
SAML Python Toolkit (compatible with Python3)

Python packagePython package failingfailing PyPI DownloadsPyPI Downloads 943k/month943k/month

coveragecoverage 91%91% pypipypi v1.15.0v1.15.0 pythonpython 2.7 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.102.7 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.10

Add SAML support to your Python software using this library. Forget those
complicated libraries and use the open source library provided by the SAML
tool community.

This version supports Python3. Python 2 support was deprecated on Jan 1st,
2020: python-saml

Warning Version 1.13.0 sets sha256 and rsa-sha256 as default algorithms

Version 1.8.0 sets strict mode active by default

Update python3-saml to 1.5.0, this version includes security improvements for
preventing XEE and Xpath Injections.

Update python3-saml to 1.4.0, this version includes a fix for the CVE-2017-
11427 vulnerability.

This version also changes how the calculate fingerprint method works, and will
expect as input a formatted X.509 certificate.

Update python3-saml to 1.2.6 that adds the use defusedxml that will prevent
XEE and other attacks based on the abuse of XML. (CVE-2017-9672)

Update python3-saml to >= 1.2.1, 1.2.0 had a bug on signature validation
process (when using wantAssertionsSigned and wantMessagesSigned). CVE-
2016-1000251

1.2.0 version includes a security patch that contains extra validations that will
prevent signature wrapping attacks.

python3-saml < v1.2.0 is vulnerable and allows signature wrapping!

Security Guidelines If you believe you have discovered a security
vulnerability in this toolkit, please report it by mail to the maintainer:
sixto.martin.garcia+security@gmail.com

Why add SAML support to my software?
SAML is an XML-based standard for web browser single sign-on and is defined
by the OASIS Security Services Technical Committee. The standard has been
around since 2002, but lately it is becoming popular due its advantages:

1

https://github.com/SAML-Toolkits/python3-saml/actions/workflows/python-package.yml
https://coveralls.io/github/SAML-Toolkits/python3-saml?branch=master
https://pypi.python.org/pypi/python3-saml
https://github.com/onelogin/python-saml
https://www.cvedetails.com/cve/CVE-2017-11427/
https://www.cvedetails.com/cve/CVE-2017-11427/
https://github.com/distributedweaknessfiling/DWF-Database-Artifacts/blob/master/DWF/2016/1000251/CVE-2016-1000251.json
https://github.com/distributedweaknessfiling/DWF-Database-Artifacts/blob/master/DWF/2016/1000251/CVE-2016-1000251.json

• Usability - One-click access from portals or intranets, deep linking, pass-
word elimination and automatically renewing sessions make life easier for
the user.

• Security - Based on strong digital signatures for authentication and
integrity, SAML is a secure single sign-on protocol that the largest and
most security conscious enterprises in the world rely on.

• Speed - SAML is fast. One browser redirect is all it takes to securely sign
a user into an application.

• Phishing Prevention - If you don’t have a password for an app, you
can’t be tricked into entering it on a fake login page.

• IT Friendly - SAML simplifies life for IT because it centralizes authenti-
cation, provides greater visibility and makes directory integration easier.

• Opportunity - B2B cloud vendor should support SAML to facilitate the
integration of their product.

General Description
SAML Python toolkit lets you turn your Python application into a SP (Service
Provider) that can be connected to an IdP (Identity Provider).

Supports:

• SSO and SLO (SP-Initiated and IdP-Initiated).
• Assertion and nameId encryption.
• Assertion signatures.
• Message signatures: AuthNRequest, LogoutRequest, LogoutResponses.
• Enable an Assertion Consumer Service endpoint.
• Enable a Single Logout Service endpoint.
• Publish the SP metadata (which can be signed).

Key Features:

• saml2int - Implements the SAML 2.0 Web Browser SSO Profile.
• Session-less - Forget those common conflicts between the SP and the

final app, the toolkit delegate session in the final app.
• Easy to use - Programmer will be allowed to code high-level and low-level

programming, 2 easy to use APIs are available.
• Tested - Thoroughly tested.

Installation
Dependencies

• python 2.7 // python 3.6
• xmlsec Python bindings for the XML Security Library.
• lxml Python bindings for the libxml2 and libxslt libraries.
• isodate An ISO 8601 date/time/ duration parser and formatter

2

https://pypi.python.org/pypi/xmlsec
https://pypi.python.org/pypi/lxml
https://pypi.python.org/pypi/isodate

Review the setup.py file to know the version of the library that python3-saml
is using

Code

Option 1. Download from GitHub The toolkit is hosted on GitHub. You
can download it from:

• Latest release: https://github.com/saml-toolkits/python3-saml/releases/latest
• Master repo: https://github.com/saml-toolkits/python3-saml/tree/master

Copy the core of the library (src/onelogin/saml2 folder) and merge the
setup.py inside the Python application. (Each application has its structure so
take your time to locate the Python SAML toolkit in the best place).

