more bits.
The two automata share the same state table, with
two different starting states; some of the states are
allowed to overlap between the two. BDD hack-
ers will note that this is, more or less, a “reduced
ordered octal decision diagram,” something like a
BDD with three layers of bit tests collapsed into a
choice of eight paths§ at each level. As long as there
is no need to change the width mapping, this file can
safely be treated as a black box.

However, it is not practical for a human being
to edit the transition tables directly. Instead, the
file mkwcw.c contains a meta-program for generating
widthtab.c. This file is distributed with IDSgrep but
is not built and used by default. You should only
use it if you wish to update widthtab.c for a new
version of the Unicode database or to reflect differ-
ent preferences about how to override the default
and unspecified width definitions from the Unicode
database.

To build and run mkwcw and re-generate
widthtab.c, use the --enable-widthtab configuration
option when building IDSgrep. This will require the
BuDDy library for BDD processing, even though
BuDDy is not required to compile and run the code
that mkwcw generates. It will also require current
versions of the EastAsianWidth.txt and UnicodeData.txt
files from the Unicode Character Database. The

§八正道
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file widths.txt, which ships with IDSgrep, contains
width information that will override what is in
EastAsianWidth.txt; any code points mentioned here
will have the widths specified in widths.txt instead
of the widths specified in EastAsianWidth.txt. It is
written in the same format as EastAsianWidth.txt.

See the comments in mkwcw.c for further details
on its use.
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Bit vector indices
Executive summary: if you leave it on the default
settings and skip this chapter, it should just work.

In more detail: matching trees according to the
rules in the previous chapter is potentially an expen-
sive operation. The cases of tree-matching actually
used in practice tend to be relatively easy ones, but
parsing EIDS syntax is also expensive enough, even
with an optimized implementation, that it may take
as much time as matching or more; and every tree
of the database must be parsed in order to attempt
a match. A complete installation of IDSgrep may
take a second or two on a typical PC to parse and
search all the dictionaries, which is not long enough
to be a problem in typical interactive use, but could
become an issue if queries were being generated au-
tomatically, faster than a single user would type
them.

The solution is to avoid doing tree matches, and
avoid doing parsing, as much as possible. As of
version 0.4, IDSgrep is capable of analysing a dic-
tionary in advance and generating an index file rep-
resenting useful information about the trees in a
format that can be scanned quickly. It is not possi-
ble to correctly answer all queries solely from infor-
mation in the index, but the hope is that for most
queries, the program can rule out most dictionary
entries as potential matches just from a fast ex-
amination of the index. Then for any entries not
excluded by the index, it runs the more expensive
parsing and tree matching operations on the actual
data. The time saved by skipping input entries is
supposed to more than compensate for the addi-
tional work of reading the index.

Exactly how this feature works is complicated,
and is part of the author’s academic research. This
chapter starts with a short summary from a user’s
perspective of how to build and use bit vector in-
dices. After that, all remaining sections are marked
with dangerous bend symbols, and attempt to give
some notes on the technical details for interested
parties without claiming to really be a complete
presentation of the mathematical underpinnings of
the system. Those sections should not be read by

anyone who is easily frightened. Watch for future
publications covering this material more formally.

Building and using bit vector indices
If you run make install to install dictionaries, then
the build system should build, install, and use bit
vector indices for the installed dictionaries automat-
ically.

Getting the most out of bit vector indexing
requires building the idsgrep command-line util-
ity with the BuDDy binary decision diagrams li-
brary available at http://sourceforge.net/projects/
buddy/ [12]. Without it, bit vectors will still provide
some speed improvement, but not as much.

Bit vector indices properly used are expected to
increase the speed of searching by about a factor of
15 in typical cases. The improvement factor varies
a lot depending on a number of issues, and could
be a thousand or more under optimal conditions. It
should never be significantly less than one; that is,
searching with a bit vector index should never take
significantly longer than searching without one.

