
作りましょう ０．８
パラメタ方式フォントファミリ

ユーザマニュアル

Tsukurimashou 0.8
Parametric Font Family

User Manual

Matthew Skala
mskala@ansuz.sooke.bc.ca

２０１３年８月２６日 August 26, 2013

This project’s English-language home page is at
http://tsukurimashou.sourceforge.jp/index.html.en.

このプロジェクトは、日本語のページが
http://tsukurimashou.sourceforge.jp/index.html.jaです。

User manual for Tsukurimashou
Copyright © 2011, 2012, 2013 Matthew Skala

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, version 3.

As a special exception, if you create a document which uses this
font, and embed this font or unaltered portions of this font into the
document, this font does not by itself cause the resulting document
to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the document might be
covered by the GNU General Public License. If you modify this font,
you may extend this exception to your version of the font, but you
are not obligated to do so. If you do not wish to do so, delete this
exception statement from your version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

2

http://tsukurimashou.sourceforge.jp/index.html.en
http://tsukurimashou.sourceforge.jp/index.html.ja
http://www.gnu.org/licenses/

目次　Contents

イントロ Introduction 5
０．８のニュース What’s new in 0.8? 11
外のプロジェクト Other similar projects 12
デベロップメントロードマップ Development roadmap 16
外のソフトのバグ Relevant bugs in other software 20

『作りましょう』の使い方 Using Tsukurimashou 28

ＯｐｅｎＴｙｐｅのフィーチャー OpenType Features 30
外の分すう Alternate Fractions (afrc) 31
キャプがスモールになって Capitals to Small Caps (c2sc) 31
文脈代替字 Contextual Alternates (calt) 32
グリフの併合と分解 Glyph (De)Composition (ccmp) 32
合字 Ligatures (liga) . 33
頭子音の形 Lead Jamo Shaping (ljmo) 34
文字に付け方 Mark to Base Positioning (mark) 34
点に付け方 Mark to Mark Positioning (mkmk) 34
メタデータ Metadata Table (name) 35
巴の花形 Ornaments (ornm) . 35
ＦｏｎｔＦｏｒｇｅだけのメタデータ FontForge-specific Metadata (pfed) . . 35
スモールキャピタル Small Caps (smcp) 37
ヘビーメタルウムラウト Heavy Metal Umlaut (ss01) 37
丸つき字 Enclosed Letters and Numerals (ss02) 38
母音の形 Vowel Jamo Shaping (vjmo) 39
私用符号位置を避けて Limit PUA Code Points (xpua) 39

付加文字 Extra glyph coverage 41
げんじもん Genjimon . 41
えききょう I Ching . 41
解字の文字 Ideographic Description Characters 42
公のユーログリフ Official Euro Sign 42

ハングル語 Korean Language Support 44
コンパチのジャモ Compatibility jamo 45
併合のシラブル Precomposed syllables 46
併合のジャモ Conjoining jamo . 46
ハンジャ Hanja . 50

3

フォントの名前ついて Regarding Font Names 52

『作りましょう』を作りましょう！ Building Tsukurimashou 57
ビルドのシステム Build System . 60
寄生パッケージ Parasite packages 66
ツールの文書化 Tool documentation 68
ビルドのシステムの図示 Build system diagrams 71
ハムログ Hamlog . 72

カーニングしかた Kerning 81

4

イントロ
Introduction

日本ごのユーザマニュアルをまちうけば、ごめんなさい。 みらいは、日本ごのユーザマニュア
ルをかきます。

I want to learn Japanese. That’s a large project, likely to involve
years of daily study to memorize a few tens of thousands of words.
It’s clearly within the range of human instrumentality, because many
millions of Japanese people have done it; but most of them started
in infancy, and it’s widely believed that people’s brains change during
childhood in such a way that it’s much harder to learn languages if
you start as an adult. I also would like to be fully literate within
somewhat less than the 15 years or so that it takes a native learner
to gain that skill.

What about designing a Japanese-language typeface family? Typeface
design is a difficult activity, requiring hours of work by an expert to
design each glyph. A typeface for English requires maybe 200 glyphs
or so; one for Japanese requires thousands. That makes the English-
language typeface about a year’s full-time work, and the Japanese-
language typeface enough work (20 to 25 man-years) that in practice
it’s rare for such a project to be completed by just one person working
alone, at all. There is also the minor detail that I said a “typeface
family”—one of those typically consists of five or six individual faces,
so the time estimate increases to between 100 and 150 years.

However, I’ve already decided to spend the time on the language-
learning project. And I’m sure that if I design a glyph for a character,
I’m going to remember that character a lot better than if I just see
it a few times on a flash card. And as a highly proficient user
of computer automation, I have access to a number of efficiency-
increasing techniques that most font designers don’t. So the deal is, I
think if I study the language and also design a typeface family for
it, I might be able to finish both big projects with less, or not much
more, effort than just completing the one big project of learning the
language alone. And then I’d also end up with a custom-made Japanese-
language typeface family, which would be a neat thing to have. And
so, here I am, building one.

5

Because this is a parametrized design built with Metafont, users can
generate a potentially unlimited number of typeface designs from the
source code; but I’ve provided parameters for several ready-made
faces, each of which can be drawn in monospace or proportional
forms. The mainline Tsukurimashou fonts are intended for Japanese,
but version 0.5 also introduced a series of fonts called Jieubsida,
designed for Korean hangul. There is also some experimental code
intended to eventually become a set of blackletter fonts, but it is
disabled by default and not currently usable.

The main goal of this project is for me to learn the kanji by designing
glyphs for them, and so far it does seems to be helping my learning
process, though the nature of computer programming is certainly
having some unusual disruptive effects. For instance, in some cases
I appear to have unintentionally memorized the Unicode code points
of kanji without learning their meanings or pronunciations. I may
end up learning to speak Japanese just like a robot; but by the time
I’m fluent, the Japanese demographic collapse will be in full swing
and they’ll have replaced much of their population with humanoid
interfaces anyway, so maybe I’ll fit right in.

Please understand that the finished product is not the point so much
as the process of creation, hence the name. Furthermore, although the
fonts cover the MES-1 subset of Unicode, and thus can in principle be
used for almost all popular languages that use the Latin script, and I
know that at this stage most users are probably more likely to use the
fonts for English than for anything else, nonetheless these fonts are
intended for eventual primary use with the Japanese language. Some
decisions on the Latin characters were driven by that consideration—
in particular, the simplistic serif design and weighting in the Latin
characters of Tsukurimashou Mincho, and the limited customization of
things like diacritical mark positioning in Latin characters not used by
English. I biased some marks (notably ogonek and haček) toward the
styles appropriate for Czech and Polish as a nod to my own ancestors,
but I cannot read those languages myself, and I cannot claim that
these fonts will really look right for them. I’m not interested in
spending a lot of time tweaking the Latin to be perfect because it’s
not really the point. I already know how to read and write English.

6

Some other notes:

 Since my learning the kanji is a big part of the goal of this
project, “labour-saving” approaches that would relieve me of hav-
ing to look at all the kanji individually myself (for instance, by
feeding a pre-existing database of kanji shapes into my exist-
ing general font technology) are not appropriate to the original
intention of the project. Nonetheless, as of Fall 2012 I have
become involved in a proposed research project to more or less
exactly feed a pre-existing database of kanji shapes into my
existing general font technology. Most likely, Tsukurimashou
itself will continue to be manually maintained by me alone in
support of my own language learning, and some future ver-
sion of this document will also contain information about the
database-driven system, which will also be free, will involve
other maintainers besides me, and will share technology with
Tsukurimashou.

 Proportional spacing and kerning still require some work. Be
aware that future versions will change the spacing of some
characters, so if you are one of those people to whom any
changes in line breaking are anathema, you should not expect to
be able to upgrade the proportionally spaced versions of these
fonts in archived documents. The monospace versions have more,
but still not complete, long-term stability.

 I would like to include at least some support for vertical script,
but it is not a high priority. One obstacle is that I don’t have
access to competent vertical typesetting software, whether the
font could support it or not.

 Tsukurimashou is designed primarily for typesetting Japanese,
secondarily for English. I have no immediate plans to support
other Han-script languages (such as any dialect of Chinese) nor
put a lot of effort into tweaking the fine details of characters
only intended for use in occasional foreign words.

 Support of Korean is limited because of my limited knowledge
of that language; and learning it is not a high priority for me.

7

At this point the Jieubsida fonts only support Korean hangul, not
hanja (which are the Korean equivalent of kanji, but just different
enough that copying over the Tsukurimashou kanji would not be
good enough).

 I reserve the right to add features that I think are fun, even if
they are not useful.

 Tsukurimashou is designed as a vector font, assuming an output
device with sufficient resolution to reproduce it. In practice,
that probably means a high-quality laser printer. I have not
spent time optimizing it for screens or low-resolution printers,
and the hinting is automated.

 If it turns out to be too much work after all, I might abandon
the whole project.

 Both building and use of Tsukurimashou require working around
many bugs in third-party packages, some of which were men-
tioned here in earlier versions of this document. The list has
now grown so long it needs its own subsection, which starts on
page 20 of this document.

The Tsukurimashou fonts are distributed under the GNU General Public
License, version 3, with an added paragraph clarifying that they may be
embedded in documents. See the files COPYING and COPYING.GPL3,
and note the following addition:

As a special exception, if you create a document which
uses this font, and embed this font or unaltered portions
of this font into the document, this font does not by itself
cause the resulting document to be covered by the GNU
General Public License. This exception does not however
invalidate any other reasons why the document might be
covered by the GNU General Public License. If you modify
this font, you may extend this exception to your version
of the font, but you are not obligated to do so. If you
do not wish to do so, delete this exception statement from
your version.

8

The license means (and this paragraph is a general summary, not
overriding the binding terms of the license) that you may use the
fonts at no charge; you may modify them; you may distribute them
with or without modifications; but if you distribute them in binary
form, you must make the source code available. Furthermore (this
is where font-embedding becomes relevant) embedding the font, for
instance in a PDF file, does not in itself trigger the source-distribution
requirement.

My plan is that at some point in the future, when the fonts are in
a more useful and complete form, I will make precompiled binaries
available through commercial online channels. That will serve several
purposes: it will allow me to make some money from my work, and it
will also probably encourage some people to use the fonts who wouldn’t
otherwise. One of the bizarre aspects of human behaviour is that
some people will buy a product they would not accept for free. Okay,
whatever; in such a case I’m happy to take the money for it. Having a
pay option will also give anybody who wants to support my efforts, an
easy way to do that. For now, though, I am distributing Tsukurimashou
only as this source package, with precompiled versions included for
the Kaku and Mincho styles. The Jieubsida fonts, which don’t need the
in-progress kanji glyphs, may also be available in precompiled form as
a separate package. If you want other styles, you’ll have to compile
them yourself or get them from someone who has done so. This
limitation is deliberate: with the fonts in their current partial form,
I’d rather limit their circulation to hobbyists.

I maintain several other free font projects, which as of version 0.7
have largely been merged into the Tsukurimashou packaging and build
system because they share code. These “parasite” packages appear as
subdirectories of the Tsukurimashou source distribution, and may also
be available as separate packages. See the discussion in Subsection for
more information about parasite packages.

This documentation file gives some notes on the build system and
on how to use the OpenType features built into the fonts. Other
documentation files included in the package demonstrate what the
fonts look like and list the current kanji coverage. Better documenta-
tion (and some day, Japanese-language documentation) will probably

9

appear in a later version; at the moment, I’m just more interested
in designing fonts than in writing about them. Of course, all the
typesetting in this manual is done with fonts from this package.

The name “Tsukurimashou” could be translated as “Let’s make some-
thing!”

From time to time, people ask how they can help with the project.
I’m hesitant to accept contributions to the coding, because of the
pedagogical goal: I need to do it myself in order to learn by doing it.
I also don’t have much need for monetary donations. If you are in a
position to actually offer me full-time employment appropriate to my
skills and experience, I might like to hear from you, but as far as the
Tsukurimashou project is concerned, the one thing that would really
help a lot would be publicity. Share the link on social networks; write
about it on your Web log (or invite me to write a guest posting); or
even just do a “review” or a “rating” on the Sourceforge.JP project page.
Tsukurimashou is also registered on Github, Ohloh, and CIA.vc; if you
use one of those systems, you’re encouraged to “follow” or “subscribe”
to it as appropriate, both to keep yourself updated and to raise the
project’s profile.

There is some possibility that I may actually be able to get funding
in the future to work on kanji fonts and dictionaries full-time for a
while. Exactly what that would mean for Tsukurimashou is unknown,
because the project under discussion would have goals similar to but
not exactly the same as the current Tsukurimashou/IDSgrep, and it’s
too soon to announce anything.

The home pages for this project, where you can download the latest
releases, browse the source-control repository, and so on, are:

http://tsukurimashou.sourceforge.jp/index.html.en (English)
http://tsukurimashou.sourceforge.jp/index.html.ja （日本語）

よろしくおねがいします。

Matthew Skala
mskala@ansuz.sooke.bc.ca
August 26, 2013

10

http://tsukurimashou.sourceforge.jp/index.html.en
http://tsukurimashou.sourceforge.jp/index.html.ja

０．８のニュース What’s new in 0.8?

Version 0.8 covers 1502 kanji, including all those taught through Grade
Four in the Japanese school system. This release includes relatively
few major changes to infrastructure. The new kanji are the main new
content in this version. These (100 scheduled by the roadmap, roughly
another hundred spin-offs as a result of building kanji that are parts
of others, and so on) turned out to be disproportionately hard. It
seems like Grade Four is when the Japanese school system takes the
gloves off, so to speak, and expects children to learn kanji that are
much less well-behaved than before in terms of being made of simple
parts in simple ways. Many of the new kanji in this release contain
weird stroke structures that do not occur widely in other glyphs. As
a result, they required a fair bit more new code, and this new code
is likely to be less reusable, than the kanji in earlier releases. I’m
hoping that some of the kanji in the next few versions will be easier
to handle, but that remains to be seen.

Here are some other things of note in the new version:

 Kleknev, a build system profiler, added as a parasite package.
This actually originated in some last-minute issues that came up
while packaging the previous version, 0.7. It remains somewhat
undocumented and experimental, but there is at least a man
page.

 The expect script used for invoking X ELATEX and a few other things
now waits for child processes to avoid creating zombies. That it
didn’t, before, was a bug discovered during Kleknev development.

 IDSgrep 0.4, released a few days before this version of Tsukuri-
mashou, now incorporates experimental bit vector indices. This
is actually a pretty big deal; it is cutting-edge computer science
research from which I hope to gain many prestigious academic
publications. From a user’s point of view, though, the practical
consequence is simply that IDSgrep should now run a lot faster.
See the IDSgrep documentation for more about the bit vector
indices.

11

 Shortly after the release of Tsukurimashou 0.8, I will be giving
a presentation about the project at TUG 2013, the TEX Users
Group annual meeting, in Tokyo. That should raise the profile
of the project a bit.

 Since May 2013, I am unemployed and looking for work. That
may have consequences eventually. The fact that I am still single
really worries me more, but both are important.

外のプロジェクト Other similar projects

Maybe you shouldn’t use this package! It is designed for specific
purposes that are relevant to its designer, and although I certainly
hope others will find it useful, my goals may or may not be in line
with yours. Also, although I sometimes describe Tsukurimashou as the
first parameterized METAFONT family with Japanese-language cover-
age, that claim requires careful qualification because many projects
with similar aims have existed in some form for a long time. Here
are some others, going back a few decades, that you might want to
check out.

This is not intended to be a complete list; in particular, I’m leaving
out many sources of CJK fonts that are not METAFONT-related, and
many academic papers that are not associated with publically-available
fonts. There is also no doubt a great deal of research and development
locked up inside commercial organizations, or published in the Chinese
language and thus inaccessible to me.

 “LCCD, A Language for Chinese Character Design,” Tung Yun Mei,
Stanford technical report STAN-CS-80-824. He built a language
similar in nature to METAFONT (collaborating with Knuth and
sharing ideas with the earliest versions of METAFONT) and con-
structed 112 kanji for use in TAOCP. It’s interesting how little
has changed since this early work.

 “A Chinese Meta-Font,” John Hobby and Gu Guoan, paper in TUG-
boat 5–2, 1984. Proof of concept and discussion of some of the
graphic design issues for parameterized CJK fonts. They built

12

140 radicals and 128 characters, using infrastructure very sim-
ilar to Knuth’s techniques for Latin fonts, and the traditional
Chinese stroke-based analysis of characters. High-quality pa-
rameterized designs. No apparent plan to actually turn these
into a usable full-coverage family; it seems to have been meant
as research into the techniques only. http://www.tug.org/TUGboat/
tb05-2/tb10hobby.pdf John Hobby has posted the source code de-
scribed in the paper on his Web site at http://ect.bell-labs.
com/who/hobby/hobbygu.tar.gz, but as he says in the enclosing Web
page, the files are written in the now-obsolete METAFONT79
language and “they are of limited use because they are not
compatible with today’s METAFONT.”

 pTEX, ASCII Corporation, 1987 onward: not a font project, but a
TEX engine modified to handle 16-bit character codes and using
existing fonts from other systems. Very popular in Japan; to
some extent it still is, though other projects of similar nature
(mostly not listed here) have gained a lot of market share in
recent years.