Option 2. Download from pypi The toolkit is hosted in pypi, you can find
the python3-saml package at https://pypi.python.org/pypi/python3-saml

You can install it executing:

$ pip install python3-saml

If you want to know how a project can handle python packages review this guide
and review this sampleproject

NOTE To avoid libxml2 library version incompatibilities between xmlsec
and lxml it is recommended that lxml is not installed from binary.

This can be ensured by executing:

$ pip install --force-reinstall --no-binary lxml lxml

Security Warning
In production, the strict parameter MUST be set as “true”. Otherwise your
environment is not secure and will be exposed to attacks.

In production also we highly recommend to register on the settings the IdP
certificate instead of using the fingerprint method. The fingerprint, is a hash, so
at the end is open to a collision attack that can end on a signature validation
bypass. Other SAML toolkits deprecated that mechanism, we maintain it for
compatibility and also to be used on test environment.

Avoiding Open Redirect attacks

Some implementations uses the RelayState parameter as a way to control the
flow when SSO and SLO succeeded. So basically the user is redirected to the
value of the RelayState.

If you are using Signature Validation on the HTTP-Redirect binding, you will
have the RelayState value integrity covered, otherwise, and on HTTP-POST

3

https://packaging.python.org/en/latest/tutorial.html
https://github.com/pypa/sampleproject

binding, you can’t trust the RelayState so before executing the validation, you
need to verify that its value belong a trusted and expected URL.

Read more about Open Redirect CWE-601.

Avoiding Replay attacks

A replay attack is basically try to reuse an intercepted valid SAML Message in
order to impersonate a SAML action (SSO or SLO).

SAML Messages have a limited timelife (NotBefore, NotOnOrAfter) that make
harder this kind of attacks, but they are still possible.

In order to avoid them, the SP can keep a list of SAML Messages or Assertion
IDs already validated and processed. Those values only need to be stored the
amount of time of the SAML Message life time, so we don’t need to store all
processed message/assertion Ids, but the most recent ones.

The OneLogin_Saml2_Auth class contains the get_last_request_id,
get_last_message_id and get_last_assertion_id methods to retrieve the IDs

Checking that the ID of the current Message/Assertion does not exists in the
list of the ones already processed will prevent replay attacks.

Getting Started
Knowing the toolkit

The new SAML Toolkit contains different folders (certs, lib, demo-django,
demo-flask and tests) and some files.

Let’s start describing them:

src This folder contains the heart of the toolkit, onelogin/saml2 folder con-
tains the new version of the classes and methods that are described in a later
section.

demo-django This folder contains a Django project that will be used as
demo to show how to add SAML support to the Django Framework. demo
is the main folder of the Django project (with its settings.py, views.py,
urls.py), templates is the Django templates of the project and saml is a
folder that contains the certs folder that could be used to store the X.509
public and private key, and the SAML toolkit settings (settings.json and
advanced_settings.json).

Notice about certs

SAML requires a X.509 cert to sign and encrypt elements like NameID, Message,
Assertion, Metadata.

4

https://cwe.mitre.org/data/definitions/601.html
https://github.com/onelogin/python3-saml/blob/ab62b0d6f3e5ac2ae8e95ce3ed2f85389252a32d/src/onelogin/saml2/auth.py#L357
https://github.com/onelogin/python3-saml/blob/ab62b0d6f3e5ac2ae8e95ce3ed2f85389252a32d/src/onelogin/saml2/auth.py#L364
https://github.com/onelogin/python3-saml/blob/ab62b0d6f3e5ac2ae8e95ce3ed2f85389252a32d/src/onelogin/saml2/auth.py#L371

If our environment requires sign or encrypt support, the certs folder may contain
the X.509 cert and the private key that the SP will use:

• sp.crt The public cert of the SP
• sp.key The private key of the SP

Or also we can provide those data in the setting file at the x509cert and the
privateKey JSON parameters of the sp element.

Sometimes we could need a signature on the metadata published by the SP, in
this case we could use the X.509 cert previously mentioned or use a new X.509
cert: metadata.crt and metadata.key.

Use sp_new.crt if you are in a key rollover process and you want to publish
that X.509 certificate on Service Provider metadata.

If you want to create self-signed certs, you can do it at the https://www.samltool.com/self_signed_certs.php
service, or using the command:

openssl req -new -x509 -days 3652 -nodes -out sp.crt -keyout sp.key

demo-flask This folder contains a Flask project that will be used as demo
to show how to add SAML support to the Flask Framework. index.py is the
main Flask file that has all the code, this file uses the templates stored at the
templates folder. In the saml folder we found the certs folder to store the
X.509 public and private key, and the SAML toolkit settings (settings.json
and advanced_settings.json).

demo_pyramid This folder contains a Pyramid project that will be used
as demo to show how to add SAML support to the Pyramid Web Framework.
__init__.py is the main file that configures the app and its routes, views.py
is where all the logic and SAML handling takes place, and the templates are
stored in the templates folder. The saml folder is the same as in the other two
demos.

demo-tornado This folder contains a Tornado project that will be used as
demo to show how to add SAML support to the Tornado Framework. views.py
(with its settings.py) is the main Flask file that has all the code, this file uses
the templates stored at the templates folder. In the saml folder we found the
certs folder to store the X.509 public and private key, and the SAML toolkit
settings (settings.json and advanced_settings.json).