Bit vectors provide the greatest benefit when
the query is simple (exact-matching a single syrupy
character is best); when the dictionary entries them-
selves are small; when the query, regardless of its
form, only matches a small number of results; when
the query includes exact matching of heads or func-
tors at the root level of the EIDS tree (such as a
query starting with “[lr]”) or in the root’s immedi-
ate children; and when the query does not include
special matching operators such as regular expres-
sions and user-defined predicates.

Whenever the idsgrep utility reads a file whose
pathname ends in “.eids”—regardless of whether
that file was specified explicitly on the command
line or indirectly via the -d option—it will look for
an index file whose pathname is the same except
with the .eids extension changed to .bvec. If such a
file exists, can be read, has the correct 8-byte magic
number at the start, and has a timestamp no older
than the timestamp of the .eids file, then idsgrep will
assume it is a bit vector index and use it to speed
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up the query process. Note that all those condi-
tions must be met. If any of the conditions fail to
be met, no error will be reported, but the scanner
will be forced to read and parse the entire input file
without using bit vector filtering. Once the idsgrep
utility commits to start reading the index file past
the header, it cannot switch to index-free searching
and errors after that point will abort the search,
just like errors in the EIDS input file.

To create a bit vector index, use the -G op-
tion to idsgrep, as in idsgrep -G dictionary.eids >
dictionary.bvec. Something like this will be neces-
sary if the dictionary file changes or if you create a
new one of your own. An outdated index file will
usually be locked out by the timestamp check, but
if you force the issue (for instance, by changing the
timestamps with touch), the search will most likely
abort with a parsing error when it hits the changed
part of the dictionary file.

Bit vector indices are only usable when read-
ing from files with names ending in .eids. When
reading from standard input or similar, or even just
from files without *.eids filenames, bit vectors will
not be used. Bit vectors are also not applicable
to the internally-generated Unicode list associated
with the -U option, although a somewhat similar
feature (generating only the at most one entry that
could match, if the query tree has a head) is always
used where it applies. If you direct the idsgrep util-
ity to read from multiple input sources in the same
run, it will use bit vector indices on whichever input
sources it can, even if that is not all of them.

You can force idsgrep to ignore bit vector indices
with the -I option; that is unlikely to be useful ex-
cept during speed tests, but one could maybe imag-
ine a case where it’s absolutely necessary to have
a file named *.bvec which is not a bit vector index
and must not be touched, or where even looking for
the index file incurs undesired traffic on a network
filesystem.

Using a (valid) bit vector index, or not using one,
should only affect speed. It should never change
which results are or are not returned from a query.
If you manage to find a case where the same query
and the same input file produce different hits de-
pending on whether -I is used or a bit vector index
generated by the same idsgrep binary, then that may
be evidence of a bug; please report it.� Filtered matching
Let E be the set of EIDS trees. Let T and F repre-

sent Boolean true and false. The previous chapter
defined a function match : E × E → {T,F} for de-
termining whether one EIDS tree matches another;
if match(N,H) = T we say that N , which we call
the needle, matches H, which we call the haystack.

The idsgrep binary has the job of evaluating
match(N,H) for one N specified on the command
line and every H in the dictionary. The dictionary
is large, but does not change frequently, whereas
each invocation of idsgrep faces only one value of
N , but it is fresh and may never have been seen
before. And the match function is inconveniently
expensive to calculate.

We will attempt to deal with this situation by
defining three new functions filt : E → F, vec : E →
V, and check : F× V → {T,F}. Elements of V that
come out of vec are called vectors and elements of F
that come out of filt are called filters. We want the
following properties:

• vec might be expensive to compute, but we
can store elements of V (its output) reason-
ably cheaply.

• filt might be relatively expensive to compute,
and its output might be large, but we can at
least afford to compute it, and store the result,
once per run of idsgrep.

• check is cheap to compute.
• If match(N,H) is true, then check(filt(N),

vec(H)) is definitely true. Therefore
if check(filt(N), vec(H)) is false then
match(N,H) must also be false.

• If match(N,H) is false, then check(filt(N),
vec(H)) is usually false. This might not be
guaranteed, but we want it to hold as often as
possible.