 The Quixote Oriental Fonts Project, spearheaded by Dan Hosek,
announced in a paper at the TUG 1989 Conference. Intended
to be a parameterized METAFONT-native family for Chinese,
Japanese, and Korean. Hosek apparently had some source code
in hardcopy form displayed at the conference, but I’ve not been
able to find the code nor any subsequent discussion of the
project. http://www.tug.org/TUGboat/tb10-4/tb26hosek.pdf

 Poor Man’s Chinese and Poor Man’s Japanese, 1990, Tom Ridgeway:
technology for displaying 24×24 bitmap fonts through METAFONT.
This was not curve tracing, nor smooth scaling, but a way to
actually display the dot matrix, jaggies and all. Still available in
CTAN package “poorman,” but considered obsolete.

 JemTEX, 1991, François Jalbert: included a program called jis2mf
which would auto-trace 24×24 bitmaps to produce non-parameterized
METAFONT code. Many sources from the 1990s (for instance, a
regular Usenet posting aiming to list all then-available .mf-format

13

http://www.tug.org/TUGboat/tb05-2/tb10hobby.pdf
http://www.tug.org/TUGboat/tb05-2/tb10hobby.pdf
http://ect.bell-labs.com/who/hobby/hobbygu.tar.gz
http://ect.bell-labs.com/who/hobby/hobbygu.tar.gz
http://www.tug.org/TUGboat/tb10-4/tb26hosek.pdf

fonts) describe the availability of “Metafont for 61 Japanese
fonts,” which is the output from this program.

 The CJK package, described in TUGboat at least as early as 1997,
still available though no longer popular, Werner Lemberg. Not
a font project but a system for typesetting CJK text in LATEX
under the standard 8-bit engines, getting around the encoding
issues by splitting each font into many smaller virtual fonts
(similar to Tsukurimashou’s “page” system). Fonts for this, at
least at the outset, were usually bitmap fonts imported from
other systems (one popular one was 48×48); later, as free vec-
tor fonts became available, those started to be used, some of
them via auto-conversion from formats like TrueType to non-
parameterized METAFONT.

 HanGlyph, 1997 and 2003: a language for describing Chinese
characters, and support for rendering them in MetaPost and
LATEX. This is intended to address the Chinese equivalent of the
“gaiji” problem: how to typeset rare characters that are not
included in standard fonts or encodings. The user can describe
the missing character and a small font containing just that
character will be automatically created and used. In principle,
HanGlyph’s technology could be used to create a full-coverage
font, but as of 2012 it doesn’t appear anyone has done that.
Availability and licensing terms are unclear; no released code or
fonts seem to be available, but there have been papers published
about it. http://www.hanglyph.com/

 IPA Mincho and IPA Gothic fonts, 2003 onward. Note “IPA” in
this case stands for “Information-technology Promotion Agency,”
not the “International Phonetic Alphabet,” and these fonts do not
cover that IPA. Free high-quality fonts for Japanese, TrueType
format, not parameterized. http://ossipedia.ipa.go.jp/ipafont/
index.html

 X ETEX, SIL International, 2004 onward: TEX engine extended to
handle Unicode and modern font technologies. Used to compile
this document, and one of the main compatibility targets for
Tsukurimashou. http://scripts.sil.org/xetex

14

http://www.hanglyph.com/
http://ossipedia.ipa.go.jp/ipafont/index.html
http://ossipedia.ipa.go.jp/ipafont/index.html
http://scripts.sil.org/xetex

 Hóng Zì project by Javier R. Laguna. Aimed to be a parame-
terized METAFONT family for Chinese. The last release, which
was in 2006, contained 125 characters. No infrastructure for
addressing issues like METAFONT’s 256-glyph limit, or radicals
changing shape depending on their context. Probably abandoned.
However, it did make several releases of code that you can still
download and compile. http://hongzi.sourceforge.net/

 The KanjiVG Project, coordinated by Ulrich Apel, current in 2011.
Still under development, but already has basically complete cov-
erage, and is deployed in several important applications. This
is not a font family, but a database of kanji (primarily from a
Japanese point of view) broken down into strokes and radicals,
with some curve points and a lot of abstract information about
how the strokes correspond to the traditional radical classifica-
tion (so that you can automatically recognize, for instance, what
示 and 礻 have in common), stroke order, and so on. This is a
valuable resource for dictionaries and handwriting recognition
systems. Some kind of supervised semi-automatic processing
could probably turn it into a font, but keeping the style consis-
tent (because the database has multiple sources), and adding the
serifs and other visual information needed for styles like Mincho,
would require some significant work. http://kanjivg.tagaini.net/
See it in action in Ben Bullock’s handwritten kanji recognizer at
http://kanji.sljfaq.org/draw.html.

 Character Description Language, from Wenlin Institute, Inc.
Current in 2011. This is a commercial product. It is appar-
ently (though the Web page could be clearer on the exact
nature of what they’re selling) a database of character de-
scriptions similar to KanjiVG though with wider coverage, plus
a binary-only rendering library, the combination available for
license at some unspecified price. It says it’s capable of gener-
ating MetaPost as one of its several output formats. Not clear
to what extent there is parameterization, but presumably that
would be in the converter rather than in the resulting MetaPost.
http://www.wenlin.com/cdl/

 Type Project Adjustable Fonts, announced in 2012. Commer-

15

http://hongzi.sourceforge.net/
http://kanjivg.tagaini.net/
http://kanji.sljfaq.org/draw.html
http://www.wenlin.com/cdl/

cial type foundry offers to provide Japanese-language corporate
fonts that are “adjustable” for weight and width. It is not clear
that they actually have a full set of kanji; from the descrip-
tion on the Web site it appears that they have a ready-made
set of parameterized kana and then they will create whatever
specific kanji the client wants to pay for. The parameterization
technology is evidently smarter than the purest form of linear
interpolation (because they have a JavaScript demo highlighting
the difference) but it still seems to be within the range of what
could be accomplished with, for instance, Adobe Multiple Master.
http://typeproject.com/projects/adjustable

デベロップメントロードマップ Development roadmap

This version contains all the kyouiku kanji (the ones taught in Japanese
elementary school) through Grade 4. The current plan is to release a
minor version after each grade level of kyouiku kanji and one halfway
through each grade level, which will take us up to version 0.12 at
the end of Grade 6. Version 1.0 will probably be a separate version
released shortly after 0.12, with a general clean-up and renovation, but
it’s possible I might skip directly from 0.11 to 1.0.

There are 1006 kyouiku kanji, though the fonts already contain more
than that number of kanji glyphs because my general practice is to
add other glyphs that are convenient to add whenever they come up,
regardless of their level. For instance, when I added the “gate” radical
門 it was easy to add many other kanji that consist of that wrapped
around an easy pre-existing kanji, even though some of those are not
in common use and one, 閠, isn’t even a real kanji at all, having been
created by an error in the standards process. But having just over
a thousand in the main-line roadmap makes the end of the kyouiku
kanji a good milestone for the first major version number.

That may be a few years from now. Progress past that point will
be somewhat dependent on how I feel about the project by then and
what my personal career situation is. My hope is that at that point
or before, I’ll have the chance to present this work at one or more
conferences and that it will have attracted some attention. Of course,

16

http://typeproject.com/projects/adjustable

if I can figure out a way to get paid to do it that would be nice, but
attention is more important.

Although this is subject to change and cancellation, my current thought
is that the next major versions would be 2.0 with the jouyou kanji
(taught in high school, a total of 1130 additional glyphs), and 3.0 with
the jinmeiyou kanji (the “name-only” kanji, 983 additional glyphs). I
don’t know how I’d break those up into minor versions, but presumably
I’d aim for a similar spacing of about 100 new characters per release.
At the 3.0 point, with a little over 3000 kanji, the fonts should be
basically complete in the sense of being usable to write the full
Japanese language as most reasonably competent native readers know
it. Many more kanji exist; I don’t know how far I’ll want to take
this project toward covering them all. For reference, looking at some
other fonts I have handy, IPA Mincho contains 6682 kanji (probably
aiming to cover the JIS 208 standard), and Sazanami Gothic contains
12202 (probably aiming to cover JIS 212). Those might be reasonable
milestones for 4.0 and 5.0.

Figure 1 is a chart of the progress to date. Note the horizontal axis
is labelled by version but scaled by time. Even-numbered versions
tend to take more time because I tend to do the easier characters in
each grade level first. All the glyph counts in these charts are for the
Tsukurimashou (Japanese) fonts alone. The Jieubsida (Korean) fonts
contain the 11172-glyph block of precomposed syllables, which because
they are algorithmically generated cannot be well compared to the
more manually-created kanji and other glyphs. The Jieubsida fonts
also contain a few hundred non-precomposed glyphs, beyond the core
they share with Tsukurimashou.

Figure 2 gives a different view of development progress: the number
of lines of code (total lines in mp/*.mp, including comments and blanks
but not including code in other languages and locations; also excluding
jieub-*.mp, but still including a few other files from Jieubsida) plotted
against the total number of glyphs in the main Tsukurimashou family.

17

..0 .

500

.

1000

.

1500

.

2000

.

2500

.

3000

.

gl
y
ph

s

.
0.1

.
0.2

.
0.3

.
0.4

.
0.5

.
0.6

.
0.7

.
0.8

.

version and time

.漢.
漢.
漢

.

漢

.

漢

.

漢

.

漢

.

漢

.

.

.

.

.

.

.

.

.

kanji

.

total

Figure 1: Growth of glyph counts

18

..0 .

10000

.

20000

.

30000

.

40000

.

50000

.

60000

.

li
ne

s
of

co
de

.

0

.

500

.

1000

.

1500

.

2000

.

2500

.

3000

.

glyphs

.

.

.

.

.

.

.

.

Figure 2: Lines of code per glyph

19

外のソフトのバグ Relevant bugs in other software

Building Tsukurimashou (and, especially, its documentation) requires
the use of some fairly advanced features of third-party software.
Some of those features are not often used; as a result, I’ve become
an unintentional beta-tester, and in some cases a maintainer, for the
third-party packages. I’ve previously noted bugs when they come up,
in code comments and the relevant parts of this document, but as
of the current version, such bugs have become so numerous that it
makes sense to also have a central list.

 Metapost (maybe even METAFONT) issue propagated to METATYPE1:
the equation solver has a non-renewable resource of “indepen-
dent variable instance serial numbers” which are consumed as
code executes. Basically, one is used up permanently every time
an assignment statement executes. Very old versions of Meta-
post either did not have these, or allowed the counter to wrap
around, and so the solver would produce incorrect results in
long-running programs. At some time before version 0.641, the
solver mistakes were fixed by the limited serial-number scheme,
but serial numbers would run out and cause a fatal error when
they reached 225. In version 1.501, the limit was increased to
231. Any sufficiently long-running Metapost program will even-
tually die as the limit is exceeded. Some experimental versions
of the Blackletter Lolita curve-fitter would exceed the 225 limit;
the current experimental version is less computation-intensive,
probably wouldn’t exceed 225, and certainly fits comfortably in
231, but it seems like the limit should not exist at all. De-
bugging is hindered by some currently in progress redesign
work on Metapost’s data structures, such that (as of October
2011) the cutting-edge development version leaks memory fast
and crashes for that reason long before the serial numbers can
run out anyway. Memory leaks acknowledged and planned to
be fixed by Metapost maintainer Taco Hoekwater, but it may
take a while. I’ve posted a link target to track this issue at
http://ansuz.sooke.bc.ca/entry/213.

 METATYPE1 sometimes runs glyph names through the METAFONT

20

http://ansuz.sooke.bc.ca/entry/213

tokenizer. At this point, I don’t know how essential that is to the
operation of METATYPE1 or whether it can be changed. It has
subtle effects that can cause problems. One issue shows up in
glyph names that contain a decimal digit followed by a dot, as in
“uni1100.bug”; then what gets written into the Postscript output
is “uni1100bug” because that is equivalent but more canonical
in METAFONT syntax. A more serious issue shows up with
the glyph name “uni1100.l1” from Tsukurimashou 0.5; in the new
METATYPE1 version 0.55, that gets tokenized in a context where
the token “l” is a “spark,” and so the whole compilation fails.
The workaround for that was to change “l” to “lj” (for “lead
jamo”). A further workaround, introduced in Tsukurimashou 0.6,
was to modify the bundled METATYPE1 code to save the glyph
name as a string and put that in the Postscript file instead of
the tokenized version. It still also parses the names as tokens,
however, so there is also code to insert a bunch of underscores
in the internally-used name before doing that, to reduce the
chance of name collisions from this parsing.

 METATYPE1 pen_stroke_edge macro: as of METATYPE1 version
0.44, for reasons unknown to me if left to its own devices it
will sometimes attempt to evaluate the “turning angle” of a zero
vector, and then blow up. This seems to happen most often when
stroking a vector in a direction of approximately 290 degrees.
As of Tsukurimashou 0.6, we are bundling a macro derived from
METATYPE1 version 0.55, which seems to have fixed this bug;
the workaround in previous versions of Tsukurimashou has been
removed.

 Not really a bug, because they warn about it in the documen-
tation and it is a reasonable consequence of design decisions
made for good reasons, but: in some cases the METATYPE1
pen_stroke_edge macro’s output does not well approximate the
theoretical ideal shape that would be obtained by stroking the
specified pen along the specified path. A perfect result is not
possible because the theoretical perfect curve is not, in general,
a cubic spline curve, and there are tricky topological consider-
ations in play too. Some approximation is necessary, and the

21

one chosen by METATYPE1 basically uses one control point in
the output envelope for each control point in the input path.
That may or may not be enough control points to produce a
visually nice result. It seems to especially often be a problem
when there is a tight curve and not actually a sharp corner
in the input path, so curvature is great but not infinite, or
when there is an inflection point in the input path. These cases
are best simply avoided, but Tsukurimashou’s bundled version of
METATYPE1 now contains added code that attempts to detect
tight curves and inflection points and add extra control points
automatically to reduce the likelihood of visual problems. The
detection rule the code uses was chosen by trial and error ed-
ucated by dimensional analysis, not by solid theoretical results,
and it will probably be incorrect in some cases. The extra
points and resulting topological weirdness necessitate FontForge
postprocessing, and may tend to trigger bugs in FontForge, but
FontForge postprocessing was already a dangerous necessity in
this project for other reasons anyway. Thanks to Shriramana
Sharma and the Metapost mailing list for discussion encouraging
me to work on this issue.

 METATYPE1 infrastructure in general: sometimes generates paths
that some software layer (possibly METATYPE1’s own code) flags
as “degenerate,” triggering a fatal error. Workaround is to fil-
ter things, before rendering, through the regenerate macro in
intro.mp, which removes any very short path segments. Possi-
bly related: the Fill macro will sometimes abort in response
to some conditions on “turning number” that do not appear to
actually be harmful. Workaround is to use our dangerousFill
in intro.mp instead, which is just a copy of Fill with the error
checking removed. Since the switch to bundled code based on
METATYPE1 version 0.55, this seems to be a less significant issue.

 FontForge spline geometry operations, such as overlap removal
and simplification: these have historically tended to be very nu-
merically unstable, and subject to some combination of infinite
loops, segmentation faults, unexplained floating-point exceptions,
bizarre error messages, incorrect output, and so on. The most

22

recent development versions seem to be relatively good; best
advice is to switch to one of those, turn debugging on, and hope.
It is also sometimes possible to get past individual problems by
switching between the different floating-point formats offered
by FontForge’s compile-time configuration: float, double, and
long double. But which of those is the best choice isn’t always
predictable, and as of October 2012 some FontForge developers
are attempting to remove the option to choose between them
(which should improve stability in the long term by improv-
ing maintainability, but may harm stability in the short term).
Some numerical tweaks in actual glyph outlines also exist to try
to work around these issues.

 FontForge usually fails to automatically insert appropriate sub-
table breaks when it reads a feature file describing a large
OpenType table. Workaround: our Perl code inserts explicit
breaks; trial and error needed to figure out how frequent they
ought to be.

 When FontForge saves an Adobe feature file, what it writes may
bear only a passing resemblance to what was actually in the font,
and in particular, cannot subsequently be loaded by FontForge
(sometimes cannot be loaded at all, other times can be loaded
but the loaded tables behave differently from the ones that were
saved). Workaround: do not save feature files from FontForge.
As of October 2012 there has been some interest shown by
FontForge developers in addressing this issue, but it will likely
be a gradual process instead of a single complete fix.

 FontForge can segfault while writing a feature file because of
dereferencing a pointer first and checking whether it was null
afterward. Fixed by the FontForge developers in December 2011.

 FontForge does not apply features of the “DFLT” language system
as a default to Unicode ranges that have no explicit mention in
the font file (Adobe spec says it should). Workaround: explicitly
list language systems to cover every Unicode range we care
about.