It requires python3.5 (it’s using tornado 6.0.3)

setup.py Setup script is the centre of all activity in building, distributing, and
installing modules. Read more at https://pythonhosted.org/an_example_pypi_project/setuptools.html

5

http://docs.pylonsproject.org/projects/pyramid/en/latest/

tests Contains the unit test of the toolkit.

In order to execute the test you only need to load the virtualenv with the toolkit
installed on it properly:

pip install -e ".[test]"

and execute:

python setup.py test

The previous line will run the tests for the whole toolkit. You can also run the
tests for a specific module. To do so for the auth module you would have to
execute this:

python setup.py test --test-suite tests.src.OneLogin.saml2_tests.auth_test.OneLogin_Saml2_Auth_Test

With the --test-suite parameter you can specify the module to
test. You’ll find all the module available and their class names at
tests/src/OneLogin/saml2_tests/.

How It Works

Settings First of all we need to configure the toolkit. The SP’s info, the IdP’s
info, and in some cases, configure advanced security issues like signatures and
encryption.

There are two ways to provide the settings information:

• Use a settings.json file that we should locate in any folder, but indicates
its path with the custom_base_path parameter.

• Use a JSON object with the setting data and provide it directly to the
constructor of the class (if your toolkit integation requires certs, remember
to provide the custom_base_path as part of the settings or as a parameter
in the constructor).

In the demo-django and in the demo-flask folders you will find a saml folder, inside
there is a certs folder and a settings.json and advanced_settings.json
file. Those files contain the settings for the SAML toolkit. Copy them in your
project and set the correct values.

This is the settings.json file:

{
// If strict is True, then the Python Toolkit will reject unsigned
// or unencrypted messages if it expects them to be signed or encrypted.
// Also it will reject the messages if the SAML standard is not strictly
// followed. Destination, NameId, Conditions ... are validated too.
"strict": true,

// Enable debug mode (outputs errors).

6

"debug": true,

// Service Provider Data that we are deploying.
"sp": {

// Identifier of the SP entity (must be a URI)
"entityId": "https://<sp_domain>/metadata/",
// Specifies info about where and how the <AuthnResponse> message MUST be
// returned to the requester, in this case our SP.
"assertionConsumerService": {

// URL Location where the <Response> from the IdP will be returned
"url": "https://<sp_domain>/?acs",
// SAML protocol binding to be used when returning the <Response>
// message. SAML Toolkit supports this endpoint for the
// HTTP-POST binding only.
"binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

},
// Specifies info about where and how the <Logout Request/Response> message MUST be sent.
"singleLogoutService": {

// URL Location where the <LogoutRequest> from the IdP will be sent (IdP-initiated logout)
"url": "https://<sp_domain>/?sls",
// URL Location where the <LogoutResponse> from the IdP will sent (SP-initiated logout, reply)
// OPTIONAL: only specify if different from url parameter
//"responseUrl": "https://<sp_domain>/?sls",
// SAML protocol binding to be used when returning the <Response>
// message. SAML Toolkit supports the HTTP-Redirect binding
// only for this endpoint.
"binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

},
// If you need to specify requested attributes, set a
// attributeConsumingService. nameFormat, attributeValue and
// friendlyName can be omitted
"attributeConsumingService": {

// OPTIONAL: only specify if SP requires this.
// index is an integer which identifies the attributeConsumingService used
// to the SP. SAML toolkit supports configuring only one attributeConsumingService
// but in certain cases the SP requires a different value. Defaults to '1'.
// "index": '1',
"serviceName": "SP test",
"serviceDescription": "Test Service",
"requestedAttributes": [

{
"name": "",
"isRequired": false,
"nameFormat": "",
"friendlyName": "",
"attributeValue": []

7

}
]

},
// Specifies the constraints on the name identifier to be used to
// represent the requested subject.
// Take a look on src/onelogin/saml2/constants.py to see the NameIdFormat that are supported.
"NameIDFormat": "urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified",
// Usually X.509 cert and privateKey of the SP are provided by files placed at
// the certs folder. But we can also provide them with the following parameters
"x509cert": "",
"privateKey": ""

/*
* Key rollover
* If you plan to update the SP X.509cert and privateKey
* you can define here the new X.509cert and it will be
* published on the SP metadata so Identity Providers can
* read them and get ready for rollover.
*/