With those properties, what we can do is run
vec on all the trees in the dictionary and store the
results in the index ahead of time. When the idsgrep
binary runs, it can run filt just once on the input
search pattern. Then for each entry in the index,
it calculates check(filt(N), vec(H)). That is sup-
posed to be a cheap operation. If check returns true,
then the dictionary entry might possibly be a match.
At that point idsgrep can extract the location and
length of the original tree data from the index, read
the relevant chunk of the dictionary proper, parse
it, and calculate match to determine whether it re-
ally is a match. We hope that when the dictionary
entry is not really a match, check will usually re-
turn false. Whenever check is false, we can be sure
that match would also return false, and so idsgrep
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can skip over that entry without doing the work of
parsing or actually computing match the hard way.

This idea of doing an easy approximate check
first, to save the cost of a more difficult accurate
evaluation, should be quite familiar. Imagine a
hiring committee quickly throwing out all the job
applications from software engineers, then inter-
viewing the computational linguists. Similar con-
cepts appear throughout computer science: con-
sider instruction and data caches; memoization for
dynamic programming; solving relaxed versions of
optimization problems; and especially Bloom fil-
ters [4]. The bit vector technique used in IDSgrep
builds on Bloom filters and on the work of Skala and
others [19] and Skala and Penn [20] on unification
of types in logic programming systems.

Functional programming weenies will note that
the real point of an element of F is that you can
combine it with check to make a tasty curry: ele-
ments of F are important because of the functions
E → {T,F} they beget upon check. When the nee-
dle is a complicated EIDS tree with a lot of special
matching operators in it, we hope that we can find
filters for the subtrees and then combine them in
some simple way to find a filter for the complicated
needle. This pursuit is called the filter calculus. It
is always possible, at least a little, because we could
just declare the result of the filter calculus to be a
filter that makes check return T identically on all
vectors. That obeys all the properties it must obey.
But of course we hope for filters to be as restrictive
as possible, to allow us to rule out as many dic-
tionary entries as possible, so the accept-everything
filter is a last resort.

IDSgrep (when compiled with the necessary li-
brary) actually uses two layers of filtered matching,
here called lambda filters and BDD filters. Both
layers share the same vectors—that is, V and vec
are the same for both. For each entry in the index,
the idsgrep utility checks the lambda filter. If the
lambda filter returns false, it stops. If the lambda
filter returns true, it tries the BDD filter, and if that
returns false, it stops. Only if both filters return
true will it try parsing the tree and really calcu-
lating the match function. The filters are arranged
in order of increasing cost: the lambda filter is ex-
pected to run faster than the BDD filter, which is
expected to run much faster than the parse and tree
test.

In IDSgrep 0.4, V is the space of 128-bit binary
vectors. Each vector is conceptually divided into

four 32-bit words; the actual implementation, in-
tended for a 64-bit microcomputer, involves a two-
element array of uint_64 integers.

Vector values are calculated by the vec func-
tion (called haystack_bits_fn in its implementation
in bitvec.c) as follows. The first (least significant)
32 bits of the vector are a Bloom filter encoding the
head, and the functor and arity combined, of the
root of the EIDS tree. Depending on a hash of the
head, three of the bits are set to ones. They are
chosen without replacement (unlike the bits in the
classic Bloom filter) so it really is three distinct bits
set to one—no collisions at this level. If there is
no head, a special combination of three bits is set,
corresponding to the hash of an empty string. Sim-
ilarly, three bits are set depending on the functor
and arity; these can collide with the head bits but
not with each other. So among the first 32 bits of
the vector, somewhere between three and six bits
will be set in a pattern that depends on the head,
functor, and arity of the root of the tree. This is
a little less than the optimal density for a Bloom
filter this size considered in isolation (from informa-
tion theory: one wants the filter to end up with ap-
proximately equal numbers of ones and zeros), but
because of the more complicated things happening
elsewhere in the system, the reduced density here
seems to work better.

