
Technical notes on Thinknowlogy:

Reading (see classes containing the word “Read”):
• When a sentence is entered, function createReadWords in class AdminReadCreateWords

creates suitable word types for each word of the entered sentence. Each word can have
multiple word types, because at this stage it isn't clear yet what the correct word type will
be. (The unused word types will be deleted after the sentence is parsed);

• The rules in the grammar configuration file (/data/grammar/{language name}.txt) are
designed to perform the first step in parsing of the sentences, distinguishing sentence types,
like: assignments, specifications, specification-generalizations, imperative sentences,
selections and questions. The grammar rules provide information to the system which words
are generation words, specification words, relation words, etc. The rules even disambiguate
word types, like in the question “Is a a number?”. The numeral codes in the grammar
configuration file correspond with constants in the source code. In this way, the grammar
rules are able to handover the collected information to the system. See for functions
findGrammarPath and scanSpecification in class AdminReadSentence;

• After the information about the entered sentence is collected, the sentence is stored in the
knowledge structure: The new knowledge is collected (=organized) with the existing
knowledge, and the new knowledge is checked for confirmation, conflicts, ambiguity, etc.
See function addSpecificationInWord in class WordSpecification;

• The integrated reasoner adds new knowledge to the knowledge structure, utilizing the rich
information provided by the system. The reasoner also adds justification information to the
self-generated knowledge, to justify the validity of each generated conclusion, assumption
and question. See classes AdminReasoningOld and AdminReasoningNew, and function
addSelfGeneratedSpecification in class AdminSpecification.

Writing (see classes containing the word “Write”):
• After the sentence is stored, it is retrieved again from the knowledge structure, as an

integrity check. See function checkIntegrityOfStoredUserSentence in class AdminWrite. If
this integrity check fails, the system either failed to store the sentence, or to retrieve (=to
write) the sentence. Either way, the developer needs to find the cause of the problem;

• The self-generated knowledge – as well as the user-entered knowledge – can be written as
full sentences (again), by utilizing the grammar rules in the opposite direction, from
information to word – rather than from word to information – enabling the system to write
grammatically correct sentences. See class WordWrite.

Error handling:
• All functions start by checking crucial arguments provided by the function call, like

pointers, to avoid crashes on null pointers, etc. Example: “if(generalizationWordItem !=
null)”;

• The result of all other functions that can raise an error, is also checked, to stop the system;
• Function "startError" is called when the first error occurs, and all other functions call

functions "addError". In this way, the error message provides information that help to trace
the problem;

• If an error occurs, all newly created items in the knowledge structure are deleted. So, the
system is the same as before the sentence was entered and the sentence indicator
("2746,Guest>") will not be incremented. In this manner, the user can retry without
problems. The sentence indicator will only be incremented if the knowledge structure has
changed.

Implementation:
• I only use full variables names, to make the code more readable to others. Not "Spec", but

"Specification";
• Most boolean variable names start with "has" or "is", like: bool isExclusiveSpecification;
• Most other variables end with the name of the class type, like: WordItem

generalizationWordItem.

Items and Lists:
• There are a lot of classes of type Item and List (with the names ending on Item or List).

The Items are stored in Lists, for example: CollectionItems are stored in CollectionList;
• Each Item has a unique key, like "(123,1)". In this case, the Item that belongs to sentence

number 123, and it is the first Item from that sentence. After a sentence is accepted, the
sentence number is increased and a new set of Items will be created with during that next
sentence;

• All Lists contain 5 single-linked lists: activeList_, deactiveList_, archivedList_,
replacedList_ and deletedList_. The activeList_ is most commonly used;

• Assignments (see theory) can have 3 states: active, inactive or archived, with the
corresponding lists: activeList, deactiveList_ and archivedList_. An example of an inactive
assignment: If the user selects a new set in the Connect-Four game, the previous choice of
the user is inactivated, by putting it in the inactiveList_. An example of an archived
assignment: When 3 consecutive presidents of the United States are entered (see US
presidents example), the most recent assignment is placed in the activeList_, the previous
one is placed in the inactiveList_, and all older assignments others are archived in the
archivedList_;

• The knowledge base is designed in such a way that functions Undo and Redo are possible,
similar to other software. In order to implement Undo and Redo, the information must still
be present: So, instead of deleting Items that has become obsolete by the new situation, they
are put in the replacedList_. If Undo is chosen, all Items from the current sentence are
archived and all Items from previous sentence are activated. If Redo is chosen, the process is
the other way around;

• Only when an Item has become obsolete during the same sentence, it will be deleted (put in
the deletedList_). After the processing of that sentence is done, the deletedList_ is emptied.
There are a lot of Items created during the processing of each sentence, that are deleted
afterwards. During the clean-up, the key of each Item is renamed in such a way that there
are no gaps in the numbering. So: (123,1), (123,2) and (123,3) instead of (123,20), (123,29)
and (123,54).