23

 FontForge may write up to 23 horizontal stem hints per glyph
when writing a PostScript-flavoured OTF font, resulting in a
PostScript stack overflow on loading if the glyph also has a
non-default advance width. Went undetected for a long time
apparently because only CJK fonts are likely to have so many
horizontal stems, and CJK fonts are likely to be monospace and
thus won’t also have per-glyph non-default advance widths. Fixed
by changing the limit to 22, with a patch I wrote that the
FontForge developers accepted in December 2011.

 FontForge save and then load of an SFD file has the effect of
renaming the “clig” feature to “rtla” on only one of the three
machines where I’ve tried it. May be related to the x86-64
architecture. Not reliably reproducible. Reported on mailing
list November 2011, mentioned in a developer’s commit message
December 2011, not observed recently and probably fixed by
now.

 FontForge rasterization to BDF via FreeType as opposed to what-
ever other code FontForge would use: sometimes produces cor-
rupt results, which has complicated indirect consequences be-
cause the Tsukurimashou infrastructures uses BDF files as input
to the auto-kerning program. As a result, when this bug bites the
horizontal metrics go screwy on some fonts—notably, Jieubsida
Batang PS ends up looking monospaced. Reported to FontForge
mailing list in November 2011, inspiring FreeType maintainer
Werner Lemberg to find and fix an unrelated bug in FreeType
(it was unable to process BDF files with high code points; see
http://savannah.nongnu.org/bugs/?34896). But that bug did not ac-
tually affect us because FontForge uses its own code for BDFs
instead of FreeType’s anyway, and Lemberg says can’t help with
the corrupt rasterization. Workaround is to compile FontForge
without FreeType support; from the GUI it is possible to just
turn off FreeType rasterization on individual bitmap-creation op-
erations, but that option doesn’t seem to be available from the
scripting language and so the package has to actually be built
without FreeType. As of April 2012, seems not to be an issue with
Arch Linux’s packaged versions. However, as of a few minutes

24

http://savannah.nongnu.org/bugs/?34896

before the Tsukurimashou 0.8 release (ouch!), this is a problem
again with the lastest FontForge, and the latest FontForge now
requires FreeType, so the workaround of disabling FreeType no
longer works. I’ve reported it as FontForge GitHub issue number
685 (https://github.com/fontforge/fontforge/issues/685), am hack-
ing my local copy of FontForge to generate distribution fonts,
and will hope to get it resolved properly in mainline FontForge
as soon as possible.

 FontForge attempts to modify the names of all glyphs that it
thinks are “related” whenever a glyph name changes for any
reason. Related-glyph renaming has wacky consequences when
one glyph name is a substring of another, and the Beikaitoru
glyph-naming scripts (among other things in Tsukurimashou) have
to take it into account. This issue was reported as FontForge
Github issue number 523 (https://github.com/fontforge/fontforge/
issues/523) and patched in their mainline; I don’t understand
FontForge’s release schedule if they have one, but presumably,
distributed versions will someday contain the fix. Until we’re
sure that day has passed, Tsukurimashou will continue to work
around the issue.

 X ETEX fails to advance glyph pointer after a successful match
in a GSUB table, which has complicated consequences for chain-
ing substitutions, most notably that “ignore sub” rules have no
effect. This is actually a bug in the third-party ICU library
which X ETEX uses. Reported to X ETEX mailing list in Novem-
ber 2011; after discussion there (http://tug.org/pipermail/xetex/
2011-November/022298.html) I found an existing issue in ICU’s bug
tracker dating from June 2010 (http://bugs.icu-project.org/trac/
ticket/7753). Poor workaround is to carefully write all substitu-
tion features to work regardless of whether the pointer advances;
one useful technique is to make what would be an “ignore sub”
rule instead substitute to a series of identical-looking glyphs
that are never matched on input to subsequent rules. As of
mid-2012 there was interest expressed by X ETEX developers in
replacing ICU with HarfBuzz, which is known to handle this case
correctly and may have other advantages too.

25

https://github.com/fontforge/fontforge/issues/685
https://github.com/fontforge/fontforge/issues/523
https://github.com/fontforge/fontforge/issues/523
http://tug.org/pipermail/xetex/2011-November/022298.html
http://tug.org/pipermail/xetex/2011-November/022298.html
http://bugs.icu-project.org/trac/ticket/7753
http://bugs.icu-project.org/trac/ticket/7753

 X ETEX fontspec package: in some versions has trouble with treat-
ing its WordSpace configuration option as a multiplier when
font size changes, in a way that is most noticeable when using
monospaced OTF fonts; complicated by the fact that it’s hard to
define just what should count as a “monospace” font. Discussed
at length on the X ETEX mailing list in February 2011 (http://
tug.org/pipermail/xetex/2011-February/020065.html) and eventually
resulted in three items and planned fixes in the fontspec is-
sue tracker (https://github.com/wspr/fontspec/issues/97, https://
github.com/wspr/fontspec/issues/98, https://github.com/wspr/fontspec/
issues/99). The main bug has now been fixed, and it has also
become less relevant to Tsukurimashou documentation since the
introduction of the proportionally spaced fonts, but still bears
some watching. If they implement all my suggestions, then
the current PunctuationSpace multipliers in Tsukurimashou doc-
umentation will become much too large and need to be reduced.
Earlier versions of Tsukurimashou toyed with workarounds based
on the everysel package or on poking into the internals.

 X ETEX and fontspec do not apply by default some OpenType
features that are supposed to be applied by default (in particular,
“ljmo” and “vjmo”). Workaround: manually request them with
the RawFeature option. It is possible that more careful language
tagging (specifically of Korean text) in the TEX input might
reduce or eliminate this issue.

 LATEX tocloft package: as of May 2011, it sets an entry without
a dot leader by actually requesting an entry with a leader, but
with a font-dependent invalid spacing between dots. The DVI
renderer is supposed to reject the bad spacing and not set a
leader at all. With default font sizes, in most DVI renderers,
that results in either the correct appearance (no leader) or an
almost-correct appearance (a single dot instead of a leader). But
with the larger sizes of the extsizes classes, in some renderers,
the resulting DVI file is so invalid as to cause the renderer
to blank the rest of the page. Reported to Will Robertson,
package maintainer; he acknowledges it, and says will fix (by not
requesting dot leader when they’re not wanted) in next version.

26

http://tug.org/pipermail/xetex/2011-February/020065.html
http://tug.org/pipermail/xetex/2011-February/020065.html
https://github.com/wspr/fontspec/issues/97
https://github.com/wspr/fontspec/issues/98
https://github.com/wspr/fontspec/issues/98
https://github.com/wspr/fontspec/issues/99
https://github.com/wspr/fontspec/issues/99

A workaround involving poking into the package internals to
set a smaller invalid spacing is implemented near the top of
doc/bkstyle.tex.

 PGF (lower layer of TikZ) shapes.callouts library: in version 2.10
only, ellipse callouts just don’t work (causing fatal TEX errors if
attempted), apparently because a macro name was changed in the
PGF development process and the change was not propagated to
all files. Workaround implemented in our build system consists
of detecting version 2.10 and making a local modified copy of
the buggy file with the macro name corrected. The problem
was apparently known to the maintainers and already fixed in
their source code repository before I noticed it. It presumably
will not be an issue in any future releases, but buggy 2.10 is the
latest release and widely used as of late 2011; it will probably
remain in the wild for a long time.

27

『作りましょう』の使い方
Using Tsukurimashou

Fonts appear in OpenType format in the otf/ subdirectory of the
package. If you just unpack a distribution, there will be four fonts
there corresponding to the monospace and proportional versions of
Tsukurimashou Kaku and Mincho. If you run the build process, that
will create more. For a quick start, all you need to do is install the
font files in whatever way is standard for installing OpenType fonts
on your system. It is safe to delete everything else in the package,
though you might want to keep the PDF documentation files.

Samples of what the different styles look like are in the file demo.pdf,
which see. Here’s a brief summary:

 作りましょう角 Tsukurimashou Kaku (“Square Gothic”): sans-serif
with squared stroke-ends.

 作りましょう丸 Tsukurimashou Maru (“Round Gothic”): sans-serif
with rounded stroke-ends.

 作りましょうアンビル的 Tsukurimashou Anbiruteki (“Anvilicious”):
extra-bold, rounded sans-serif.

 作りましょう天使の髪 Tsukurimashou Tenshi no Kami (“Angel Hair”): very
thin hairline display font.

 作りましょう僕っ娘 Tsukurimashou Bokukko (“Tomboy”): felt marker
style.

 作りましょう明朝 Tsukurimashou Mincho (“Ming Dynasty”):
modern serif.

 ツイタ頭 TsuIta Atama (“Head”): italics to go with Tsukurimashou
Kaku.

 ツイタ足 TsuIta Soku (“Foot”): italics to go with Tsukurimashou
Mincho.

28

The remainder of this document is reference material describing the
special features of the fonts, as well as instructions on how to build
and customize your own font files, including the styles that aren’t
distributed in precompiled form.

29

ＯｐｅｎＴｙｐｅのフィーチャー
OpenType Features

OpenType contains a mechanism for defining what are called “features”
in a specific technical sense rather than the more general usage of
that word. They are identified by four-letter tags, and generally cor-
respond to extra data added to the font that compatible renderers can
interpret to provide special typesetting effects. The Tsukurimashou
build system’s configure script accepts an “--enable-ot-features=” argu-
ment which can be given a list of feature tags, or “all”, each optionally
prefaced by an exclamation point to negate it. These are processed
left to right, so that a setting like “--enable-ot-features=all,!ccmp” will
enable everything except the “ccmp” feature. The default value is “all.”

Be aware that just because you selected a feature during config does
not mean you can actually use it. Features are only included in fonts
if they make sense for the particular font being built (thus, monospace
fonts will not contain proportional-only features) and if all necessary
character codes are available (thus, fonts with Japanese glyph coverage
will not contain shaping features specific to Korean script). Also,
build-time configuration only controls what will be included in the
font. Given that the feature is in the font, your renderer must then
support the feature you want to use, and you may need to adjust the
renderer configuration to tell it to use the feature. Some renderers
make that easier or harder to do than others, and some renderers
do not turn on by default certain features that I recommend and the
standards say should be turned on by default.

Note that although OpenType would permit such a thing, features in
any single Tsukurimashou font are NOT language- or script-specific;
for instance, the set of features available for Latin script is the
same as the set of features available for Japanese script in the same
font, and the behaviour of each feature does not change depending
on whether the text is tagged as “English” or “Japanese.” This even
extends as far as, for instance, the fact that you can really kern
kanji in Tsukurimashou proportional fonts. A feature applied to a
code point sequence for which it has no meaning (such as “lead jamo
shaping” applied to English text) will simply have no effect. Specific

30

languages are nonetheless mentioned in the font tables for the benefit
of FontForge, which doesn’t seem to handle defaults very well, and any
other software that behaves like FontForge.

Some of the features mentioned in this section are not actually
OpenType features in the technical sense; they are instead options that
configure the Tsukurimashou build system to control things that should
or shouldn’t appear in the OpenType font file output. They are given
customized four-letter tags and configured through the same interface
as true OpenType features because they are somewhat related and it’s
more convenient than having to have some other interface just for
them.

外の分すう Alternate Fractions (afrc)

Tsukurimashou does not contain any special support for diagonal frac-
tions, but it does support vertical or “nut” fractions using the Open-
Type feature “afrc.” With the afrc feature turned on, any sequence
of up to four digits, a slash, and up to four more digits becomes a
vertical fraction:

1/2 → 34/56 → 789/123 → 4567/8901 →

This feature works with both the “narrow” digits and slash (ASCII code
47–57, Unicode U+002F–U+0039) and the “wide” ones (Unicode U+FF0F–
U+FF19). If the input digits are narrow, and the fraction is one digit
over one digit, then the resulting glyph will be narrow (the same
width as monospaced Latin characters). Otherwise—with wide input
or more than one digit in the numerator or the denominator—the
fraction will be the width of a wide (ideographic) character.

]1/2[→][]１／２[→][]34/56[→][]３４／５６[→][

As of version 0.5, this feature works in both the monospace and
proportional fonts. However, in order to make it work in proportional
fonts it was necessary to exclude the glyphs involved from the kerning
table; as a result, only precomposed fractions will benefit from kerning.

キャプがスモールになって Capitals to Small Caps (c2sc)

31

his feature replaces capital letters with small caps, as might be desired
for typesetting all-caps abbreviations like and . t works
much like the “smcp” feature. imilar limitations apply.

文脈代替字 Contextual Alternates (calt)

The “calt” feature in general replaces glyphs with other glyphs that
look better in certain contexts. In the Tsukurimashou family, it is
used only by monospace fonts, to replace Latin capital letters with
small caps when they are followed by combining accents. The accents
(which do not shift vertically) would otherwise usually collide with the
upper part of the letters. Accents in proportionally-spaced fonts are
positioned using the GPOS table and will shift vertically when applied
to capital letters. Small caps in monospace Tsukurimashou fonts are
the same height as lowercase letters (a little shorter than small caps
in proportionally spaced fonts) to make this substitution work nicely.

When the “ccmp” feature is enabled, as is default, precomposed ac-
cented capitals (which are taller than small cap plus combining accent
combinations) will be used wherever possible, and the “calt” feature
will only affect unusual combinations not covered by precomposed
glyphs.

グリフの併合と分解 Glyph (De)Composition (ccmp)

This feature’s general function is to join and split glyphs that can be
thought of as combinations of other glyphs. Exactly what that means
depends on the script and the particular font. Often, the results of
“ccmp” are needed as input for other features. It is recommended that
this feature should be turned on by default in fonts that have it, and
that is required by Microsoft’s spec.

In all fonts, this feature will substitute precomposed accented Latin
letter glyphs for combinations of letter plus combining accent, wher-
ever precomposed glyphs exist. The precomposed glyphs generally
look better because the accent in the precomposed glyph may change
shape or size to work better with its base letter; this issue is espe-
cially significant in the case of monospace fonts and capital letters,
because the generic accent would usually be too low and is not subject

32

to GPOS positioning. When no precomposed glyph exists, rendering
will fall back on the unaccented letter and a generic accent, with
the capital-letter issue in monospace fonts partially mitigated by the
“calt” feature’s substitutions, if those are enabled.

Similarly, this feature will substitute precomposed voiced kana glyphs
for combinations of unvoiced kana plus combining dakuten or han-
dakuten.

In the Jieubsida fonts, this feature breaks precomposed syllables that
don’t have final consonants into their component jamo, and combines
sequences of jamo for single vowels and consonants into jamo repre-
senting the sequences, where possible. Splitting tail-less precomposed
syllables is necessary to support the Unicode behaviour of adding a
tail to a precomposed syllable that doesn’t have one; the splitting
is later undone by the “liga” feature. Combining single jamo into
multiples does not seem to be required by Unicode, but is vaguely
described in Microsoft’s spec, and it seems like a reasonable thing to
do.

合字 Ligatures (liga)

The Tsukurimashou fonts do not contain ligatures for the Latin script
at present. Their basic letter forms were designed with monospace
setting in mind, where ligatures don’t make sense; and given the
importance of keeping everything legible to readers whose native
language is Japanese and who may not be familiar with some of the
advanced aspects of the Latin script, it was a design decision to make
the letters look good without ligatures even in proportional fonts.

The Jieubsida fonts, however, contain an extensive ligature table for
hangul, and use of this feature is required to get full support for
hangul script. Without it, the decomposition of precomposed tail-less
syllables in the “ccmp” feature will stand, leaving those syllables looking
poorly designed; and syllables written out as individual jamo will be
approximated with on-the-fly composition even when a precomposed
glyph would be available. In order for the ligature table to operate
correctly, the “ljmo” and “vjmo” features should also be turned on. See
the section on Korean language support for more details of how this

33

feature works.

頭子音の形 Lead Jamo Shaping (ljmo)

This feature only exists in the Jieubsida fonts and should be turned on
by default. It replaces “lead” jamo glyphs (consonants at the starts of
syllables) with contextual variants that depend on the vowel and the
presence or absence of a tail. For more information, see the section
on Korean support.

文字に付け方 Mark to Base Positioning (mark)

This feature only exists in the proportionally spaced fonts; a similar
effect is achieved in monospace fonts via the “calt” feature and zero-
width glyphs. It should be turned on by default. The feature stores
data for OpenType renderers to attach accents to letters, allowing
for combinations of letter and accent that do not have precomposed
glyphs of their own. For instance, U+0071 U+0306 will generate “ q ̆,” a
lowercase q with a breve, which does not correspond to any Unicode
code point and would not otherwise be available.

As of version 0.6, support for this feature is limited. Not every base
letter you might want will necessarily be available; all the most pop-
ular combining diacritical marks exist, but it’s easy to imagine others
you might want that are not included; in many cases (especially when
capital letters are involved) the mark-to-base version of a combined
character ends up looking significantly different from the precom-
posed version; some of the combinations just don’t look very good;
and intended extensions of the scheme to, for instance, allow adding
dakuten to Japanese kana don’t exist yet at all. But many common
cases should be covered.