The second 32-bit word encodes the head, func-
tor, and arity of the first child of the root, using
the same scheme. This is left zero for a nullary
root. The third 32-bit word similarly encodes the
last (not necessarily second) child of the root. When
the root is unary, that means the only child gets en-
coded into both the second and third words of the
overall vector. Finally, the middle child of a ternary
root, and all grandchildren and lower descendants
of any root, are all encoded into the fourth 32-bit
word, all bitwise ORed on top of one another. Gen-
erate a bit vector index with debugging turned on,
redirecting standard error to a file, to see what these
vectors actually look like. �Lambda filters
Consider a very simple needle that matches if and
only if the head of the haystack has a certain value.
For instance, <foo>!?. That matches anything with
the head “foo” under the head-to-head matching
rule, and nothing else because !? (the inverse of the
match-everything query) matches nothing. This is
not typical of the queries users actually write, but
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we will build up to the more complicated behaviour
of realistic queries.

Given the bit vector for a haystack tree, we could
look at just the three bits in the first 32-bit word
that (according to the hash function) correspond to
“head equal to foo.” If the head of the haystack is
foo, then those bits will definitely all be ones. Oth-
erwise, we expect them to behave like three bits
chosen from a 32-bit word in which at most six bits
chosen at random have been set, and the chances of
all three randomly being ones under those circum-
stances is roughly (6/32)3 ≈ 0.7%. (Not exactly,
because of collisions and stuff, but that’s a fair esti-
mate.) So a decent thing for check to do, given this
query, would be “look at the three bits associated
with the head foo, and return T if more than two
(i.e., all three) of them are set, F otherwise.” That
would have the desired properties of returning T for
sure when the query matches, and not being very
likely to return T under other circumstances.

Let F be the set of ordered pairs (m,λ) where
m is a 128-bit bit vector called the mask and λ is
a nonnegative integer called the threshold. We call
these pairs lambda filters. Define check((m,λ), v) to
compute the bitwise AND of the mask m and vec-
tor v, count how many bits are set in the result,
and then return T if and only if the count is strictly
more∗ than the threshold λ. The filter for <foo>!?
will consist of a mask that selects the three bits for
foo, and a threshold of 2. It matches if and only if
those three bits are all set, which is definitely true
for haystacks that match the needle and reasonably
unlikely to be true for haystacks that do not match
the needle. So far this is just the usual lookup algo-
rithm for a Bloom filter. But by choosing different
masks and thresholds, we can also do other kinds of
filtering.

Suppose we have two filters (m1, λ1) and
(m2, λ2). Let m3 be the bitwise OR of m1 and
m2, and let λ3 be the minimum of λ1 and λ2. If
a given vector contains more than λ1 bits selected
by m1, then all those bits are also in m3, so (m3, λ3)
will also match. The same is true for (m2, λ2); so if
either of the original filters matched, then the com-
bined filter must match. In this way we can find a
filter for the OR of two existing filters.

Note that the OR filter is not an if and only if:
∗This definition may seem to be off by one from the most

intuitive way to do it, but λ is defined this way for consis-
tency with related work in the combinatorial design theory
literature.

there could be combinations of bits that hit part
of m1 and part of m2, so that neither (m1, λ1) nor
(m2, λ2) would match but (m3, λ3) matches. We
have lost some precision in the filter calculus, and
if we kept ORing filters like this we would even-
tually end up with a saturated mask that matches
everything. But we have not lost any recall. If
λ1 ̸= λ2, we can improve things a little by removing
bits from whichever filter has the greater λ until the
two thresholds become equal; that slows down the
saturation a little in some cases.

Combining filters with AND is more complicated
because there are multiple choices for the result.
Given that there are more than λ1 bits set out of
m1, and more than λ2 bits set out of m2, we can
conclude various things about the number of bits
that must be set in the intersection and each set
difference of the two masks. For instance, knowing
more than two bits out of four are set, and more
than two bits out of a different set of four that over-
laps in two places with the first set, we can conclude
that more than zero bits of the two-bit intersection
must be set; or more than three of the six-bit union.
Both those, and several others, would be acceptable
results for the AND operation in the filter calculus.
IDSgrep attempts, heuristically, to guess which of
these filters will be most useful and return the best
one as the result of ANDing two lambda filters.