// 'x509certNew': '',
},

// Identity Provider Data that we want connected with our SP.
"idp": {

// Identifier of the IdP entity (must be a URI)
"entityId": "https://app.onelogin.com/saml/metadata/<onelogin_connector_id>",
// SSO endpoint info of the IdP. (Authentication Request protocol)
"singleSignOnService": {

// URL Target of the IdP where the Authentication Request Message
// will be sent.
"url": "https://app.onelogin.com/trust/saml2/http-post/sso/<onelogin_connector_id>",
// SAML protocol binding to be used when returning the <Response>
// message. SAML Toolkit supports the HTTP-Redirect binding
// only for this endpoint.
"binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

},
// SLO endpoint info of the IdP.
"singleLogoutService": {

// URL Location where the <LogoutRequest> from the IdP will be sent (IdP-initiated logout)
"url": "https://app.onelogin.com/trust/saml2/http-redirect/slo/<onelogin_connector_id>",
// URL Location where the <LogoutResponse> from the IdP will sent (SP-initiated logout, reply)
// OPTIONAL: only specify if different from url parameter
"responseUrl": "https://app.onelogin.com/trust/saml2/http-redirect/slo_return/<onelogin_connector_id>",
// SAML protocol binding to be used when returning the <Response>
// message. SAML Toolkit supports the HTTP-Redirect binding
// only for this endpoint.

8

"binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
},
// Public X.509 certificate of the IdP
"x509cert": "<onelogin_connector_cert>"
/*
* Instead of using the whole X.509cert you can use a fingerprint in order to
* validate a SAMLResponse (but you still need the X.509cert to validate LogoutRequest and LogoutResponse using the HTTP-Redirect binding).
* But take in mind that the algorithm for the fingerprint should be as strong as the algorithm in a normal certificate signature

* (e.g. SHA256 or strong)
*
* (openssl x509 -noout -fingerprint -in "idp.crt" to generate it,
* or add for example the -sha256 , -sha384 or -sha512 parameter)
*
* If a fingerprint is provided, then the certFingerprintAlgorithm is required in order to
* let the toolkit know which algorithm was used.
Possible values: sha1, sha256, sha384 or sha512
* 'sha1' is the default value.
*
* Notice that if you want to validate any SAML Message sent by the HTTP-Redirect binding, you
* will need to provide the whole X.509cert.
*/

// "certFingerprint": "",
// "certFingerprintAlgorithm": "sha1",

/* In some scenarios the IdP uses different certificates for
* signing/encryption, or is under key rollover phase and
* more than one certificate is published on IdP metadata.
* In order to handle that the toolkit offers that parameter.
* (when used, 'X.509cert' and 'certFingerprint' values are
* ignored).
*/

// 'x509certMulti': {
// 'signing': [
// '<cert1-string>'
//],
// 'encryption': [
// '<cert2-string>'
//]
// }

}
}

In addition to the required settings data (idp, sp), extra settings can be defined
in advanced_settings.json:

{
// Security settings

9

"security": {

/** signatures and encryptions offered **/

// Indicates that the nameID of the <samlp:logoutRequest> sent by this SP
// will be encrypted.
"nameIdEncrypted": false,

// Indicates whether the <samlp:AuthnRequest> messages sent by this SP
// will be signed. [Metadata of the SP will offer this info]
"authnRequestsSigned": false,

// Indicates whether the <samlp:logoutRequest> messages sent by this SP
// will be signed.
"logoutRequestSigned": false,

// Indicates whether the <samlp:logoutResponse> messages sent by this SP
// will be signed.
"logoutResponseSigned": false,

/* Sign the Metadata
false || true (use sp certs) || {

"keyFileName": "metadata.key",
"certFileName": "metadata.crt"

}
*/
"signMetadata": false,

/** signatures and encryptions required **/

// Indicates a requirement for the <samlp:Response>, <samlp:LogoutRequest>
// and <samlp:LogoutResponse> elements received by this SP to be signed.
"wantMessagesSigned": false,

// Indicates a requirement for the <saml:Assertion> elements received by
// this SP to be signed. [Metadata of the SP will offer this info]
"wantAssertionsSigned": false,

// Indicates a requirement for the <saml:Assertion>
// elements received by this SP to be encrypted.
"wantAssertionsEncrypted": false,

// Indicates a requirement for the NameID element on the SAMLResponse
// received by this SP to be present.
"wantNameId": true,

10

// Indicates a requirement for the NameID received by
// this SP to be encrypted.
"wantNameIdEncrypted": false,

// Indicates a requirement for the AttributeStatement element
"wantAttributeStatement": true,

// Authentication context.
// Set to false and no AuthContext will be sent in the AuthNRequest,
// Set true or don't present this parameter and you will get an AuthContext 'exact' 'urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport'
// Set an array with the possible auth context values: array ('urn:oasis:names:tc:SAML:2.0:ac:classes:Password', 'urn:oasis:names:tc:SAML:2.0:ac:classes:X509'),
"requestedAuthnContext": true,