点に付け方 Mark to Mark Positioning (mkmk)

This feature works in combination with the “mark” feature above, and
it only makes sense to use when “mark” is turned on; like “mark” it is
only available in proportional fonts. It stores data used by OpenType
renderers to add more marks to glyphs that already have some marks;
in particular, this should allow stacking up more than one accent on
the same letter to create many glyphs that would be impossible by

34

other means.

In version 0.6, this feature has been expanded to cover a few more
of the Latin accents than before, allowing the construction of such
characters as x ̈.̌ It is still somewhat experimental, however.

メタデータ Metadata Table (name)

This is not the usual kind of OpenType feature, but it can be turned on
and off through the same build-system interface. By default, the font
will contain a “name” table listing metadata such as creatorship and
licensing, in both English and, as appropriate, one of either Japanese
or Korean. Some of this information is obligatory, so if you turn off
the “name” feature you actually still get a name table, but it will be
less completely populated.

巴の花形 Ornaments (ornm)

Tsukurimashou provides eight tomoe ornaments that look like this:

These glyphs are encoded to the Unicode private-use code points
U+F1731 to U+F1738, and always available that way. If the “ornm”
feature is turned on, then they will also appear as substitutions (not
alternates!) for the ASCII capital letters A through H; so that the text
“A BIG TEST” comes out as “ I TST.” It is likely that the way
this OpenType feature works will change in the future, since it seems
not to be current best practice to implement ornm by substitution
but I’m not quite sure yet what the best practice actually is.

These ornaments look the same in all the fonts; they do not change
from one style to the next.

ＦｏｎｔＦｏｒｇｅだけのメタデータ FontForge-specific Metadata (pfed)

This is not the usual kind of OpenType feature, but it can be turned
on and off through the same build-system interface. When selected, it
causes the build system to add a “pfed” table with a “flog” subtable in
the generated OpenType fonts, containing verbose information about
the installation on which the fonts were built. This table is a FontForge-

35

specific extension of OpenType format; the name “pfed” refers to
PfaEdit, an earlier name of the software that later became FontForge.
Other software will ignore this table; but users with FontForge can
examine the verbose metadata under the “FONTLOG” heading in the
“Font Info...” dialog. The data is also visible as a chunk of plain text
near the end of the file when the OTF file is examined with a general-
purpose file viewer such as “less.” The main interesting content is the
command line that was given to configure, and a dump of most of the
variables known to Make. There’s also a copy of the copyright notice
and URLs for the project home pages, giving in more verbose detail
some of the same information included in the “name” table.

I recommend activating this feature, especially if you will be building
fonts for distribution to others. It may make bug reporting easier,
because it means that anyone who gets a copy of the font also gets
some information on where that font came from; if someone builds
a font and then has trouble with it, it’ll be easier to help if the font
contains this debugging information. It also improves the chances that
should a font file get separated from its context, someone stumbling
upon it will be able to figure out what to do with it. The Net is full
of inaccurately labelled fonts with unknown authorship, often being
sold by shady commercial enterprises that have no legal right to do
so, and we all ought to do what we can to stamp that out. Detailed
human-readable metadata, in general, is a Good Thing.

But the font log contains information like software version numbers,
user account names, and installation directory names. Some people
have funny ideas about the sensitivity of such information in relation
to system security; they may think that revealing it creates a real risk,
not otherwise present, of people breaking into their computers. They
might also think it could be used to trace the origins of anonymously
written PDF files and that forensic investigators don’t have many other
ways to do that.

Such people are wrong. However, my saying so won’t cause them
to change their minds. If I distributed software that attached this
information to generated fonts by default, then someone who didn’t
read the documentation would eventually “discover” it and make a big
fuss about it supposedly being a security hole. Who needs that? The

36

feature is therefore turned off by default. I recommend turning it
on by passing the “--enable-ot-features=all” option to configure. The
default is “--enable-ot-features=all,!pfed,” which enables everything else.

Regardless of the setting chosen, the build system will place the same
information in a file called “fontlog.txt” in the txt/ subdirectory of
the build tree. After doing a build you can read that file to see what
would have been put in the fonts. The option setting just controls
whether or not the fontlog file will be added to the OTFs during the
final packaging step.

スモールキャピタル Small Caps (smcp)

S OT “” . This
feature simply substitutes the 26 lowercase ASCII Latin letters with
alternates that are encoded into the Private Use Area at the code
points formerly used by Adobe for this purpose: U+F761 to U+F77A.
At some point in the future, other glyphs may be added to support
small cap letters other than the 26 ASCII ones, and I may start using
unencoded glyphs rather than mapping them into the PUA.

In monospace fonts, these small caps are about the same height as
most lowercase letters, in order to allow their use as substitutes when
combining accents are applied to uppercase letters. In proportionally
spaced fonts, small caps are a little taller than lowercase letters, but
shorter than ordinary caps.

ヘビーメタルウムラウト Heavy Metal Umlaut (ss01)

With Stylistic Set 1 (OpenType feature “ss01”) turned on, umlaut or
dieresis over the vowels ÄËÏÖÜŸäëïöüÿ and tilde over Ñ and ñ are
replaced by a “heavy metal” umlaut intended for spelling musical names
like “Motrhead,” “Spıal Tap,” and “Mormo Tabrnacle Chor.” The
heavy metal umlaut differs from the regular umlaut in that the dots
are larger and pointier.

Glyphs to support this feature, including a “spacing heavy metal umlaut”
character, are encoded into the private-use area at U+F1740 through
U+F174E.

37

丸つき字 Enclosed Letters and Numerals (ss02)

With Stylistic Set 2 (OpenType feature “ss02”) turned on, the enclosed
characters described by Unicode become available as contextual sub-
stitutions for sequences of (in most cases ASCII) characters:

 (0) → ⓪ through (50) → ㊿

 (A) → Ⓐ through (Z) → Ⓩ

 (a) → ⓐ through (z) → ⓩ

 (ア) → ㋐ through (ン) →

 ((1)) → ⓵ through ((10)) → ⓾

 {0} → ⓿ through {20} → ⓴

 {A} → 🅐 through {Z} → 🅩

 [A] → 🄰 through [Z] → 🅉

 <A> → 🅰 through <Z> → 🆉

The choice of which ranges of numbers and letters to support is
mostly not mine—I just implemented what I found in the Unicode
charts.

Unicode only has code points for the unvoiced versions of the enclosed
katakana (e.g. ㋕㋖㋗ but not enclosed versions of ガギグ), and it has
no code point for enclosed ン. I’ve added , encoded to private-use
code point U+F1711, but not the others. If there’s a demand for other
enclosed characters, though, they are pretty easy to add. I held off
on just defining dozens or hundreds more, because it’s not clear to me
what the typical use of these characters actually is, and a complete
set of enclosed characters might be better seen as a font in itself
rather than a series of special characters inside the font.

Note that for the enclosed katakana the substitution will accept either
ASCII parentheses or wide parentheses (U+FF08 and U+FF09); the
others work with ASCII parentheses only.

38

母音の形 Vowel Jamo Shaping (vjmo)

This feature only exists in the Jieubsida fonts, and should be turned
on by default when it exists. It replaces “vowel” jamo glyphs with
appropriate contextual variations depending on the layout of the syl-
lable. The layout that will be used by “vjmo” is actually chosen during
execution of the “ljmo” feature, which must be applied before “vjmo”
(as required by Microsoft’s specification) for “vjmo” to work properly.
Note that Microsoft also describes, but we don’t use, a similar “tjmo”
feature for reshaping the tail.

私用符号位置を避けて Limit PUA Code Points (xpua)

This is not the usual kind of OpenType feature, but is configured
through the same interface as the others.

For software engineering purposes it is convenient to have a unique
Unicode-like code point for every glyph in the font family. However,
some of those glyphs are not intended to be accessed directly by users,
and more than one of them may correspond to the same Unicode
character in ordinary text. This feature removes the private-use code
points from many such glyphs.

For instance, in Jieubsida there is a glyph named “uni112A” for code
point U+112A, but there is also a glyph named “uni112A.bug” which looks
identical but is referenced in the substitution table in order to work
around a bug in the ICU library used by X ETEX. The uni112A.bug glyph,
as its name implies, is used to typeset the character U+112A, but it is
referred to internally using the code point U+FF72A. That is a code
point in one of the Unicode Private Use Areas (PUAs), which are
special ranges of code points reserved by Unicode for purposes like
this. The U+FF72A code point is the one that could, for instance, be
used to enable or disable the uni112A.bug glyph in the --enable-chars
option to the configure script.

The Tsukurimashou package uses hundreds of these PUA code points.
They are necessary for keeping track of things during the compilation
and assembly of the fonts. However, most of the glyphs with PUA
code points are not intended to be directly accessed through their
code points, only indirectly through glyph substitution. Having an

39

unnecessary PUA mapping in the font for any given glyph may cause
some buggy software to ignore the glyph’s name, resulting, for instance,
in incorrect text when cutting and pasting from a PDF file. Encoding
glyphs to PUA code points could also possibly conflict with other uses
of the same PUA code points by other software. So all in all it is
usually preferable that these glyphs should not have any code point
mappings at all in the finished fonts. On the other hand, removing
their code point mappings means it is no longer possible to access
the glyphs directly by code point; then short of using third-party
software to bypass the mapping tables and access glyphs by raw glyph
numbers, users must use the glyph substitution features instead, which
means both that the glyphs are only available in the contexts where
the substitution features are designed to provide them, and that the
users must have OpenType rendering software that at least sort of
works (which is not necessarily common in the field).

The “xpua” feature allows a configuration choice between these two
situations. With it turned on, which is the default, most of Tsukuri-
mashou’s PUA glyphs will have their code points stripped in a late
stage of font packaging. It is not universal: some glyphs that do not
correspond directly to any Unicode character remain accessible at
PUA code points because that’s relatively harmless and they may be
difficult to invoke in other ways. But glyphs that exist only to support
OpenType features (such as the ones needed for vertical fractions and
Korean syllable layout) end up as unencoded glyphs in the final fonts.
As of version 0.7, the Tsukurimashou PUA-encoded characters that keep
their encodings in the final fonts notwithstanding “xpua” are exactly
the glyphs in the U+F17xx range.

Turning off “xpua” causes every glyph to be encoded at its internal
code point. That was the state of affairs in versions of Tsukurimashou
prior to 0.7, which didn’t offer a choice.

40

付加文字
Extra glyph coverage

げんじもん Genjimon

Glyphs for the 54 Genjimon are encoded to private-use code points
U+F17C1 to U+F17F6, in the order of the corresponding Tale of Genji
chapters (“Kiritsubo” to “Yume no Ukihashi”). The style of these glyphs
varies a fair bit between the different font styles. Here are samples:

 Kaku:

 Maru:

 Anbiruteki:

 Tenshi no Kami:

 Bokukko:

 Mincho:

A set of Genjimon-only fonts, derived from the Tsukurimashou code,
exists as a spin-off project in the genjimon subdirectory of the
Tsukurimashou distribution. The documents there contain some more
information about the history of these symbols and what they signify.

えききょう I Ching

All the I Ching-related characters defined by Unicode in the Basic
Multilingual Plane are supported: trigrams U+2630 to U+2637, mono-
grams U+268A and U+268B, digrams U+268C to U+268F, and hexagrams
U+4DC0 to U+4DFF. These characters are sized to fit in the same box
as kanji, and so in most cases you will probably want to scale them
to a significantly larger point size than that of nearby text. The style
does change somewhat from one font to the next.

There are also some “I Ching dot” combining characters in the private-
use code points U+F1701 to U+F1709, intended to show movement of

41

lines 1 through 6 of hexagrams or 1 through 3 of trigrams, encoded
in that order. The idea is that you can typeset something like this:

䷞→䷯
using a sequence of codes like this:

U+4DDE U+F1702 U+F1704 U+2192 U+4DEF

解字の文字 Ideographic Description Characters

Unicode defines a set of special code points (U+2FF0 to U+2FFB) and
a syntax for using them to describe what Han-script characters look
like. For instance, 「歯」 might be described by the string 「⿱止⿶凵米」,
which expresses that 歯 consists of 止 written above a composite sub-
glyph that itself consists of 凵 wrapped around 米. Unicode’s scheme
for character description appears to have been inherited more or less
unmodified from a similar scheme in the Chinese GBK standard.

Tsukurimashou includes glyphs for the special characters. There is also
support in the build system for a “make eids” target, which generates
a file called tsukurimashou.eids in the txt/ directory. That file is
a collection of Extended Ideographic Description Sequences (EIDSes)
describing the construction of the kanji in the font. This is the
interface to IDSgrep, a program for searching kanji according to
powerful criteria on their visual structure. IDSgrep is available from
the same SourceForge.JP project that hosts Tsukurimashou; see that
package and its documentation for more information on EIDS format
and how to use it.

With or without IDSgrep, Tsukurimashou may be used to typeset the
special characters for the descriptions. The glyphs look like this:
⿰⿱⿲⿳⿴⿵⿶⿷⿸⿹⿺⿻

公のユーログリフ Official Euro Sign

Fonts that include a symbol for the European currency unit (Unicode
U+20AC) usually re-draw it to match the style of the rest of the font,
and the Tsukurimashou fonts are no exceptions. However, there is an
official glyph design that apparently was intended to be normative—
in theory, you’re supposed to use the official glyph, which does not

42

change with the style of the rest of the font, even if it clashes. For
those who want to do so, the official Euro sign is included in the
Tsukurimashou fonts at private-use code point U+F1710.

It looks like this:

43

ハングル語
Korean Language Support

First, please note that in general (with some exceptions) I follow the
practices of Unicode for such things as the names of letters, the name
of the writing system itself, and so on. Naming decisions are thought
by some people to have political implications. It is not my purpose
here to take a position on any issues except technical ones of font
design; but for practical reasons I must settle on some set of names.

The Tsukurimashou project is generally focused on the Japanese lan-
guage; but Korean has some degree of connection to Japanese, the
hangul writing system used for it is technically interesting and su-
perficially appears easy, and for various reasons, I decided to extend
Tsukurimashou to include some support for Korean. The result is
the “Jieubsida” 「지읍시다」 series of fonts. The name is as nearly as
possible a direct translation from Japanese to Korean of the name
“Tsukurimashou” 「作りましょう」. Jieubsida builds from the same code
base as Tsukurimashou, if you select the appropriate options during
configuration.

There are several ways to write Korean in Unicode, and they are
supported to varying degress by Jieubsida:

 Individual jamo from the “hangul compatibility jamo” range of
code points, U+3131 to U+318E.

 Precomposed syllables from the “hangul syllables” range, U+AC00
to U+D7A3.

 Conjoining jamo from the “hangul jamo” range, U+1100 to U+11FF,
and its supplements.

 Hanja (Han Chinese characters) from the “CJK unified ideographs”
range, U+4E00 to U+9FFF, and its supplements.

Hangul is theoretically a purely phonetic alphabet. Letters are called
jamo, and each one is supposed to correspond to exactly one phoneme
of the Korean language. The set of jamo in Unicode and Jieubsida is

44

a little bigger than in the standard present-day Korean language, as a
result of historical changes in the centuries since the writing system
was introduced. The rules for how jamo may be used together have
also become more restrictive.

Words are written divided into syllables, with each syllable arranged
according to certain rules to fit into a square box—much like the
square box used per character in writing Japanese or Chinese, but
with Korean, there are multiple jamo in each box, instead of one kana
or kanji per box, and the question of whether to count each jamo as
a character or each box as a character is the start of the fun.

Every syllable consists of a “lead” containing between one and three
jamo, a “vowel” containing between one and three jamo, and a “tail”
containing between zero and three jamo. There are “consonant” and
“vowel” jamo; the lead and tail consist exclusively of consonant jamo
and the vowel consists exclusively of vowel jamo. Leads, vowels, and
tails are not allowed to be just any combinations of the right number
of the right kind of jamo; there are relatively short lists of possible
leads, vowels, and tails.

In the relatively standardized present-day form of the Korean language,
there are 19 different leads, 21 different vowels, and 28 different tails
(including the empty tail of zero jamo), and only two of these (the
vowels 「ㅙ」 and 「ㅞ」) contain more than two jamo. One of the 19
leads actually corresponds to an empty or silent lead with no sounds
in it, but the empty lead is written using the single jamo 「ㅇ」, which
is not otherwise allowed as the lead; thus the lead is always written
with at least one jamo, and in the relatively standardized present-day
language, at most two. Also, two-jamo leads on the list of 19 always
consist of one jamo repeated twice (not two different ones); some
two-jamo tails contain two different jamo. Combinations of more
than two jamo, and other single and double jamo not on those lists,
occur in archaic contexts, less-popular dialects, and so on; but there
are very many of those longer, or merely other, combinations defined
by Unicode.

コンパチのジャモ Compatibility jamo

45

The “hangul compatibility jamo” range is fully supported by Jieubsida.
It’s easy: one jamo per character box. But it is not done to actually
write the Korean language that way; readers and writers want one
syllable per character box, with the individual jamo changing size and
layout to pack nicely. As a result, the “compatibility jamo” glyphs are
basically only useful in documents like this one, which discuss the
technical details of the writing system.