When we push a subtree further down in the
EIDS tree, its filter changes. Suppose we have a fil-
ter that would be correct for a given needle if it were
the root, but it actually appears as the right child of
a binary root. Any bits in its mask that would have
queried the first word (head, functor, and arity of
root) must now query the third word (head, func-
tor, and arity of last child). We can easily rearrange
those bits in the mask. However, if the mask selects
any bits from the second through fourth words when
the needle is at the root, then when it is shifted
down the tree all those bits must come from the
last word of the haystack’s vector. They could col-
lide with each other. Then a haystack that formerly
would have been hit by the mask in three places
might only be hit once, because all three of those
bits collided. The value of λ might need to be re-
duced by as much as a factor of three. IDSgrep com-
putes all possible collisions and tries to use as large
a value of λ for the modified filter as it can prove
will still give correct results. Similar considerations
apply to the operations of moving a needle’s filter
from the root to the left or middle children.
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Given these operations of OR, AND, and mov-
ing a needle that refers to the root to refer to a child
instead, IDSgrep can find a lambda filter for basic
matching of any tree. The rules like “if there is a
head, then it must match exactly, and if not, then
the functor, arity, and all children must match”
translate into filter calculus operations and can be
applied recursively.

Special matching operators require additional
handling. The & (Boolean AND) and | (Boolean
OR) operators are easy. The ! (Boolean NOT) op-
erator unfortunately isn’t: all we can say in pure fil-
ter calculus is that any filter might correspond to a
match that might fail later, so the NOT of any filter
has to be the match-everything filter. The IDSgrep
implementation of NOT goes slightly beyond pure
filter calculus by looking at the actual needle instead
of only the needle’s recursively-computed filter; so
it is smart enough to recognize !! as a no-op, !?
as match-nothing, and to apply de Morgan’s laws
to AND and OR. The unordered match operator *
translates easily into the OR of all permutations of
its child, and the literal match operator = is straight-
forward. Other match operators, such as regular ex-
pression, have semantics too complicated to easily
handle, so the filter calculus just returns the match-
everything filter for them.

Most of the output from --bitvec-debug consists
of an indented trace of the lambda filter calculus op-
erations performed while analysing the user’s query.� BDD filters
Lambda filters do not capture everything we might
want to know about the bits in a vector. Con-
sider the filters (with vector length limited to four)
(0011, 1) and (1100, 1). The OR of those filters in
the lambda filter calculus will be (1111, 1). But that
will match if any two bits are set; the original filter
would only match if the first two or the last two are
set. We have lost some precision, which translates
to eventually doing more tree matches than neces-
sary, in exchange for the guarantee that the result
of ORing two lambda filters will always be a lambda
filter. BDD filters attempt to lose less precision by
allowing the results of filter calculus operations to
be more complicated. In exchange for this greater
power, a lot of data structures have to be main-
tained in the background, and that is why we apply
lambda filters first: lambda filter misses allow us to
skip the greater work of testing the BDD filters, and
BDD filter misses allow us to skip the even greater

work of parsing and doing real tree matching.
A Binary Decision Diagram (BDD) is basically

the most boring “Choose Your Own Adventure”
ever. Every page just says “If binary variable such-
and-such is true, then go to this other page; other-
wise, go to that other page.” Many of these options
collide with each other, so that even though there
may be trillions of paths through the BDD there are
only two endings, neither of which involves Gorga
the Space Monster. Spoiler: the two endings are
“1” and “0.”

More mathematically, a BDD is a data structure
that represents a function that takes some bits as
input and returns one bit of output. It can repre-
sent any binary function if you’re willing to give it
enough time and memory, and it is relatively easy
to perform logic operations on functions represented
as BDDs. Donald E. Knuth is a great fan of BDDs.

Let F be the set of BDDs on 128 variables. De-
fine check(filt(N), vec(H)) to simply evaluate the
BDD filt(N) on the 128 bits of vec(H). The vec-
tor vec(H) is as defined previously; it remains to
define filt(N).