// Allows the authn comparison parameter to be set, defaults to 'exact' if the setting is not present.
"requestedAuthnContextComparison": "exact",
// Set to true to check that the AuthnContext(s) received match(es) the requested.
"failOnAuthnContextMismatch": false,

// In some environment you will need to set how long the published metadata of the Service Provider gonna be valid.
// is possible to not set the 2 following parameters (or set to null) and default values will be set (2 days, 1 week)
// Provide the desire TimeStamp, for example 2015-06-26T20:00:00Z
"metadataValidUntil": null,
// Provide the desire Duration, for example PT518400S (6 days)
"metadataCacheDuration": null,

// If enabled, URLs with single-label-domains will
// be allowed and not rejected by the settings validator (Enable it under Docker/Kubernetes/testing env, not recommended on production)
"allowSingleLabelDomains": false,

// Algorithm that the toolkit will use on signing process. Options:
// 'http://www.w3.org/2000/09/xmldsig#rsa-sha1'
// 'http://www.w3.org/2000/09/xmldsig#dsa-sha1'
// 'http://www.w3.org/2001/04/xmldsig-more#rsa-sha256'
// 'http://www.w3.org/2001/04/xmldsig-more#rsa-sha384'
// 'http://www.w3.org/2001/04/xmldsig-more#rsa-sha512'
"signatureAlgorithm": "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256",

// Algorithm that the toolkit will use on digest process. Options:
// 'http://www.w3.org/2000/09/xmldsig#sha1'
// 'http://www.w3.org/2001/04/xmlenc#sha256'
// 'http://www.w3.org/2001/04/xmldsig-more#sha384'
// 'http://www.w3.org/2001/04/xmlenc#sha512'
'digestAlgorithm': "http://www.w3.org/2001/04/xmlenc#sha256",

// Specify if you want the SP to view assertions with duplicated Name or FriendlyName attributes to be valid
// Defaults to false if not specified
'allowRepeatAttributeName': false,

11

// If the toolkit receive a message signed with a
// deprecated algorithm (defined at the constant class)
// will raise an error and reject the message
"rejectDeprecatedAlgorithm": true

},

// Contact information template, it is recommended to suply a
// technical and support contacts.
"contactPerson": {

"technical": {
"givenName": "technical_name",
"emailAddress": "technical@example.com"

},
"support": {

"givenName": "support_name",
"emailAddress": "support@example.com"

}
},

// Organization information template, the info in en_US lang is
// recommended, add more if required.
"organization": {

"en-US": {
"name": "sp_test",
"displayname": "SP test",
"url": "http://sp.example.com"

}
}

}

In the security section, you can set the way that the SP will handle the messages
and assertions. Contact the admin of the IdP and ask them what the IdP expects,
and decide what validations will handle the SP and what requirements the SP
will have and communicate them to the IdP’s admin too.

Once we know what kind of data could be configured, let’s talk about the way
settings are handled within the toolkit.

The settings files described (settings.json and advanced_settings.json)
are loaded by the toolkit if not other dict with settings info is provided in the
constructors of the toolkit. Let’s see some examples.

Initializes toolkit with settings.json & advanced_settings.json files.
auth = OneLogin_Saml2_Auth(req)
or
settings = OneLogin_Saml2_Settings()

12

Initializes toolkit with settings.json & advanced_settings.json files from a custom base path.
custom_folder = '/var/www/django-project'
auth = OneLogin_Saml2_Auth(req, custom_base_path=custom_folder)
or
settings = OneLogin_Saml2_Settings(custom_base_path=custom_folder)

Initializes toolkit with the dict provided.
auth = OneLogin_Saml2_Auth(req, settings_data)
or
settings = OneLogin_Saml2_Settings(settings_data)

You can declare the settings_data in the file that contains the constructor
execution or locate them in any file and load the file in order to get the dict
available as we see in the following example:

filename = "/var/www/django-project/custom_settings.json" # The custom_settings.json contains a
json_data_file = open(filename, 'r') # settings_data dict.
settings_data = json.load(json_data_file)
json_data_file.close()

auth = OneLogin_Saml2_Auth(req, settings_data)

Metadata Based Configuration The method above requires a little extra
work to manually specify attributes about the IdP. (And your SP application)

There’s an easier method – use a metadata exchange. Metadata is just an XML
file that defines the capabilities of both the IdP and the SP application. It also
contains the X.509 public key certificates which add to the trusted relationship.
The IdP administrator can also configure custom settings for an SP based on
the metadata.

Using parse_remote IdP metadata can be obtained and added to the settings
without further ado.

Take in mind that the OneLogin_Saml2_IdPMetadataParser class does not
validate in any way the URL that is introduced in order to be parsed.

Usually the same administrator that handles the Service Provider also sets the
URL to the IdP, which should be a trusted resource.