Hangul compatibility jamo look like 「ㅈㅣㅇㅡㅂㅅㅣㄷㅏ」. Writing words
that way leads to some ambiguity in syllable division, which may be
one reason it never caught on (though the same ambiguity exists in
most Romanization forms).

併合のシラブル Precomposed syllables

The Unicode standard takes the 19 leads, 21 vowels, and 28 tails of
the relatively standardized present-day language and multiplies them
together to get 11172 possible syllables. Each of those syllables has its
own code point in the “hangul syllables” range. A font with a glyph
for each one, or even just a glyph for each of the fraction of them
that actually occurs in present-day relatively standardized Korean, can
be used to write the present-day language with a minimum of fuss.
That’s what most people do; most Korean documents on the Web are
encoded into that range of Unicode; and Jieubsida contains the full
set of glyphs to support it.

The precomposed syllables look like 「지읍시다」.

併合のジャモ Conjoining jamo

If you want to represent Korean syllables that contain leads, vowels,
or tails other than those in the Unicode precomposed syllables, or
if you want to be able to process text at a sub-syllable level (which
might be useful for input methods, among other things), then you may
end up dealing with the “conjoining jamo.” Unicode attempts to have a
code point for every possible lead; one for every possible vowel; and
one for every possible tail, including separate lead and tail code points
in the fairly common case of the same combination of jamo being
allowed as both a lead and a tail. The main sequence of Unicode jamo

46

code points is in U+1100 through U+11FF; then there are “extension”
blocks in U+A960 through U+A97C (extension A, for leads) and U+D7B0
through U+D7FB (extension B, for vowels and tails). As of version
0.6, Jieubsida supports them all, although some rare vowels that pose
visual layout problems (such as U+D7BE 「ힾ」) may not look as good as
you might hope.

You are supposed to be able to write your documents using those
code points, and then magic beyond the scope of Unicode is supposed
to typeset them properly. Unicode defines a “canonical equivalence”
between the precomposed syllables and the conjoining jamo, where
every precomposed syllable can be interchanged with the conjoining
jamo from which it’s made. It is even supposed to be possible to
take a precomposed syllable with no tail, follow it by a tail conjoining
jamo, and have the result convert back into the precomposed syllable
with the tail.

Theoretically, to look right all the jamo in the syllable should be able
to change shape, size, and positioning in response to the other jamo
in the syllable. That’s difficult to implement at the font level.

One simple way to make it work is to sacrifice the layout. Suppose we
split up the character box in a fixed, compromise way, into sections for
the lead, vowel, and tail, and then define the glyphs for those things
so that they will nicely fill their respective areas. Define the leads
and tails to be zero-width characters, with the lead glyphs appearing
to the right of their reference points and the tails to the left; and
define the vowels to be full-width characters. Then if you typeset a
lead, a vowel, and optionally a tail (bearing in mind that every syllable
contains one lead, one vowel, and zero or one tails), with no kerning,
the result is that the parts overlay one another and produce a sort
of okay-looking syllable box. It won’t be great because the spaces
assigned to each jamo don’t change depending on the other jamo in
the character, so that for instance all the leads get shoved over to
the left even when the vowel is something horizontal, because there
could be a vertical vowel and there has to be space reserved for it
on the right in every lead jamo glyph.

Conjoining jamo overlaid in this way look like 「지읍시다」; compare

47

with precomposed 「지읍시다」. It does not look very appealing, espe-
cially because that’s a near-worst-case example where three out of
four syllables have empty tails and the fixed layout cannot stretch
jamo to consume the resulting blank space; but this approach has
the big advantage that it can express syllables full of archaic jamo
combinations, such as 「ᆔᇗᆥᇫ」. Hundreds of thousands of syllables can
be constructed that way, far exceeding any reasonable set of precom-
posed glyphs.

There are two layers of additional processing in place to improve the
typesetting of conjoining jamo. First, OpenType substitution rules in
the “ljmo” and “vjmo” features, which should be turned on by default
(but must be activated manually in current X ETEX), recognize cases
where a different layout would be better. The precomposed jamo
vary the entire layout of each syllable depending on all the jamo
in the syllable, so that any given jamo might appear in hundreds
of subtly different sizes and locations. It is not practical to store
all those variations of every jamo as individual glyphs, but Jieubsida
compromises by recognizing six different standardized layouts for a
syllable, depending on the shape of the vowel and the presence or
absence of a nonempty tail.

..

L

.

V

.

T

.

L

.

V

.

T

.

L

.

V

.

T

.

L

.

V

.

L

.

V

.

L

. V.

layout 0

.

layout 1

.

layout 2

.
layout 3

.
layout 4

.
layout 5

The default forms of all the conjoining jamo, which appear if the
substitution features are turned off, are the layout 0 forms. Some
vowel jamo extend in both the vertical and horizontal directions, but in
practice the most often-used ones are only vertical or only horizontal,
and such vowels can be reused for layouts 1 and 2; presence of the
relevant vowel is what triggers the switch to the other layout for

48

the lead and tail. In addition to the layout 0/1/2 forms, each vowel
jamo has an alternate form for tail-less syllables. Lead jamo have four
alternate forms in addition to layout 0, since the forms for layouts
1 and 3 are identical and can share a glyph. An additional copy of
the layout 0 leads also exists, as part of the workaround for a bug
in X ETEX’s handling of GSUB substitutions. Tail jamo do not need
alternate forms, because they only appear in layouts 0, 1, and 2, and
have the same space allocation in all three layouts. All these extra
glyphs are coded into the private use Unicode code points between
U+FF200 and U+FF7FF, and can dangerously be turned off with the
configuration code point controls, but it is not intended that they
actually be accessed through the private-use code points; instead, the
OpenType substitutions will put them in in place of the layout 0 forms
from U+1100 through U+11FF and its supplements, where necessary.

With the alternate forms chosen by the substitution rules, but no
precomposed syllables, the font family name is rendered as 「ᅳᆸ」.
Note that is almost identical to the precomposed-syllable version,
「지읍시다」. There are some minor differences in the size and spacing of
the jamo, because the glyph-overlay approach basically makes kerning
impossible, and the six canned layouts still do not quite match the
per-syllable customized layouts of the precomposed syllables.

The last layer of processing consists of ligature rules in the Open-
Type “liga” feature, turned on by default, which recognize jamo se-
quences that correspond to the precomposed syllables and substitute
precomposed glyphs wherever possible. In order to work properly (in
particular, for correct recognition of tail-less syllables) the alternate-
layout substitutions must have already run before these ones. With
the ligature substitutions in effect, actually entering the conjoining
jamo for the standardized present-day Korean language will give the
same result as using the precomposed code points. The family name
entered this way appears as 「지읍시다」, which should be both visually
and logically (same glyph sequence) identical to 「지읍시다」.

Also worth mentioning is the “ccmp” feature, which is supposed to run
before all others. It splits precomposed syllables that have no tails into
their component lead and vowel jamo code points, and joins consecutive
conjoining jamo into clusters, where possible. If you are not doing

49

anything weird with Unicode canonical equivalence, this is unlikely to
have much effect; the split precomposed syllables will be recombined
by “liga,” and you won’t have any clusterable conjoining jamo in the
input anyway. However, this level of processing is needed (with the
others) in order to do some of the strange things that the Unicode
Consortium in its wisdom thinks you want to do, such as putting
conjoining tail 「ㅁ」 after precomposed 「기」 and expecting it to turn
into precomposed 「김」. I’m told that not many fonts actually support
that. Jieubsida does! However, I cannot promise that absolutely every
weird Unicode thing will work. Most of them should.

The big win is that with all the substitution features enabled it is
possible to mix common conjoining jamo, rare conjoining jamo, and
precomposed syllable code points, and the result will be the best that
is reasonably possible, automatically invoking precomposed syllables
where possible and best-fit alternates otherwise. Here is a nonsense
example demonstrating all the different layouts: 「ᅿᇭ지읍ᅵᇹ시ᆇᇔ다」

ハンジャ Hanja

The above discussion applies to the hangul phonetic script. Korean
has traditionally also been written with Han characters (called “hanja”
in Korean), and they are still used a little bit, in combination with
the phonetic script—somewhat like the use of kanji in Japanese, but
with the important difference that it is considered acceptable to write
present-day Korean entirely in hangul without any hanja, whereas kanji
are a necessity for present-day Japanese. The best information I have
is that most Korean people today are actually able to read few to
no hanja, but they remain in use as abbreviations in contexts like
corporate names and newspaper headlines where exact comprehension
is not terribly important.

The trouble is that Han characters as used in Japanese, Han characters
as used in Korean, and Han characters as used in other languages that
might use them (such as Vietnamese and various dialects of Chinese)
are all incompatibly different despite being “unified” to overlapping
subsets of the same Unicode code point range. For instance, the char-
acter 「神」 meaning “god” is written as shown, in present-day standard
Japanese, and is very similar to that in both “simplified” and “tra-

50

ditional” Chinese. The equivalent hanja character (at the same code
point, U+795E) has a left-side radical that looks like 示 instead of 礻.
In fact, I’ve seen the Korean form of this character in some archaic
and ceremonial contexts in Japan, so the switch to the newer form in
Japanese was probably quite recent; but if you write the present-day
Japanese form where you should write the Korean form, it will look
wrong.

The current versions of the Jieubsida/Tsukurimashou fonts address
this issue by simply not supporting hanja at all.

Supporting hanja would mean going through the entire set of kanji,
finding all the differences, and creating separate versions to be the
hanja or parameterizing the differences or otherwise dealing with
them all, and that is beyond the current planned scope of the project.
So is supporting Korean in the first place, actually; I don’t speak it,
hangul got added because it seemed interesting, it was likely to be
a relatively large payoff for a relatively small amount of work, and
(as has been demonstrated by experience with, among other things,
FontForge hinting bugs) it provided a good testbed for some techniques
that will later be applied to the Japanese side of the project.

It’s easy to imagine that someone could build a font containing both
the kanji glyphs from Tsukurimashou and the hangul glyphs from
Jieubsida, and then try to use it to write hanja. I hope you will
not attempt that, and the Tsukurimashou build system is designed
not to build such fonts. There are too many fonts like that on the
Net already as a result of people’s attempts to build fonts for “all
of Unicode” without really understanding the consequences of what
they’re doing. Obviously, in an open source system I can’t stop people
from creating such chimeras for their own use, but I don’t want
someone to create a Korean-language document with Japanese fake
hanja in it, be asked “What is that horrible font you’re using that
gets the hanja shapes wrong?” and have them say “It’s Jieubsiuda by
Matthew Skala!” Please, if you’re going to set kanji next to hangul and
call them hanja, try to make clear to people who see the results that
it was your idea to do that and not mine.

51

フォントの名前ついて
Regarding Font Names

First, I will use the term “font” to refer to an OTF or similar file
with a complete glyph set (or as many glyphs as have been selected
with configure). This will generally be a few thousand glyphs for the
Tsukurimashou family and about 13 thousand for the Jieubsida family.
Because METATYPE1 is limited to producing Postscript font files with at
most 256 glyphs each, the system builds “subfonts” each corresponding
to a “page” of the Unicode character set—that is, an aligned 256-code-
point block. For instance, the range U+0000 to U+00FF is the page
containing ASCII and Latin-1 characters.

The division into pages provides some advantages for the build system:
when something is changed on one page it may be possible to avoid
re-compiling the others, and if there are many pages to be compiled
then they can be compiled simultaneously on a multi-core computer.
So we would probably choose to keep this design feature even if some
future version of the system were no longer bound by the Postscript
8-bit limit that originally made it necessary.

The most authoritative form of the name of a font is the “Hamlog
name,” which is an ordered quadruple of Hamlog atoms. (The Hamlog
language is described elsewhere in this document.) Hamlog names
are manipulated by, for instance, the code in select.hl. The items in
the quadruple are called the family, the style, the weight, and the
spacing. An example Hamlog name might be “(tsukurimashou, bokukko,
demibold, monospace).”

The family represents the broad category of the font. Generally,
all fonts sharing the same family value will have basically the same
glyph set and the same overall shapes for all glyphs, though the visual
style of the strokes will vary. If there are significant differences in
shapes or glyph sets, they will be put in a separate family. At present
the supported values for the family are “tsukurimashou,” “tsuita,” and
“jieubsida,” though there is also some experimental (less than alpha
status) code for a family to be called “blackletter_lolita.”

The possible values for style will depend on the family. Styles generally

52

correspond to sets of preset values for the adjustable parameters of
a family’s letter-drawing code. The style values currently allowed, per
family, are as follows. Style names marked with an asterisk are not
allowed as part of the basic Hamlog name but may be introduced via
rewriting, as explained below.

tsukurimashou kaku, maru, mincho, bokukko, anbiruteki∗, tenshinokami∗.

tsuita soku, atama.

jieubsida dodum, batang, sunmoon.

blackletter_lolita cosette.

The weight may be “extralight,” “light,” “normal,” “demibold,” “bold,” or
“extrabold.” The spacing may be “monospace” or “proportional.”

The Hamlog name may be subject to rewriting according to rules in
the select.hl file, specifically the “do_style_xlat/8” predicate. These
rules support a few style/weight combinations that have been given
unique style names of their own, both because that’s fun and as a
legacy of earlier versions in which the weight parameter was not
fully implemented. This code is also meant to support future per-
language localization of name components like “demibold,” in particular
so that Korean fonts won’t end up with Japanese in their names, though
that aspect is not yet fully implemented. At present, there are just
two rewriting rules:

 (tsukurimashou, maru, extralight, X) is rewritten to (tsukuri-
mashou, tenshinokami, normal, X).

 (tsukurimashou, maru, extrabold, X) is rewritten to (tsukuri-
mashou, anbiruteki, normal, X).

The Hamlog name is translated into a few other kinds of names, by
a combination of Hamlog code in select.hl and Perl code embedded
in Makefile.am. One important translated name is the “short name,”
which is a sequence of two, three, or four short ASCII tokens, which

53

in different parts of the code may be separated by either hyphens or
underscores. An example short name is “tsuku-mi-ps,” corresponding
to the Hamlog name “(tsukurimashou, mincho, normal, proportional).”
Each element in the Hamlog name is translated into a token for
the short name, according to the table given by the short_name/2
predicate in select.hl, but some Hamlog atoms (namely “normal” and
“monospace”) translate to the special value “l___da” (for “lambda,”
meaning empty string; triple underscore marks it as requiring special
handling in the Perl wrapper) and are removed, often leaving fewer
than four tokens in the result. Short names are always derived from
the Hamlog name before rewriting.

Subfonts also have short names of their own, formed by adding an
extra token at the end which is the two- or three-digit hexadecimal
representation of the page number. For instance, “tsuku-mi-ps-00”
would be the short name of the subfont covering U+0000 to U+00FF
of “tsuku-mi-ps”. These names are often used in constructing filenames
for intermediate files during build.

Anyone contemplating modification of this system should be aware
that short-name tokens other than page numbers must not be valid
hexadecimal digit sequences that could be mistaken for page numbers;
the build system needs to be able to distinguish subfont and full-font
short names from each other by testing for a hexadecimal number
as the last token. To prevent terms like “extra bold” and “demibold”
from abbreviating to valid hexadecimal numbers, terms derived from
the word “bold” are abbreviated as if it were spelled “qold” or “bqld.”

Fragments of short names are also used to name source code files.
Files that follow this scheme (not all source files do) have names
consisting of one family token, a hyphen, and one other token, followed
by the appropriate extension. Building a subfont involves creating a
temporary driver file that includes all the relevant source files for that
font’s short name. For instance, to build “tsuku-mi-ps-00.pfb” the build
system would create and execute a driver file that loads “tsuku-mi.mp,”
“tsuku-ps.mp,” and “tsuku-00.mp,” in that order. Some of those files
might themselves load other files outside this naming scheme. Almost
all file inclusion is done via conditionals in METAFONT to prevent any
file from being included more than once, but double inclusion should

54

also be both avoided by design and usually harmless should it occur
by accident. The file inclusion macros in preintro.mp also support
a queue of “late” includes, which will be processed after the others
to allow (for instance) code associated with a style to override code
associated with a weight.

In the case of the family short name token not being “tsuku,” the build
system will use source files that match the subfont’s family token
where those exist, and default to “tsuku” when such files don’t exist.
For instance, to build “bll-co-01.pfb” (Blackletter Lolita Cosette, page
01) it might load “bll-co.mp” (which exists), but then load “tsuku-01.mp”
because “bll-01.mp” doesn’t exist. Thus, the “tsukurimashou” family can
be thought of as a generic ancestor from which any others inherit.

Fonts also have “long names,” which are created by a similar transla-
tion process. Long names are always derived from the Hamlog name
after rewriting. Long names are generally mixed-case ASCII, and
the elements are separated by spaces and may also contain internal
spaces. As with short names, normal weight and monospace translate
to nothing and are removed when forming the long name. An ex-
ample long name might be “Tsukurimashou Tenshi no Kami PS”; note
that that would correspond to the short name “tsuku-mg-el-ps” (as if
“Tsukurimashou Maru Extra Light PS”) because of rewriting. There
are also some places, notably in the filenames of final OTF fonts,
where a long name is used with all the spaces and hyphens removed.