For the query <foo>!?, which matches if and only
if the head is foo, recall that there are three bits
in the first word of the vector that will necessarily
all be set by matching haystacks, and only rarely
all set by non-matching haystacks. We can easily
create a BDD that returns 1 if and only if all three
of those bits are set. So far this is just the same as
the corresponding lambda filter.

The difference is in the BDD filter calculus op-
erations. We can take the OR of any two BDDs and
the result will be a BDD that returns 1 if and only
if at least one of the inputs would return 1. The
equivalent operation on lambda filters would only
be an if, not an if and only if; but with BDD filters
there is no loss of precision in OR. Similarly, we can
do AND without loss. Those two operations alone
account for much of the filter calculus done in prac-
tice, and BDDs represent these functions exactly.
The only loss of precision is in the original Bloom
filter encoding.

Once we start shifting needles from the root to
the children, more precision is lost because of bit
collisions, just as with lambda filters. The BDD
may be looking for two bits that both ended up in
the same place, so if that one bit is set then the
BDD sees both its inputs true even though really,
without the collision, only one would be true. The
NOT operation remains a problem too: in any pure
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filter calculus where the result of NOT depends only
on the filter that was the input to NOT, because fil-
ters can really only return “maybe” and not exactly
“yes,” the result of NOT must always be identically
true regardless of the input. Just as with lambda
filters, IDSgrep looks at the needle itself, not purely
at the filter, to get better results from NOT. More
complicated operations, like match-anywhere, have
reasonably straightforward implementations.

Memoization in the tree match
This feature does not involve bit vectors at all, but�
is described in the bit vector chapter because, like
bit vectors, it is a speed enhancement that doesn’t
change the basic matching algorithm. There is no
“r” in “memoization.” That word is a shibboleth†

for CS theorists.
For the most part, when a match is not ruled out

by the bit vector indices, IDSgrep uses a straightfor-
ward recursive-descent algorithm to implement the
tree matching function match. That works well in
practice for the kinds of queries typically encoun-
tered. However, it is possible to construct patho-
logical queries on which the recursive matching al-
gorithm will misbehave. For instance, a query with
many nested instances of .anywhere. can bog down
attempting to match against a deep tree, as it tries
all possibilities for the intermediate nodes that an-
chor the different .anywhere. operators, even though
the choices are all equivalent. Matching according
to IDSgrep’s matching rules should in fact be possi-
ble in polynomial time, because we can match each
node in the needle tree once against each node in
the haystack tree. Assuming the match function
is well-defined we only need do that once per pair
of nodes; so this suggests a dynamic programming
algorithm. The dynamic programming algorithm is
unlikely to be a good idea in the usual case, because
of excessive overhead maintaining the table and the
possibility of doing extra, unnecessary matches if
we’re not careful. Recursive descent, with short-
circuiting of unnecessary subtree tests once the an-
swer is known, seems to perform much better in
practice in ordinary cases despite its exponential
worst-case bound. Nonetheless, to cover bad cases
that may occur in the input, IDSgrep implements
memoization of tree matches when it appears likely
to be helpful.

The matching operators that could cause trouble
†Judges 12:6.

are “...” (.anywhere.) and “.*.” (.unord.). All other
special matching operators, and the default match-
ing rules, recurse at most once into each child; but
match-anywhere attempts to match its needle tree
once against every descendant of its haystack tree,
and unordered match attempts to match its needle
once against each of the up to six permutations of
its haystack’s children. The time to do matching by
recursive descent ends up having an exponent de-
termined by the number of uses of those operators
in the matching pattern.