But there are other scenarios, like a SAAS app where the administrator of the
app delegates this functionality to other users. In this case, extra precaution
should be taken in order to validate such URL inputs and avoid attacks like
SSRF.

idp_data = OneLogin_Saml2_IdPMetadataParser.parse_remote('https://example.com/auth/saml2/idp/metadata')

You can specify a timeout in seconds for metadata retrieval, without it is not
guaranteed that the request will complete

13

idp_data = OneLogin_Saml2_IdPMetadataParser.parse_remote('https://example.com/auth/saml2/idp/metadata',
timeout=5)

If the Metadata contains several entities, the relevant EntityDescriptor can
be specified when retrieving the settings from the IdpMetadataParser by its
entityId value:

idp_data = OneLogin_Saml2_IdPMetadataParser.parse_remote(https://example.com/metadatas,
entity_id='idp_entity_id')

How load the library In order to use the toolkit library you need to import
the file that contains the class that you will need on the top of your python file.

from onelogin.saml2.auth import OneLogin_Saml2_Auth
from onelogin.saml2.settings import OneLogin_Saml2_Settings
from onelogin.saml2.utils import OneLogin_Saml2_Utils

The Request Building a OneLogin_Saml2_Auth object requires a request
parameter:

auth = OneLogin_Saml2_Auth(req)

This parameter has the following scheme:

req = {
"http_host": "",
"script_name": "",
"get_data": "",
"post_data": "",

Advanced request options
"https": "",
"request_uri": "",
"query_string": "",
"validate_signature_from_qs": False,
"lowercase_urlencoding": False

}

Each Python framework builds its own request object, you may map its data
to match what the SAML toolkit expects. Let‘s see some examples:

def prepare_from_django_request(request):
return {

'http_host': request.META['HTTP_HOST'],
'script_name': request.META['PATH_INFO'],
'get_data': request.GET.copy(),
'post_data': request.POST.copy()

}

14

def prepare_from_flask_request(request):
url_data = urlparse(request.url)
return {

'http_host': request.host,
'script_name': request.path,
'get_data': request.args.copy(),
'post_data': request.form.copy()

}

An explanation of some advanced request parameters:

• https - Defaults to off. Set this to on if you receive responses over
HTTPS.

• request_uri - The path where your SAML server receives requests. Set
this if requests are not received at the server’s root.

• query_string - Set this with additional query parameters that should be
passed to the request endpoint.

• validate_signature_from_qs - If True, use query_string to validate
request and response signatures. Otherwise, use get_data. Defaults to
False. Note that when using get_data, query parameters need to be url-
encoded for validation. By default we use upper-case url-encoding. Some
IdPs, notably Microsoft AD, use lower-case url-encoding, which makes
signature validation to fail. To fix this issue, either pass query_string
and set validate_signature_from_qs to True, which works for all IdPs,
or set lowercase_urlencoding to True, which only works for AD.

Initiate SSO In order to send an AuthNRequest to the IdP:

from onelogin.saml2.auth import OneLogin_Saml2_Auth

req = prepare_request_for_toolkit(request)
auth = OneLogin_Saml2_Auth(req) # Constructor of the SP, loads settings.json

and advanced_settings.json

auth.login() # This method will build and return a AuthNRequest URL that can be
either redirected to, or printed out onto the screen as a hyperlink

The AuthNRequest will be sent signed or unsigned based on the security info of
the advanced_settings.json file (i.e. authnRequestsSigned).

The IdP will then return the SAML Response to the user’s client. The client is
then forwarded to the Assertion Consumer Service (ACS) of the SP with
this information.

We can set a return_to url parameter to the login function and that will be
converted as a RelayState parameter:

15

target_url = 'https://example.com'
auth.login(return_to=target_url)

The login method can receive 3 more optional parameters:

• force_authn When true, the AuthNReuqest will set the ForceAuthn='true'
• is_passive When true, the AuthNReuqest will set the Ispassive='true'
• set_nameid_policy When true, the AuthNReuqest will set a

nameIdPolicy element.

If a match on the future SAMLResponse ID and the AuthNRequest ID to be sent
is required, that AuthNRequest ID must to be extracted and stored for future
validation, we can get that ID by

auth.get_last_request_id()

The SP Endpoints Related to the SP there are 3 important endpoints: The
metadata view, the ACS view and the SLS view. The toolkit provides examples
of those views in the demos, but let’s see an example.

SP Metadata

This code will provide the XML metadata file of our SP, based on the info that
we provided in the settings files.

req = prepare_request_for_toolkit(request)
auth = OneLogin_Saml2_Auth(req)
saml_settings = auth.get_settings()
metadata = saml_settings.get_sp_metadata()
errors = saml_settings.validate_metadata(metadata)
if len(errors) == 0:

print(metadata)
else:

print("Error found on Metadata: %s" % (', '.join(errors)))

The get_sp_metadata will return the metadata signed or not based on the
security info of the advanced_settings.json (signMetadata).