There are also “JK names,” which are constructed just like long names
but with elements written in Japanese or Korean, and thus generally
in non-ASCII Unicode characters. For Jieubsida fonts these should be
in Korean (but the occasional Japanese or English word may appear
because of a yet-unimplemented translation feature) and have spaces
between the elements; otherwise JK names are in Japanese and have no
spaces. The main use of JK names is for populating the font metadata
tables. An example Japanese name might be 「作りましょう天使の髪ＰＳ」,
corresponding to “Tsukurimashou Tenshi no Kami PS.”

Since there is some information loss in transliteration to English, and
many of the names come from Japanese and Korean words anyway,
it may be best to think of the JK name as the truest name of the

55

font for human purposes, even though from the code’s perspective the
unrewritten Hamlog name is the true name of the font and all others
are derived from it. The source of the translation table for JK names
is in txt/jnames.txt, which is processed by Perl to change the UTF-8
into a hexadecimal form that Hamlog can handle, the result going into
hamlog/jnames.hl.

56

『作りましょう』を作りましょう！
Building Tsukurimashou

Please note that if you just unpack the Tsukurimashou distribution and
look in the “otf” subdirectory, you will find some ready-made font
files there. If you are content with them, then those are the only
files you need; you can safely delete everything else in the package
(maybe save the PDF documentation files, if you want) and ignore
this section. These notes on building Tsukurimashou are only for
expert users who want the greater control, wider style coverage, and
intellectual challenge of doing custom compilation.

Assuming you wish to embark on the adventure of compiling Tsukuri-
mashou, you will need at least the following:

 A reasonably standard Unix command-line environment. I use
Slackware Linux. Anything branded as “Unix” should work. Ma-
cOS X might work. Windows with Cygwin might work.

 A standard C-language tool-chain (normally comes included with
Linux).

 Perl.

 GNU Make 3.82 or later (non-GNU versions will not work; earlier
versions will not work).

 Metapost (this comes with most TEX/LATEX installations)

 A version of FontForge that actually works.

Other things that might also be useful include:

 X ELATEX (needed for compiling the documentation).

 Expect (makes the build system work better—exactly why is
explained in more detail in the warning message you will get if
you don’t have it).

57

 The KANJIDIC2 database (needed for the kanji coverage chart
and a planned future fine-grained character subset selection
feature).

 A supported Prolog interpreter (not necessary, but if one is
available then the build system will use it and run more effi-
ciently).

 A multi-CPU computer (the build system will by default detect
and use all your CPUs; since some stages of compilation require
a lot of processing, it’s nice to have several).

 A checksum program, preferably sha256sum (used for some sub-
tle build-system optimizations).

If you have a current version of TEXLive, then you probably have
Metapost and X ELATEX already. Note that it does have to be fairly
up-to-date. Tsukurimashou now bundles its own version of the public
domain METATYPE1 code, so the dependency of previous versions on
the mtype13 distribution of that has been removed from the list.
In preparing METATYPE1 code for bundling I discovered a previously
unknown dependency of previous versions on the t1asm package from
t1utils; that has now been bundled as well.

I mentioned a requirement for a version of FontForge “that actually
works.” FontForge is plagued by many bugs and numerical instabilities
in its spline geometry code, and stock, distributed “stable” versions tend
to hang and/or segfault when they are used to compile Tsukurimashou.
As of March 2013, the mainline development version distributed as
source seems to work well. However, a really full build of all weights
of all styles involves tens of thousands of invocations of FontForge
and is likely to cause at least one or two segfaults or infinite loops
with any widely-available precompiled binary package.

There is also an issue relating to the syntax of the AddExtrema()
command in the FontForge native scripting language; until recently,
no version of FontForge was capable of generating (under native-script
control) extrema that would pass FontForge’s own validation checks,
and so “make check” would almost always fail despite the fonts being

58

in fairly clean condition. A patch I merged into FontForge’s GitHub
repository1 on September 30, 2012 adds an optional argument to Ad-
dExtrema() to get around this issue, and the Tsukurimashou build
system will check for an appropriately modified version of FontForge
and use it if possible, otherwise generating a warning during configu-
ration. As of this writing, I think the only way to get a fully patched
version of FontForge is to check it out of GitHub.

In the recent past there’ve been bugs relevant to Tsukurimashou fixed
in the interface to FreeType for rasterization; spline geometry; and
hinting. I can’t promise that using the latest patched version will
be enough to keep FontForge from crashing; what I do myself is
go in with gdb after each sufficiently annoying crash, find the line
that is segfaulting, and try to fix it. I’m not sure that I have
reported or recorded all the changes I’ve made as a result of this
procedure. Because of all this, Tsukurimashou’s configure script will
check that your FontForge has been compiled with debugging symbols,
and generate a warning message if not. You can either get a debuggable
version, or disable the message if you feel like living dangerously.

1I never asked for write access, but this is what they do to people who complain.

59

ビルドのシステム Build System

The build system is based on GNU Autotools and should be reasonably
familiar to anyone who has compiled popular free software before. Run
“./configure --help” for a description of available configuration options;
run “./configure” possibly with other options as described in the help
message to set up the system the way you want it; then once it is
configured to your liking, run “make” to build it. The completed font
files end up in a directory called “otf” in the distribution tree. A
few ready-made ones should be there already when you unpack the
distribution, for the benefit of the probable majority of users who
can’t do their own compilation.

If you run “make install” it will attempt to install the fonts and
documentation files in sensible locations, but it’s not really customary
for fonts to be installed like other software, and you may be better
off simply taking the compiled files from the otf directory and doing
with them whatever you would normally do with fonts instead of
using the automated install. At this time there is no TEX-specific font
installation support, though that might be a nice feature for me to
build in the future. The install target uses the “--prefix” and similar
options to configure in a reasonably obvious and standard way.

If you have KANJIDIC2, place it (in the gzipped XML form in which
it is distributed) in the build directory, the doc subdirectory off
of the build directory, your system’s dict or share/dict directories,
possibly under /usr or /usr/local or your configured installation pre-
fix, or your home directory or “~/dict”; or put it somewhere else
and tell configure where with the “--with-kanjidic2” option. Although
what’s used by Tsukurimashou is factual information not subject to
copyright, and KANJIDIC2 (which also includes creative content that
might be subject to copyright) is distributed freely, it is not dis-
tributed under a GPL-compatible license and so for greater certainty
I’m avoiding including KANJIDIC2 or any data extracted from it in
the Tsukurimashou distribution. What you get if you have KANJIDIC2
is any features that depend on knowing the grade levels and similar
properties of kanji characters—such as the chart showing how much
of each grade has been covered, which is important for my own de-
velopment efforts in planning what to design next and knowing when

60

to release.

The build system for Tsukurimashou is fairly elaborate; it may seem
like overkill, but given that I expect to run this myself several times
a day for at least a couple years, it’s important that it should be
pleasant for me and efficient in time consumption. Thus it defaults
to “silent” build rules, uses pretty ANSI colours, and does a bunch
of complicated checks on whether file contents (not just modification
times) have changed in order to avoid expensive dependency rebuilds
unless those are really needed, while triggering them automatically
when I add new source files.

One important tip is that if things are failing, you can add “V=1”
to the “make” command line, as in “make V=1 pfbtmp/tsuku-kg-00.pfb”
to temporarily disable the silent build rules and see what’s going on.
Note no hyphen, because this is a variable setting instead of an option,
and you will probably also want to specify a target filename, which
implicitly overrides the default “-j” multi-CPU option. In version 0.6,
Expect was rendered less necessary by the replacement of mtype13
with a homegrown and less chatty Perl script; but the support remains
in place to handle TEX’s lesser jubilations.

You can also add “KEEPTMP=1” to prevent deletion of the temporary
directories created while running Metapost. This feature is primarily
useful for debugging the pfb-generating scripts themselves.

Several options to configure share a common argument syntax under
which you can specify a comma-separated list of commands to include
and exclude subsets of things. This syntax is actually translated
into Hamlog code and evaluated by the logic-programming system
during build. It may be easier to understand by example than to
explain rigorously, but here is an attempt at a precise explanation: a
specification consists of a sequence of commands separated by commas
or spaces. Each command either adds or subtracts some subset of the
things being configured, to or from the currently selected subset which
is initially empty. A command consists of one or more alphanumeric
tags representing subsets, separated (if more than one) by ampersands
or colons, which mean “AND,” and optionally prefixed by plus, minus,
or exclamation point. If the prefix is “-” or “!” then the AND of all

61

the tags will be subtracted from the current selection; otherwise it
will be added. The allowed values of the tags depend on which option
we are considering, but typically include “all” and “none.”

For example, the specification “mushroom&purple” would select purple
mushrooms. The specification “fungi,-mushroom&purple” would select
all fungi that are not purple mushrooms. The specification “mushroom,-
red,tomato” would select all mushrooms that are not red as well as
all tomatoes including red tomatoes; tags are evaluated left to right
and each one overrides the results of all previous tags.

The “--enable-chars” option uses the above syntax to describe which
characters (Unicode code points extended by internal private-use al-
locations for some unencoded glyphs) should be included in the fonts.
The default is “all,” meaning all characters defined in the source code
will be included in the fonts. Other tags currently supported are
“none,” “ascii,” “latin1,” “mes1,” and families of tags named like “page12,”
“uni1234,” and “u123ab,” with lowercase hexadecimal digits, which corre-
spond to 256-character blocks of Unicode code points and to individual
code points. For example, the specifier “all,-page02” would include ev-
ery character it can except none in the range U+0200–U+02FF; the
specifier “uni0041” would create very small fonts containing only the
uppercase A from the ASCII range. The default is “all.” It is planned
that in some future version this option should also be able to use
KANJIDIC2 data to allow selection of kanji characters by criteria like
school grade level, and some support for that exists already, but it
probably doesn’t work yet.

The “--enable-ot-features” option works the same way for OpenType
features; note that OpenType features may also be automatically and
silently disabled in whole or in part, overriding this setting, if you
have used the previous setting to disable characters necessary to
implement the features. For instance, you can’t have OpenType con-
textual substitution support of fractions or enclosed numerals if you
have disabled the numeral characters—though you can build a font
with enclosed and not regular numeric glyphs, because glyphs are
mostly independent of each other.2 This automatic disabling may not

2Mostly. In the case of white-on-black reversed glyphs and some fractions precomposed by
FontForge instead of by METATYPE1, you must include all the parts that FontForge will assemble

62

be perfectly clean, either; in some cases disabling a character might
not disable the feature code that mentions it, and in that case Font-
Forge may create an empty glyph for the character even though you
disabled it. That shouldn’t happen unless you attempt something very
unusual and non-standard, however. Currently supported tags are “all,”
“none,” and a four-character tag corresponding to the OpenType name
of each feature that exists, and a few that don’t. See Section for a
detailed list.

The “--enable-styles” option allows similar selection of type styles, For
instance, “tsuku&kg,-el” would enable all Tsukurimashou Kaku fonts, in
all weights and both monospace and proportional, except no “Extra
Light” fonts. The atomic tokens for this selection include the standard
“all” and “none,” and the short name tokens and Hamlog atoms for all
the families, styles, weights, and spacings currently supported. See
Section for more about the naming of fonts, and note that these
are the pre-rewriting names, so that for instance Anbiruteki might be
selected via “tsuku&mg&eq.”

The “--enable-parasites” option allows this kind of include/exclude se-
lection for parasite packages (see next subsection). The supported
tokens are “all,” “none,” and the names of the parasites, currently
“beikaitoru,” “genjimon,” “idsgrep,” and “ocr.” The default is “none.”

The “make dist” target defaults to building a ZIP file only, instead
of GNU’s recommended tar-gzip. This decision was made in order
to be friendlier to Windows users, who tend to have seizures when
confronted with other archive formats, and TEX users, who are ac-
customed to ZIP as well. However, the makefiles should also support
many other formats via “make dist-gzip” and similar.

I am not confident that “make dist” will really include everything it
should if you have disabled optional features with the above options
to configure. Please “make me one with everything,” as the Bud-
dhist master said at the hamburger stand, before trying to build a
distribution.

in order to get the combined glyph made by assembling those parts. This is a sufficiently arcane
scenario that the build system will not check for it.

63

The “make clean” target and its variations should make things pretty
clean, now that we’re attempting to make the system pass “make
distcheck” before each release. Use them with caution, however.

There is a “make check” target, which will run FontForge’s fontlint
program on all the OTF files. This is a very stringent test and it’s
quite likely that fonts will fail despite really being in pretty good
shape; fontlint flags a lot of things that I am not convinced are
actually errors at all; so if you run it and get nothing but complaints,
don’t panic. At the very least, you will need a FontForge with my all-
extrema patch (discussed in the previous section) to have much hope
of building fonts that can pass fontlint. Running “make check” at the
top will also recursively run “make check” on any parasite packages that
have been enabled, and the parasite package test suites (in particular,
the one for IDSgrep) may be of more practical use than the main
Tsukurimashou fontlint tests.

If you try to do “make distcheck,” it will fail if any of the tests fail;
and the tests probably will fail because of the bugs in FontForge spline
geometry. A workaround, used in my Tsukurimashou 0.8 distribution
packages, is to override the options for fontlint.pe as follows:

make DISTCHECK_CONFIGURE_FLAGS=’FONTLINT_FLAGS=”-w 2,3,5,23”’ distcheck

The DISTCHECK_CONFIGURE_FLAGS variable specifies additional flags (ac-
tually a command-line fragment) that “make distcheck” will pass to
“configure.” Then inside that, the FONTLINT_FLAGS variable specifies flags
to pass to the font integrity checker. The codes 2, 3, 5, and 23 are
the errors that I wasn’t able to correct with the version of FontForge
installed on my development system as of the time of the release.

Don’t bother with “--disable-dependency-tracking”; that is an Autotools
thing meant for much larger and more softwary packages. It applies
only to code in languages supported by Autotools, which at present
means only the C kerning program whose dependency is trivial. The
dependency tracking for METATYPE1 code is completely separate, un-
affected by this option, and trying to disable it would be a bad idea.

Autotools encourages the use of a separate build directory, with the

64

sources remaining inviolate elsewhere, but that is not really recom-
mended for Tsukurimashou. I try to make it pass “make dist-check”
right before each release, which implies making separate build directo-
ries work, but if you are building Tsukurimashou from a checked-out
SVN version, it may or may not work. It’s safer to build right in the
main directory. Even if VPATH builds work, they are only intended for
the case of having an untouched set of sources in one directory and
a build in another. If you try to do the overlay thing, with modified
versions of some source files in your build directory, it is unlikely
to work, because of the large amount of bolted-on filename and path
logic that doesn’t go through GNU Make for name resolution.

If you look in the source of the build system, specifically files like
configure.ac, you’ll see that I did a whole lot of work ripping out sec-
tions of Autotools that were designed for installations of executable
software. GNU standards require the definition of a ridiculous number
of different installation directories, almost none of which are appli-
cable to a package of this type, and I took out most of the support
for those to reduce the cognitive load for users who would otherwise
have to think about their inapplicability. This package doesn’t install
any executables, libraries, C header files, or similar, at all. (Although
some of the parasites may...) Cross-compilation and executable name
munging were removed for the same reason; some C programs are
compiled for kerning and Type 1 opcode assembly, but these are only
meant to run on the host system during build, with all the installable
files being architecture-independent. The hacking I did on Autotools
means that if you modify the build system such that you would be
re-running Autotools, it’s likely to break unless your version of Au-
totools is close to the 2.65 version I used. The configure script will
try to detect such a situation and warn you.

The design of this build system was influenced by Peter Miller’s in-
teresting article “Recursive Make Considered Harmful,” available at
http://miller.emu.id.au/pmiller/books/rmch/. The fonts as such are all
built from a single large Makefile. However, in the current version
there is also some use of recursive Make and recursive Autotools to
support the parasite packages (next section), should those be enabled
(by default, they are not). Some notes on the design of the build

65

http://miller.emu.id.au/pmiller/books/rmch/

(prior to the introduction of parasites) are in my Web log article
at http://ansuz.sooke.bc.ca/entry/226. I will probably write a similar
article about the parasite mechanism at some point in the future.

寄生パッケージ Parasite packages

Some of the technology developed to support Tsukurimashou has
more general applicability. For instance, the stripped-down version
of METATYPE1 bundled with Tsukruimashou may be useful for other
fonts that build from METAFONT-language source files to produce
modern vector file formats. It would be nice to be able to manage
these kinds of associated packages in a way that maintains their link
to Tsukurimashou—so that for instance updates in the shared code will
propagate to all packages that use it—but nonetheless allows the other
packages to be distributed as separate entities to users who don’t
want a copy of the entire Tsukurimashou system. There are relevant
side issues, too, such as a hope for attention directed at one package
to attract interest to other packages.

One possible approach might be to attempt to factor out code that
will be shared into some kind of “Tsukurimashou library” package that
could then be distributed separately and made a dependency of all
the other packages that use it. A problem with doing that is that
which code is or isn’t shared will vary a lot due to the wide range of
different packages that might want to share some part of the system.
Instead, the approach taken as of Tsukurimashou 0.7 is to introduce
what I call “parasite packages.” These are sub-packages for Autotools
purposes.