So IDSgrep counts how many times either of
those operators occurs in the matching pattern, and
uses that count to determine both whether mem-
oization would help, and how big a table size to
use. The memoized match is straightforward. Be-
fore testing a needle tree against a haystack tree,
IDSgrep checks whether that pair of needle and
haystack is recorded in the memoization hash table.
If it is, the answer is taken from the table instead
of calculated fresh. Otherwise, once it has been cal-
culated, the result goes in the table. �Implementation details
Storing bit vectors requires storing two uint64_ts and
an off_t, with possible alignment padding, per en-
try. That works out to 24 bytes on typical newer
64-bit and 32-bit platforms. Some older 32-bit plat-
forms with 32-bit off_ts may only require 20 bytes
per index entry, trading off the decreased space
against likely problems should a dictionary ever
grow larger than 4G. For comparison, the average
length of a dictionary entry in the CHISE, KanjiVG,
and Tsukurimashou dictionaries as of this writing
is about 40 bytes; four times that for EDICT2. So
storing the indices represents a significant, but not
crippling, increase in storage requirements. The
performance improvement numbers do account for
the time taken to read the additional data from
disk—it just isn’t enough to be a problem compared
to the savings in parsing and tree matching.

The format of the bit vector index file is specific
to the version of IDSgrep and the computer archi-
tecture including the C compiler. If you use a bit
vector file with a mismatched idsgrep binary, it will
almost certainly be detected as invalid and ignored.
Building with or without BuDDy will not make a
difference to the file format; the difference is a dif-
ferent search algorithm applied to the same data.

It is possible that the magic numbers may not
perfectly track incompatible changes among differ-
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ent development versions of IDSgrep that you might
check out of SVN, but they should definitely work
correctly to differentiate between incompatible ver-
sions that have been formally released.

One issue for BDD filters that did not occur with
lambda filters is that there is no practical limit to
the size of a BDD on 128 bits, so it could grow un-
til it exhausts memory or consumes so much time
for filter calculus operations that it ends up giving
no benefit over just using the match-everything fil-
ter and falling back on the original tree-matching
algorithm. In order to prevent this kind of failure,
bearing in mind that it is always safe to change a
filter to return hits on more vectors as long as it
doesn’t lose any existing hits, IDSgrep keeps an eye
on the size of the BDDs returned by filter calcu-
lus operations. If a BDD exceeds 1000 nodes, then
IDSgrep applies existential quantification to shrink
it.

For a chosen variable, existential quantification
changes the BDD to one that will return true if and
only if there exists any value of the chosen variable
that would (given the values of the other variables)
allow the result of the BDD to be true. A roughly
equivalent operation on a lambda filter might be to
remove a bit from the mask and subtract one from
λ, necessarily making the filter looser. It may not
be obvious that doing this will necessarily make a
BDD simpler, but after we apply such a quantifier,
no more nodes referring to the chosen variable can
remain in the BDD. The number of variables sup-
porting the BDD necessarily decreases. Do it to ev-
ery variable and the BDD must end up identically
true (unless it was identically false to begin with, in
which case it remains so). So by existentially quan-
tifying variables in turn, we can guarantee that the
BDD will at some point become smaller than 1000
nodes.

The threshold of 1000 was chosen by educated
guess and by running some test suite queries (those
from test/speed and test/kvg-grone) to see the ef-
fect on the overall running time of using differ-
ent thresholds. For the typically small queries in
test/speed, the final BDDs end up with an average
of 47 nodes each; increasing the threshold provides
steady speed improvement from about 10 to 100,
and has little or no effect on test/speed after that.
The single query in test/kvg-grone can potentially
generate a very large BDD (at least 70000 nodes),
but for that query having the BDD doesn’t help
much anyway. A threshold of 1000 nodes is the

point at which the overhead of creating the BDD
for test/kvg-grone starts to become significant (10%
slower overall than the smallest thesholds, where
the BDD is forced to triviality in negligible time).
So this seems a good compromise point. It provides
performance about as good as any other tested value
for the queries from test/speed, which are expected
to be typical of actual use; it provides some head-
room (a factor of 10) over the minimum sufficient
for those queries; and it is still small enough to pre-
vent pathological or malicious queries, like the one
in test/kvg-grone, from slowing the system down sig-
nificantly.