Before the XML metadata is exposed, a check takes place to ensure that the
info to be provided is valid.

Instead of using the Auth object, you can directly use

saml_settings = OneLogin_Saml2_Settings(settings=None, custom_base_path=None, sp_validation_only=True)

to get the settings object and with the sp_validation_only=True parameter
we will avoid the IdP settings validation.

Assertion Consumer Service (ACS)

This code handles the SAML response that the IdP forwards to the SP through
the user’s client.

16

req = prepare_request_for_toolkit(request)
auth = OneLogin_Saml2_Auth(req)
auth.process_response()
errors = auth.get_errors()
if not errors:

if auth.is_authenticated():
request.session['samlUserdata'] = auth.get_attributes()
if 'RelayState' in req['post_data'] and

OneLogin_Saml2_Utils.get_self_url(req) != req['post_data']['RelayState']:
To avoid 'Open Redirect' attacks, before execute the redirection confirm

the value of the req['post_data']['RelayState'] is a trusted URL.
auth.redirect_to(req['post_data']['RelayState'])

else:
for attr_name in request.session['samlUserdata'].keys():

print('%s ==> %s' % (attr_name, '|| '.join(request.session['samlUserdata'][attr_name])))
else:

print('Not authenticated')
else:

print("Error when processing SAML Response: %s %s" % (', '.join(errors), auth.get_last_error_reason()))

The SAML response is processed and then checked that there are no errors. It
also verifies that the user is authenticated and stored the userdata in session.

At that point there are 2 possible alternatives:

• If no RelayState is provided, we could show the user data in this view or
however we wanted.

• If RelayState is provided, a redirection takes place.

Notice that we saved the user data in the session before the redirection to have
the user data available at the RelayState view.

In order to retrieve attributes we use:

attributes = auth.get_attributes();

With this method we get a dict with all the user data provided by the IdP in
the assertion of the SAML response.

If we execute print attributes we could get:

{
"cn": ["Jhon"],
"sn": ["Doe"],
"mail": ["Doe"],
"groups": ["users", "members"]

}

Each attribute name can be used as a key to obtain the value. Every attribute
is a list of values. A single-valued attribute is a list of a single element.

17

The following code is equivalent:

attributes = auth.get_attributes();
print(attributes['cn'])

print(auth.get_attribute('cn'))

Before trying to get an attribute, check that the user is authenticated. If the
user isn’t authenticated, an empty dict will be returned. For example, if we call
to get_attributes before a auth.process_response, the get_attributes()
will return an empty dict.

Single Logout Service (SLS)

This code handles the Logout Request and the Logout Responses.

delete_session_callback = lambda: request.session.flush()
url = auth.process_slo(delete_session_cb=delete_session_callback)
errors = auth.get_errors()
if len(errors) == 0:

if url is not None:
To avoid 'Open Redirect' attacks, before execute the redirection confirm
the value of the url is a trusted URL.
return redirect(url)

else:
print("Successfully Logged out")

else:
print("Error when processing SLO: %s %s" % (', '.join(errors), auth.get_last_error_reason()))

If the SLS endpoints receives a Logout Response, the response is validated and
the session could be closed, using the callback.

Part of the process_slo method
logout_response = OneLogin_Saml2_Logout_Response(self.__settings, self.__request_data['get_data']['SAMLResponse'])
if not logout_response.is_valid(self.__request_data, request_id):

self.__errors.append('invalid_logout_response')
elif logout_response.get_status() != OneLogin_Saml2_Constants.STATUS_SUCCESS:

self.__errors.append('logout_not_success')
elif not keep_local_session:

OneLogin_Saml2_Utils.delete_local_session(delete_session_cb)

If the SLS endpoints receives an Logout Request, the request is validated, the
session is closed and a Logout Response is sent to the SLS endpoint of the IdP.

Part of the process_slo method
request = OneLogin_Saml2_Utils.decode_base64_and_inflate(self.__request_data['get_data']['SAMLRequest'])
if not OneLogin_Saml2_Logout_Request.is_valid(self.__settings, request, self.__request_data):

self.__errors.append('invalid_logout_request')
else:

if not keep_local_session:

18

OneLogin_Saml2_Utils.delete_local_session(delete_session_cb)

in_response_to = request.id
response_builder = OneLogin_Saml2_Logout_Response(self.__settings)
response_builder.build(in_response_to)
logout_response = response_builder.get_response()

parameters = {'SAMLResponse': logout_response}
if 'RelayState' in self.__request_data['get_data']:

parameters['RelayState'] = self.__request_data['get_data']['RelayState']

security = self.__settings.get_security_data()
if 'logoutResponseSigned' in security and security['logoutResponseSigned']:

parameters['SigAlg'] = OneLogin_Saml2_Constants.RSA_SHA1
parameters['Signature'] = self.build_response_signature(logout_response, parameters.get('RelayState', None))

return self.redirect_to(self.get_slo_url(), parameters)

If we don’t want that process_slo to destroy the session, pass a true parameter
to the process_slo method:

keepLocalSession = true
auth.process_slo(keep_local_session=keepLocalSession);

Initiate SLO In order to send a Logout Request to the IdP:

The Logout Request will be sent signed or unsigned based on the security info
of the advanced_settings.json (logoutRequestSigned).