Each parasite appears in its own subdirectory of the full Tsukuri-
mashou Project distribution tree or SVN checkout. By default, they
are distributed in distribution packages of the full project, but not
built by a top-level build. They can be activated using the --enable-
parasites option to the top-level configure script, but each one in its
own subdirectory is also a potentially standalone Autotools package,
with its own configure script and capable of building a standalone
distribution of itself with the “make dist” target. Parasites will gen-
erally look for a Tsukrimashou Project build in the parent directory
and connect to it if one is found.

66

http://ansuz.sooke.bc.ca/entry/226

The current parasites are Beikaitoru, Genjimon, IDSgrep, Kleknev, and
OCR. Each of these has its own detailed documentation, which see;
the notes here are just a summary to give some idea of what the
packages are all about. Most of these existed in some form prior
to the introduction of the parasite build mechanism, and in some
cases vestiges still exist of their old, less systematic, ways of con-
necting to Tsukurimashou. In the future, the connections will be more
streamlined and normalized.

Note that parasite packages generally have their own version num-
bers which are not necessarily synchronized to specific Tsukurimashou
releases; in some cases a Tsukurimashou release will contain a pre-
release or even a broken version of a parasite. But it should usually
be reasonably safe to mix and match parasites and Tsukurimashou
versions of reasonably similar vintage. Parasite packages may also
have their own license terms, but must always have license terms
that allow them to be distributed within the GPL3 top-level project
distribution.

Beikaitoru A modern revival of the historic plotter fonts “digitalized”
[sic] by A. V. Hershey of the U. S. Naval Weapons Laboratory
during the 1960s, and subsequently distributed by the U. S. Na-
tional Bureau of Standards and on Usenet. This version includes
the Japanese character range omitted from most other revivals.
GPLv3 with font embedding exception.

Genjimon A set of standalone fonts for the Genjimon symbols, which
in the main Tsukurimashou fonts occupy the private-use code
points U+F17C1 to U+F17F6. In the standalone fonts, they are
mapped into the ASCII range for easier access. GPLv3 with font
embedding exception.

IDSgrep A program for searching databases of tree structures stored
in “extended ideographic description sequence” (EIDS) format.
This is intended for searching kanji databases according to spa-
tial structure using a powerful query syntax inspired by regular
expressions. The need for such queries came up during Tsukuri-
mashou development, but the package may well be useful in other

67

contexts as well. Includes code to interface to several different
character dictionaries, including structural data extracted from
Tsukruimashou. GPLv3.

Kleknev A coarse-grained profiler for build systems, such as the
Tsukurimashou build. This is still rather experimental. It ba-
sically consists of a wrapper program that Make can invoke
instead of /bin/sh, which will (when told to do so by a special
environment variable) collect a bunch of performance informa-
tion that can be analysed by a separate reporting program to
provide some insight into where all the time goes during a long
build. See my Web log article at

OCR Freely usable vector versions of the standard OCR A and OCR
B fonts, based on the work of Tor Lillqvist, Richard B. Wales,
and Norbert Schwarz. License terms vary, but the fonts should
all be freely usable.

ツールの文書化 Tool documentation

There are a number of scripts included in the tools/ subdirectory.
Most of these are intended only to be invoked automatically by the
build system, but two intended to be invoked by hand are described
below.

 autodep: automatically maintain the header inclusion lines in
METAFONT files, so that each file will include the files that
define macros it uses, and only those. Files intended for use
with autodep should include a comment line consisting of the
case-sensitive text “% AUTODEPS” and any automatically-maintained
input lines following that, terminating with a blank line. When
the tool is invoked with the command line “tools/autodep mp/
mp/*.mp” from the root of the source tree, it will scan all the
METAFONT-language sources, find definitions of macros, and
where necessary rewrite the blocks of includes tagged with the
special comment line in order to ensure that every file includes
the definitions of all needed macros. There are a number of
exceptions and special cases included to make it do the right

68

thing with macros defined in multiple places as a result of style
overrides, and so on.

 udcpyright: check that all years in which a file was modified are
included in its copyright notice. This assumes one has an SVN
checkout in the current directory—intended to be a checkout
from my private SVN repository, but it would probably work
with one from the SourceForge repository as well. It scans all
SVN-controlled files for anything that looks like the project’s
standard copyright notice, and then reports on any files for
which the set of years mentioned in the notice does not match
the set of years in which SVN has log entries for that file. The
idea is that once a modified version of the file has been checked
into SVN in a given year, it has been “published” in that year
and the year should be mentioned in the copyright notice; but
when a new year comes we don’t want to just go through and
modify all files solely to insert another year in the copyright
notice. By running this every so often, and manually updating
the notices when appropriate, the hundreds of copyright notices
in the project should painlessly converge on correctly reflecting
the years in which files were actually changed.

For completeness, here is a summary of the functions of all the other
scripts in the tools/ subdirectory. Most of them are written in Perl.

 add-flog: attach the “font log” file to a FontForge SFD-format
font; this requires re-encoding it to UTF-7 format.

 livecode: chase file inclusions and determine all the “live” (that
is, actually invoked) macro definitions in a list of METAFONT-
language files. The output of this is not (because lines may
appear in the wrong order) actually valid code one could run;
but the output of livecode is intended to have the property that
its checksum will almost always change when changes in the in-
put necessitate recompilation, and will seldom change otherwise.
Therefore the build system can use the checksum of livecode’s
output for fine-grained change detection, to skip recompiling
some files that (under GNU Make’s timestamp-based scheme)

69

would otherwise appear to require recompilation. As a special
feature, intended for maintainer use only, livecode also supports
a “find dead code” mode. If its first command-line argument
is “-d,” then instead of its usual output, it will print a list of
names of macros it thinks are not invoked. Running the dead
code check against the entire code base may be a way to find
superfluous METATYPE1 infrastructure that could be removed.

 make-ass: generate the assemble-font.pe script, which in turn does
most of the work of assembling 256-glyph subfonts to create
full-coverage OTFs.

 make-book: make decisions on how to split the multi-thousand-
page proof document into smaller “books.” The output is a set
of TEX files which then get processed further to generate the
actual PDFs.

 make-cfghl: translate configure command-line strings into Hamlog
for inclusion in config.hl, which then feeds back to control the
build system.

 make-cover: generate colour covers for the proof books.

 make-eids: scan the proof files and generate an EIDS-format
dictionary of character decompositions.

 make-fea: perform text substitutions on “feature source code” (fsc)
files to generate Adobe-format “feature” (fea) files expressing
code-like font metadata.

 make-flog: collect a bunch of debugging information and generate
a font log file (see add-flog above).

 make-gpos: compute information for GPOS features “mark” and
“mkmk” by scanning the proof files (to determine anchor loca-
tions and compatibility) and some generated FontForge scripts
(to determine bearing adjustments made during kerning).

 make-hglpages: generate METAFONT source code for the hangul
precomposed syllable subfonts, which are all identical except for
their starting indices and generated from a template.

70

 make-kchart: generate TEX code for the kanji coverage chart.

 make-kddata: extract KANJIDIC2 data in Hamlog form.

 make-name: generate a font’s NAME metadata table.

 make-proof: generate TEX code for proofs and pretty-printed
source code.

 mp2pf: stripped-down translation from Awk to Perl of a similar
program in METATYPE1; this invokes Metapost in the appro-
priate way to generate something that can be processed into a
Postscript font, and then does process the result into a Postscript
font. Note that hinting support has been removed from this
code, and the resulting Postscript fonts may not really be good
or entirely format-valid; they are only intended as a way of
getting the outline data into FontForge for later stages of pro-
cessing.

 mpdep: generates a list of the dependencies of a METAFONT-
language file (or a set of them), for automated Makefile gen-
eration. Compare with autodep, which actually edits the files to
include the other files they should based on the macros they
use; mpdep only looks at what other files each file does include,
and reports that.

 progress: invoked during build to give progress reports and
completion-time estimates.

ビルドのシステムの図示 Build system diagrams

This section is still under construction, but it is planned to be a
graphical summary of what is going on in Tsukurimashou’s rather
complicated Makefile. Figure 3 describes the symbols used, and Fig-
ure 4 shows the process by which fonts are built. Proportional fonts
go through additional processing to generate the kern tables and so
on, as shown in Figure 5.

Be aware that these diagrams are meant to clarify, not to formally
describe, the code; this is not a formal modelling language like UML,

71

..foo.bar. foo.bar comes with the distribution.

naninani.dat

.

naninani.dat is generated during build

.

A

.

B

.

A is input for B

.

C

.

D

.

C creates D

.

E

.

F

.

E sometimes creates F

Figure 3: Legend for build system diagrams

and the semantics of the symbols are not necessarily entirely consis-
tent. Also left out of the diagrams are language interpreters like Perl,
and a great deal of information flow to and from the main Makefile
itself. It passes configuration information, mostly in command-line
arguments, to pretty much all parts of the system.

ハムログ Hamlog

Evaluating the consequences of build options like “--enable-chars” re-
quires doing a certain amount of logical inference for which shell
scripts are not well-suited. It might be possible to get GNU Make to
do the necessary computations, inasmuch as it’s quite programmable,
already required to build Tsukurimashou, and fundamentally a logical
inference engine at heart. But that would probably involve creating
many tiny files corresponding to logical propositions, which would
waste space and cause other problems on some filesystems. A more
elegant approach would be to use a real logic programming system,
i.e. Prolog—which happens to be one of my research interests. But I
didn’t want to create a dependency on a Prolog interpreter because
I think users will object to that; the existing dependencies of this
package are already hard enough to sell. I also didn’t want to bundle a
Prolog interpreter, even though good ones are available on permissive
licensing terms, because of the file size and build-system complexity
consequences of bringing a bunch of compiled-language software into
the Tsukurimashou distribution.

The solution: Tsukurimasho’s build system will look for Prolog, and
use it if possible. But the package also ships with something called

72

..sum/*.sum .mp/*.mp.

pfbtmp/*.pfb

.

prf/*.prf

.

pe/rmo.pe

.

pfb/*.pfb

.

pe/assemble-font.pe

.

otf/*.otf

.

sfd/*.sfd

.

chars.lst

.

make-ass

.

tsukurimashou.nam

.fea/*.fsc .

make-fea

.

fea/*.fea

.

txt/jnames.txt

.

hamlog/jnames.hl

.

make-name

.

fea/*-name.fea

.

sfd/flogged.sfd

Figure 4: Building the fonts themselves. Checksums in sum/ provide
fine-grained change tracking on the Metapost files in mp/, which define
Postscript “page” fonts each covering up to 256 code points. Those are
processed to remove overlaps (RMO) and end up in pfb/. The make-
ass script also scans the Metapost files to get a list of defined code
points and some other metadata; its main output is a FontForge script
that assembles the page fonts into full-coverage OpenType or Font-
Forge native fonts. Non-proportional fonts become OpenType and are
finished here; proportional fonts become FontForge native and are pro-
cessed further. The assemble-font script also makes use of per-family
feature files from make-fea (defining things like glyph composition)
and per-font feature files from make-name (defining metadata table
contents). The “proof” files in prf/ are generated as a side effect of
compiling the PostScript page fonts, and pass information about glyph
construction to both the automatic documentation generator and the
GPOS table generator.

73

..

sfd/*.sfd

.

pe/bdf.pe

.

bdf/*.bdf

.

kerner.c

.

kerner

.

fea/*-ktmp.fea

.

pe/*-bearing.pe

.

pe/kern-font.pe

.

pe/getbearings.pe

.

*.bearings

.

prf/*.prf

.

make-gpos

.

fea/*-gpos.fea

.

fea/*.fea

.

fea/*-kern.fea

.

otf/*.otf

Figure 5: Additional processing for proportional fonts. The SFD file
containing the font outlines is converted to a BDF bitmap font, which
feeds the kerner program. That generates a “ktmp” feature file with
the actual kerning data, and a FontForge script to apply the chosen
bearings. At right, the make-gpos script reads the proof files to
determine accent anchor locations. But since those must be adjusted
when the bearings are set, it also needs “before” bearing information
extracted by getbearings, and “after” obtained by reading the bearings
script from kerner. The feature files for kerning, mark composition
(GPOS), and family features are all combined and applied by the kern-
font script, which runs the bearings script as a subroutine, finally
producing a complete OTF font.

74

Hamlog, which is a toy Prolog-like logic programming system written
in Perl. (A ham is like a pro, but less so.) If the build system can’t
find a Prolog interpreter, it will use Hamlog instead. Hamlog is slow,
and internally horrifying, but it works in this particular application.
It is not particularly recommended for any other applications.

The configure script looks for SWI-Prolog, ECLiPSe-CLP, and GNU
Prolog. If one of these can be safely detected, it will be used.
ECLiPSe-CLP has the issue that it shares a name with a widely-used
programmer’s IDE, so it is not safe for the configure script to actually
execute an executable called “eclipse” if it finds one. If something that
might be ECLiPSe-CLP is detected, the configure script puts up a
warning and the user is free to enable it explicitly.

The rest of this subsection can and probably should be skipped by
anyone who isn’t both a Perl and a Prolog hacker.

Still with me? The way Hamlog works is sort of fun and so I’m going
to spend a few pages describing it for those who are interested, if
only as an example of something you should Not Try At Home. The
idea is to use regular expressions for the operation of finding a clause
whose head matches the current goal. Hamlog reads its program into
a Perl hash, where the key is the functor and arity (like “foo/3”) and
the value is a newline-separated pile of clauses in more or less plain
text. When it tries to satisfy a goal, it takes the goal (which starts
out as plain text) and converts it to a regular expression that will
match any appropriate lines in the database. Variables in the goal
turn into wildcard regular expressions; ground terms turn into literal
text; and then when there’s a match, parenthesized sub-expressions are
used to extract the body of that clause.

It is because of the use of regular expressions that Hamlog doesn’t do
compound terms, and in turn is likely not Turing-complete (though I
haven’t thought carefully through all the possibilities of using recursive
predicates or atom splitting to build stack-like data structures). As
all the world knows, it is impossible to write a regular expression to
match balanced parentheses. Current versions of Perl actually bend
the theory with experimental extensions that do allow the matching
of balanced parentheses, so that in a certain important sense Perl

75

regular expressions are not regular expressions anymore at all, but
even I am not quite twisted enough to actually deploy such code.
Things in Hamlog that look like compound terms (such as the sub-
goals in a clause body) are handled as special cases; but the point is
that arguments to a functor that will be used as a goal have to be
either atoms or variables. This also means Hamlog doesn’t do Prolog
syntactic sugar things that expand to compound terms, such as square
brackets for lists.

Once there’s a match, it does string substitution on the matching
head, the current partially-completed goal, and the body, to get a
new modified body for the clause, taking into account any variables
assigned by the head match. The new clause body gets substituted
into the current partially-completed goal (which is a string) as a
replacement for the head that just matched. So the partially-completed
goal is a sort of stack of comma-separated heads that grows from
right to left and implicitly contains all the assigned variables.

Because of the simplistic way variables are given their values, it is
dangerous to use the same variable more than once in the same head,
so constructions like “foo(X,Y,X)” should not be used. If you want to
do that you should instead write “foo(X,Y,Z):- =(X,Z).” Note the non-
sugary use of “=” as a functor, since the more common infix notation
isn’t supported. Note also that there should be a space between “:-”
and “=”; Hamlog doesn’t require that but it may reduce the likelihood
of parsing problems should the same code be run on interpreters
other than Hamlog.

Variables in clause bodies are renamed once (using the clause serial
number), when the clauses are loaded; as a result if the same clause
body gets expanded a second time while variables from its earlier
expansion are still unassigned, there could be trouble. This is not a
very likely scenario, but it’s worth mentioning.

Clauses in the database have serial numbers; and when a choice point
goes on the stack, the serial number of the clause at which it matched
is part of the record on the stack. Then if the interpreter backtracks
to re-satisfy a clause, it writes the regular expression in such a
way that it can match all and only serial numbers greater than the

76

last place it matched. Creating an “integer greater than N” regular
expression was surprisingly difficult—it’s a simple enough concept but
there are several cases that all must be handled properly or weird
bugs turn up.

Syntax is simplified from Prolog. Variables start with an uppercase
letter or an underscore and may contain uppercase alphanumerics and
underscores. Atoms start with a lowercase letter or numeric digit
and may contain lowercase alphanumerics and underscores. For Prolog
compatibility, atoms starting with digits should not contain anything
other than digits, and the only atom starting with zero that should be
used is zero itself; but Hamlog doesn’t care about those points. Things
containing a mixture of upper- and lowercase alphabetic characters
should not be used. The special tokens “!” and “=” are technically
treated as atoms too, but you should only use them in their typical
meanings of cut and unification, and “=” should only be used with
the general prefix syntax applicable to all functors, not as an infix
operator (see above).