As BDDs in BDD-using applications go, these
are quite small ones. It appears that that is be-
cause the functions IDSgrep computes with BDDs
are monotonic functions, which seem to create very
good cases for the data structure. It also means
that the BuDDy library’s lack of negated edges is
no problem. A brief attempt to tighten the filters
by making the functions non-monotonic had to be
aborted; it caused the time and space spent on filter
calculus to blow up exponentially, even with careful
attention to the variable ordering, in exchange for
only very small improvements in the precision of the
filters. Better to spend the time doing a few more
tree matches. It also appears that I was lucky with
my choice of variable ordering. The default order-
ing that resulted from using the bits in the vector
straight through from LSB to MSB happens to give
good BDDs (as long as they are monotonic). That
means it’s unnecessary to put a lot of effort into au-
tomatic reordering of the variables to optimize the
BDD calculations.

The particular case of many .anywhere. opera-
tors nested inside one another with no heads and
no other nodes in between might be detected and
automatically simplified. Any number of those will
match the same set of trees as a single such oper-
ator, so the extras can be simply removed without
affecting the semantics. But it is easy to construct
more elaborate queries that still take exponential
time without memoization and that the system can-
not reasonably simplify. Users are unlikely to do
that by accident, but now that I’ve mentioned the
possibility, someone will try.

Let k represent the number of .anywhere. and
.unord. operators in the matching pattern. It is ac-
tually determined by looking at the reference counts
for the strings consisting of a single ASCII period
and a single ASCII asterisk in an internal string ta-
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ble, so there may be an overcount if those strings
happen to occur as heads or as non-unary functors.
If k is less than three, memoization is not expected
to be helpful, and so is not done. Then assuming k
was at least three, if it is less than ten it is set to ten
and if it is greater than 22 it is set to 22, and then
memoization will be done with a hash table of 2k+1

entries. The idea here is to make the hash table
grow as the number of entries needed grows, but
always at least 2048 entries because there is little
benefit from making it very small, and never more
than 8M entries because if very large, memory be-
comes a bigger problem than time. The constants
here were chosen by informal experiment, to switch
over to memoized matching at the level of query
complexity where it starts to be useful, and keep
the tables just large enough that making them sig-
nificantly larger provides little benefit.

Collisions are resolved by just overwriting the
old entries; and the table gets emptied on each new
top-level tree match. Table entries have genera-
tion numbers, so the emptying is done in constant
time by incrementing the generation instead of re-
ally rewriting the table.

The keys used for the hash table are the actual
pointers. Thus, it is possible for the performance
of this feature to be nondeterministic on some plat-
forms. There are some additional wrinkles in the
code because of the life cycle of pointers to tree
nodes: the nodes created during parsing of input
live at least as long as hash table generations, but
there can be a few nodes created and deleted on the
fly during matching, and those cannot be saved in
the hash table lest the pointers be reused and in-
validated. It happens that the parser already set a
flag in each node it created, for its own internal pur-
poses in determining when the node was ready to
come off the parsing stack. Nodes created on the fly
during matching lack that flag. So the tree match
memoization looks for the parser’s flag to determine
which nodes it is allowed to cache.

The format of the statistics line generated by
the --statistics option is space-separated fields; the
first is “STATS” and then the rest are mostly decimal
numbers, in this order:

• bit vector (lambda filter) checks;
• lambda filter hits;
• BDD hits (necessarily zero if BDDs not com-

piled in; the number of BDD checks when
BDDs are used is always exactly the value of
the previous field and thus not reported sepa-

rately);
• tree checks (may be greater than bit vector

hits, because of unindexed input which skips
directly to the tree checking step);

• tree hits (these result in output of matched
trees);

• memoization checks (may be much larger than
number of tree checks, because memoization
happens inside the recursion of the tree check,
but only on sufficiently complicated needles);

• memoization hits;
• user CPU time (reported as seconds with a

decimal fraction down to microsecond preci-
sion as in the struct rusage, but your operat-
ing system probably rounds these numbers to
1/100 or 1/1000 of a second);

• node count in the BDD (zero if none was used
or the feature is absent); and

• the query tree, in cooked EIDS format.
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