Knowledge structure:
WordItem and SpecificationItem are the most important Items:

• A WordItem can have multiple word types (class WordTypeItem), for example singular
noun “parent” and plural noun “parents”;

• A SpecificationItem forms the base of knowledge structure.

Programming in Controlled Natural Language:
Unlike variables in programming languages, in Thinknowlogy a word can have multiple
assignments at the same time:

• “The coffee is brown”;
• “The coffee is hot”;
• “The coffee is sweet”.

The coffee is brown, as well as hot, as well as sweet.

• To test if “coffee” has any assignment: “if the coffee is assigned then ...”;
• To test if “coffee” has a particular assignment: “if the coffee is brown then ...”;
• To clear all assignments of “coffee”: “The coffee is clear”.

It is also possible to add a set to a word: “A traffic light is red, yellow or green” declares that a
traffic light can only have one state (either red, yellow or green).

• “The traffic light is red” is similar to “traffic_light = red” in programming languages;
• But if you then state: “The traffic light is green”, then the previous assignment is cleared by

the system and state “green” will be assigned, similar to “traffic_light = green”.

If you add “The traffic light is bright”, it will not affect its red, yellow or green state.

Except for “assigned”, “clear”, and any color, none of the adjectives and nouns above are (need to
be) defined in the system. (Colors are defined in the file "common knowledge", which is read
during start-up. But it isn't necessary to have these words defined upfront.)

There is no need to declare words first. You are free to use any word, as long as it isn't a keyword
defined in the grammar file. The keywords defined in the grammar file have a special function.
Examples: Verb “read” and noun “file” are used to read files, verb “display” is used to display info,
and the verb “solve” is used to start a problem solving algorithm in the Connect-Four game.

Reasoning in Controlled Natural Language:
During reasoning, JustificationItems are created, which are stored in the JustificationList of the
involved word. The justification lists are updated with each entered sentence. And they can be
displayed at any moment. In this way, each step of the reasoning process is justified.

Supporting classes:
• The classes that supports class AdminItem start with the name Admin…;
• The classes that supports class List start with the name List…;
• The classes that supports class WordItem start with the name Word… (except for classes

WordList, WordTypeItem and WordTypeItem).

Grammar file:

The grammar rules are written in a kind of Extended Backus–Naur Form:
[..] = option
[.. | ..] = multiple options
{ .. | .. } = choice
(..) = optional for reading, will not be used for writing

The grammar file should be read from the bottom of the file to the top, starting with:

:4000 $sentence { statement_sentence | question_sentence | selection_sentence }

• Each definition word in the grammar file starts with '$', like "$sentence". And after a
definition word the definition itself is given;

• A sentence is either a statement, or a question, or a selection.

A statement sentence is defined as:

:4010 $statement_sentence [answer_Yes_or_No symbol_comma] statement [more_statements]
[symbol_colon | symbol_exclamation_mark]

• A statement sentence can start with an answer (‘yes’ or ‘no’), followed by a comma. The
statement itself is mandatory, which can end with either a colon or an exclamation mark.

The definition of both colon and exclamation mark can be found at the top of the file:

@1 :101 $symbol_colon .
@1 :102 $symbol_exclamation_mark !

• These lines start with '@1'. The number after '@' character corresponds with the word type
number in the software. (See constants file.) So, the value of '@1' corresponds with constant
WORD_TYPE_SYMBOL, which has value ‘1’. When reading this grammar file, value ‘1’
will be assigned to variable “unsigned short wordTypeNr_” in class WordTypeItem, which
indicates that this word is in fact a symbol;

• A number that starts with ':' – like ':101' – corresponds with the value of the word parameter
in the software, if the value is lower than 4000. When reading this grammar file, value ‘101’
will be assigned to variable “unsigned short wordParameter_” of class WordItem, which
corresponds with constant WORD_PARAMETER_SYMBOL_COLON;

• If the number is 4000 or higher – like ':4010' of the definition mentioned above – it
corresponds with the value of the grammar parameter in the software. When reading this
grammar file, value ‘4010’ will be assigned to variable “unsigned short
grammarParameter_” of class GrammarItem, which corresponds with constant
GRAMMAR_STATEMENT.

If a grammar definition doesn’t start with a value, no variable is assigned in the software.

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form