Variable names starting with, and especially the unique variable name
consisting entirely of, an underscore, are not special in Hamlog. Be-
ware, that means “foo(_,_)” contains only one variable occurring twice
when interpreted as Hamlog, not two distinct variables as in Prolog,
and it violates the “only one appearance of each variable in a head”
guideline. The unique variable name consisting of one underscore is
probably best avoided entirely. But it may be desirable to use variable
names starting with underscores anyway in some cases, because of
their specialness to Prolog interpreters. I was really tempted to allow
and use arbitrary UTF-8 (in particular, kanji) in atoms but refrained
because of the desire for Hamlog code to be easily readable by nearly
all Prolog interpreters.

I tried to keep the number of built-in predicates to an absolute
minimum, partly because any that are not standard Prolog have to
be re-implemented in Prolog (and probably once for every supported
Prolog) to build the shell that executes Hamlog programs on a Prolog
interpreter. Here’s an exhaustive list.

 ! [cut]. This is implemented by string substitution as well:

77

when a clause body gets added to the to-satisfy stack, there’s an
additional regular expression substitution pass that converts any
instances of !/0 in the body into !/1 where the argument is an
integer identifying the current height of the choice-point stack.
If at any point in the future we attempt to satisfy a !/1 goal,
then the stack gets popped back to that point (discarding any
choice points created between the time the ! got its argument
and the present time). For this reason, ! should not be used
as an atom or functor for any other purposes than as the cut,
even if to do so would otherwise be valid Prolog.

 fail, which causes immediate backtrack (useful in conjunction
with cut to implement negation).

 true, which is not actually used, so maybe I should delete it.

 var, true if the argument is a variable (not yet bound to an
atom). This is important in Hamlog because many predicates
need to be written to accept more than one instantiation pattern
for their arguments.

 atom, true if the argument is an atom. This is implemented
by rewriting the database entry for atom/1 on the fly; when
you call “atom(foo)” it magically changes to having been defined
as either the single fact “atom(foo).” or nothing, depending on
whether “foo” is an atom.

 atom_final(AZ,A,Z), where AZ is an atom whose last character
is Z and A is everything except the last character. Used for
building and tearing apart atoms like “page00.” This requires
some careful handling in other interpreters because Hamlog has
no concept of quotation marks and treats single-digit integers
exactly the same as atoms whose names are the ASCII digits;
real Prologs have more subtle type handling. As with atom/1,
this is implemented by magically creating appropriate clauses on
the fly.

 =/2. This also creates clauses on the fly. At least one of the
two arguments should already be atomic when the goal executes,
though that is rarely difficult to guarantee in practice.

78

And that’s it for built-in predicates. Note that goals in a clause body
also can only be combined with comma for conjunction (no semicolons
for disjunction, and without them parentheses become unnecessary
and are not supported either). There is also no syntactic support
for negation. However, you can (and the existing code does) compute
negation and disjunction using multi-clause predicates, cut, and fail.
What you can’t build is any kind of I/O—so how can Hamlog programs
communicate with the outside world?

The interpreter (after checking for the “--version” and “--debug” op-
tions, which do fairly obvious things) interprets its first two command-
line arguments as a template and a query. The template ought to be a
valid Prolog compound term for compatibility with other interpreters,
but Hamlog actually treats it as a string. Then it backtracks through
all solutions to the query, attempting to instantiate all variables, and
writes (newline separated to standard out) all the distinct values as-
sumed by the template. This is basically the same operation as Prolog
findall/3 followed by sort/2, which is how the Prolog shell for Hamlog
implements it. Any remaining command-line arguments, and standard
input if there are none of those, will be read in the usual <> way
to fill the Hamlog program database. Hamlog code is conventionally
stored in “*.hl” files.

In the build system, the string of comma-separated tags for things
like characters to be selected gets converted (by the “make-cfghl” Perl
script) into a few clauses of Hamlog and written into the file con-
fig.hl. Also written there is a list of page_exists/1 facts naming the
256-code-point blocks for source files that exist in the mp directory.
Then elsewhere in the build system, it invokes Hamlog with appropri-
ate queries against config.hl and select.hl to get lists of characters,
OpenType features, and other things that the user does or doesn’t
want, based on knowledge built into select.hl of what the different
selection tags actually mean.

It is planned that in a future version, the KANJIDIC2 file will be
automatically translated to more Hamlog facts expressing which kanji
are or aren’t included in the different grade levels; then it will be
possible to use options like “--enable-chars=kanji,-grade3’ for finer-
grained selection of kanji.

79

In the case of a Prolog interpreter other than Hamlog, there is some
other code written in that interpreter’s own language to allow it
to execute Hamlog programs and export something resembling this
command-line interface to the Makefiles. Since Hamlog programs are
also syntactically valid Prolog, this support shouldn’t be difficult in
general. See the swi-ham.pl file for what currently exists of this
nature. The main advantage of using a non-Hamlog interpreter is
simply speed.

80

カーニングしかた
Kerning

This is a summary of how the automated proportional spacing and
kerning code works.

First, the build system generates the future PS font as an OpenType file,
all complete except for widths and kerning. It then calls bdf.pe, which
sets all the bearings to 50 font units and makes a BDF-format bitmap
font scaled so that the reference kanji square (1000 font units) takes
up 100 pixels. This script filters out glyphs that should not be subject
to kerning, which includes those with zero width (mostly combining
characters), all the hangul individual-jamo code points (whose layout
is handled by OpenType substitution features, and kerning would just
make it too complicated), and the special glyphs used by vertical
fraction composition (much the same situation as the hangul jamo).

The “kerner” C program reads that BDF font, puts all the glyphs into
a common bounding box big enough to contain any of them, and
finds the left and right contours—basically, the x-coordinates of the
leftmost and rightmost black pixels on each row—for each glyph, as
well as the margins, which are defined as the x-coordinates of the
leftmost and rightmost pixels on any row of the glyph.

There is some special processing applied to the contours to make
them more suitable. Consider what happens in a glyph like “=”: many
horizontal rows, namely those above and below the entire glyph and
those in between the two lines, contain no black pixels at all, and so
the leftmost and rightmost black pixels in those rows are formally
undefined. If we set it next to another glyph like “.” which only has ink
in rows where “=” does not, then a kerning algorithm that looked only
horizontally might let the period slide all the way under the equals
and out on the other side. There has to be some vertical effect to
prevent that. So the Tsukurimashou kerning program makes a couple
of passes over each contour (one forward, one backward) to enforce
the following rules, which (except for glyphs containing no black pixels
at all, which are removed from consideration) fully define where the
contour should be.

81

 The right contour cannot be any further left than the rightmost
black pixel in the row.

 The right contour cannot be more than 10 font units (one pixel)
further left than its value in the next or the previous row.

 If the right contour in the next or previous row is left of the
left margin, then the right contour in this row cannot be more
than 3 font units further left than in the next or previous row.

 Subject to the above rules, the right contour is as far left as
possible.

 The left contour’s rules are the mirror image of these.

These rules can be imagined as simulating something like the way
letterpress printers kern type by physically cutting the metal type
bodies at an angle to fit them more tightly together: it’s bad to cut
off part of the actual printing surface; you basically cut at a 45°
angle; but with glyphs that only have a small vertical extent, so that
the 45° angle would cut all the way across to the other side, then you
want to use a more vertical angle (in this case, 16.7° from vertical)
so you don’t end up setting the next character actually earlier on the
line. Figure 6 shows a typical example of the contour computation.

The right margin is subtracted from the right contours and the left
margin from the left contours to get, for each glyph, a vector of
numbers describing its shape along the left and right sides, independent
of the width of the glyph.

All the left contour vectors, and (independently) all the right contour
vectors, are subjected to a modified k-means classification. Initially,
the contours are put in 200 classes, according to the values of a
simple hash function applied to the glyph names. This is a change from
earlier releases in which a round-robin was used: the advantage of the
hash function is that although it remains deterministic, it helps break
up a phenomenon that tended to happen with the Genjimon glyphs,
where because of excessive symmetry in the initial arrangement, the
classifier could never put the similar glyphs together.

82

.

Figure 6: Glyph contour computation

Then for each contour the program asks the question “How far is this
contour from the centroid of its class, and if I moved it to a different
class, how far (after accounting for the fact that the centroid changes
when I add the glyph) would it be from the centroid of the new class?”
If moving the glyph to some other class would make it closer to the
new centroid, then the glyph gets moved to the other class where its
distance to the centroid will be minimized. Note that a glyph in a
class by itself will never want to move out of that class, because its
distance to the centroid is already zero.

There is an extra rule that the classification will never move a glyph
into a class in such a way as to make a class larger than the “class
limit,” defined to be the larger of 100 glyphs, and three times the total
number of glyphs divided by the total number of classes. The purpose
of this rule is to counteract a tendency seen in some experiments for
the classifier to create a few huge classes (for instance, a single class
containing a large fraction of the 11172 precomposed Korean syllables)
that cause font subtable size problems. It is not clear just where the
limits are on how big a class may be, but this limit appears to work
at the moment.

83

Glyphs are examined in this way until no more such moves are possible.
The idea is that at the end of it, the glyphs will all be in classes that
are as tightly clustered as possible. It’s not guaranteed to be a global
optimum (in other words, it’s possible that some other assignment of
glyphs to classes might be better; really optimizing this problem is
difficult) but it’s guaranteed to be a local optimum in the sense that it
can’t be improved by changing the assignment of just one glyph, and
it’s expected to be pretty good overall. Note that the initial assignment
was deterministic (where random would be more usual for this kind
of algorithm) because it seems undesirable for the kerning distances,
overall, to be non-deterministic; my copy of the font shouldn’t have
different metrics from yours if they were compiled from the same
sources with the same options.

After classification, we’ve got 200 classes of left contours and 200
classes of right contours. The actual kerning is done class-to-class,
using the class centroids, rather than glyph-to-glyph. That way we will
end up with up to 40000 kern pairs instead of millions. OpenType
supports this kind of kerning pretty well. There will be a feature
file generated listing the contents of the classes and the distances for
each pair of classes, and that’s much more efficient both in source
and compiled form than specifying a distance for every pair of glyphs.

The number 200 (up from 150 in earlier versions) was chosen by
educated trial and error. Every glyph must be in a class for full
kerning; but no class can be too big or FontForge barfs. That in turn
limits the size of the average class to some maximum, and so limits
the number of classes to some minimum. Using 200 classes seems to
be enough for the current Jieubsida fonts, which are roughly 13000
glyphs each, and it is reasonable to estimate that none of the fonts
created in the planned scope of this project will have much more than
that many glyphs.

To kern two contours together, we can compute a closeness value
for each row by saying “if we positioned the margins of the glyphs
this much apart, how far apart would the contours be in this row?”
That distance, divided by a constant representing the optimal dis-
tance (currently 230 font units) and raised to a power representing
how much extra weight to give to the closest points (currently 3),

84

.

.

.

Figure 7: Closeness computation

represents closeness for the row. The sum of closeness for all the
rows would be equal to the number of rows in the case of two per-
fectly vertical lines 230 units apart. The kerner program adjusts the
margin-to-margin distance so that the sum of closeness is equal to
that. It uses a binary search to do that adjustment, which is probably
not optimal for a fixed exponent (there should be an exact analytic
solution possible without iterating) but has the big advantage of not
requiring a redesign should the exponent or even the entire closeness
function change.

The closeness computation is shown schematically in Figure 7. Note
that this closeness is calculated on the contours, as defined previ-
ously, rather than the actual shapes of the glyphs; it is also done
on the centroids of the kerning groups, thus generic contours each
representing many glyphs, rather than the contours of any specific
individual glyphs.

The effect of the exponent 3 in the calculation is to give much
more weight to points that are close together, as suggested by the
shading in the figure. If we’re kerning a pair like “]<”, we want to

85

pay more attention to the point of the less-than than to the distant
ends. An exponent of 3 means that points at half the distance count
eight times as much toward overall closeness, so there’s a strong bias
toward seeing the points of closest approach. If we imagined using a
larger exponent, this bias would be even stronger; in the limit, with an
infinite exponent, the kerning would be determined solely by setting
the closest approach to the optimum without reference to any other
points. That is how most auto-kerning software works; but the results
tend not to be good because in a serif font with a pair like “AV,”
inserting the ideal vertical-to-vertical distance between the serifs is
going to place the stems, which are much more visually important, too
far apart. Using an exponent somewhat less than infinity causes the
stems to still have some significant weight. The value 3 was chosen
by trial and error and may be subject to further adjustment.

Once all the class-to-class distances have been chosen, it remains
to choose the bearings for the characters. Recall that kerning was
computed from margin to margin, that is the amount of space to insert
between the strict bounding boxes of the glyphs. Adding a certain
amount of extra space to the glyphs themselves, and subtracting it
from the kern distances, may result in a better, more concise kern
table, as well as better results when glyphs from this font are set
next to spaces, things from other fonts, and so on.

The first step is that the kerner program finds the average of all kern
table values, and puts half that much bearing space on either side of
every glyph, adjusting the kern values accordingly. This has the effect
of giving every glyph an “average” amount of space, and changing the
overall average kern adjustment to zero. If we were to throw away
the kerning table at this point and just use the bearings, then in some
sense these bearings would give the best possible approximation of
the discarded kerning table.

Then for each left-class (which is actually a class of right contours:
it is a class of glyphs that can appear on the left in a kerning pair)
the program finds the maximum, that is farthest apart, amount of
kerning between that left-class and any right-class. Two thirds of that
kerning amount are added to the right-bearing of the left-class. The
concept here is that we generally want kerning to be pushing things

86

together, not pulling them apart, so the “default” amount of kerning
indicated by the bearing should be near the maximum distance apart,
from which individual entries can then push things closer. Also, we
generally want most (two thirds) of this adjustment to happen to the
right bearing of the left-hand glyph in the pair.

Then to clean up the rest, the program examines each right-class
(which is a class of left contours) and similarly finds the furthest-
apart kern pair and adds that to the left bearing of the right class,
adjusting all kern pairs appropriately. At this stage it’s guaranteed
that all the kern table entries will be zero or negative: kerning only
pushes glyphs together from where they would otherwise be, it never
pulls them apart.

Kern table entries are dropped if they are less than ten font units;
that cuts the size of the table considerably. In a change from earlier
versions, the kern values are not otherwise rounded (beyond being
integers). The table is written to a fragment of an Adobe .fea file,
with subtable breaks on left-class boundaries each time a subtable
grows past 5000 entries; that means subtables actually end up a little
over 5000 entries each. That seems to be how big they can get
without overflowing the OTF table-size limits. Bearings are written
to a FontForge .pe script.

The build system runs kern-font.pe, which applies the output of the
kerner program to the font. Something else that kern-font.pe does is
to add a hardcoded additional bearing of 40 on the left and 80 on
the right to all Japanese-script characters (kana and kanji); by trial
and error, this seems to make the results look better. It seems to
be simply a fact that Japanese characters need more space between
them to look right than Latin characters do at the same type size.
Something similar should probably be done to Korean-script characters,
but that has not been determined yet.

That is how the horizontal spacing of the font is currently computed.
It still isn’t perfect, but some progress has been made.

さてさてなにが、できるかな？

87

	とびら Title Page
	コピーライト Copyright
	目次 Contents
	イントロ Introduction
	０．８のニュース What's new in 0.8?
	外のプロジェクト Other similar projects
	デベロップメントロードマップ Development roadmap
	外のソフトのバグ Relevant bugs in other software

	『作りましょう』の使い方 Using Tsukurimashou
	ＯｐｅｎＴｙｐｅのフィーチャー OpenType Features
	外の分すう Alternate Fractions (afrc)
	キャプがスモールになって Capitals to Small Caps (c2sc)
	文脈代替字 Contextual Alternates (calt)
	グリフの併合と分解 Glyph (De)Composition (ccmp)
	合字 Ligatures (liga)
	頭子音の形 Lead Jamo Shaping (ljmo)
	文字に付け方 Mark to Base Positioning (mark)
	点に付け方 Mark to Mark Positioning (mkmk)
	メタデータ Metadata Table (name)
	巴の花形 Ornaments (ornm)
	ＦｏｎｔＦｏｒｇｅだけのメタデータ FontForge-specific Metadata (pfed)
	スモールキャピタル Small Caps (smcp)
	ヘビーメタルウムラウト Heavy Metal Umlaut (ss01)
	丸つき字 Enclosed Letters and Numerals (ss02)
	母音の形 Vowel Jamo Shaping (vjmo)
	私用符号位置を避けて Limit PUA Code Points (xpua)

	付加文字 Extra glyph coverage
	げんじもん Genjimon
	えききょう I Ching
	解字の文字 Ideographic Description Characters
	公のユーログリフ Official Euro Sign

	ハングル語 Korean Language Support
	コンパチのジャモ Compatibility jamo
	併合のシラブル Precomposed syllables
	併合のジャモ Conjoining jamo
	ハンジャ Hanja

	フォントの名前ついて Regarding Font Names
	『作りましょう』を作りましょう！ Building Tsukurimashou
	ビルドのシステム Build System
	寄生パッケージ Parasite packages
	ツールの文書化 Tool documentation
	ビルドのシステムの図示 Build system diagrams
	ハムログ Hamlog

	カーニングしかた Kerning