The IdP will return the Logout Response through the user’s client to the Single
Logout Service (SLS) of the SP.

We can set a return_to url parameter to the logout function and that will be
converted as a RelayState parameter:

target_url = 'https://example.com'
auth.logout(return_to=target_url)

Also there are another 5 optional parameters that can be set:

• name_id: That will be used to build the LogoutRequest. If no name_id
parameter is set and the auth object processed a SAML Response with a
NameId, then this NameId will be used.

• session_index: SessionIndex that identifies the session of the user.
• nq: IDP Name Qualifier.
• name_id_format: The NameID Format that will be set in the

LogoutRequest.
• spnq: The NameID SP NameQualifier will be set in the LogoutRequest.

19

If no name_id is provided, the LogoutRequest will contain a NameID with the
entity Format. If name_id is provided and no name_id_format is provided, the
NameIDFormat of the settings will be used.

If a match on the LogoutResponse ID and the LogoutRequest ID to be sent is
required, that LogoutRequest ID must to be extracted and stored for future
validation, we can get that ID by:

auth.get_last_request_id()

Example of a view that initiates the SSO request and handles the
response (is the acs target) We can code a unique file that initiates the
SSO process, handle the response, get the attributes, initiate the SLO and
processes the logout response.

Note: Review the demos, in a later section we explain the demo use case further
in detail.

req = prepare_request_for_toolkit(request) # Process the request and build the request dict that
the toolkit expects

auth = OneLogin_Saml2_Auth(req) # Initialize the SP SAML instance

if 'sso' in request.args: # SSO action (SP-SSO initited). Will send an AuthNRequest to the IdP
return redirect(auth.login())

elif 'sso2' in request.args: # Another SSO init action
return_to = '%sattrs/' % request.host_url # but set a custom RelayState URL
return redirect(auth.login(return_to))

elif 'slo' in request.args: # SLO action. Will sent a Logout Request to IdP
nameid = request.session['samlNameId']
nameid_format = request.session['samlNameIdFormat']
nameid_nq = request.session['samlNameIdNameQualifier']
nameid_spnq = request.session['samlNameIdSPNameQualifier']
session_index = request.session['samlSessionIndex']
return redirect(auth.logout(None, nameid, session_index, nameid_nq, nameid_format, nameid_spnq))

elif 'acs' in request.args: # Assertion Consumer Service
auth.process_response() # Process the Response of the IdP
errors = auth.get_errors() # This method receives an array with the errors
if len(errors) == 0: # that could took place during the process

if not auth.is_authenticated(): # This check if the response was ok and the user
msg = "Not authenticated" # data retrieved or not (user authenticated)

else:
request.session['samlUserdata'] = auth.get_attributes() # Retrieves user data
request.session['samlNameId'] = auth.get_nameid()
request.session['samlNameIdFormat'] = auth.get_nameid_format()
request.session['samlNameIdNameQualifier'] = auth.get_nameid_nq()
request.session['samlNameIdSPNameQualifier'] = auth.get_nameid_spnq()

20

request.session['samlSessionIndex'] = auth.get_session_index()
self_url = OneLogin_Saml2_Utils.get_self_url(req)
if 'RelayState' in request.form and self_url != request.form['RelayState']:

To avoid 'Open Redirect' attacks, before execute the redirection confirm
the value of the request.form['RelayState'] is a trusted URL.
return redirect(auth.redirect_to(request.form['RelayState'])) # Redirect if there is a relayState

else: # If there is user data we save that to print it later.
msg = ''
for attr_name in request.session['samlUserdata'].keys():

msg += '%s ==> %s' % (attr_name, '|| '.join(request.session['samlUserdata'][attr_name]))
elif 'sls' in request.args: # Single Logout Service

delete_session_callback = lambda: session.clear() # Obtain session clear callback
url = auth.process_slo(delete_session_cb=delete_session_callback) # Process the Logout Request & Logout Response
errors = auth.get_errors() # Retrieves possible validation errors
if len(errors) == 0:

if url is not None:
To avoid 'Open Redirect' attacks, before execute the redirection confirm
the value of the url is a trusted URL.
return redirect(url)

else:
msg = "Successfully logged out"

if len(errors) == 0:
print(msg)

else:
print(', '.join(errors))

SP Key rollover

If you plan to update the SP x509cert and privateKey you can define the new
x509cert as settings['sp']['x509certNew'] and it will be published on the
SP metadata so Identity Providers can read them and get ready for rollover.

IdP with multiple certificates

In some scenarios the IdP uses different certificates for signing/encryption, or
is under key rollover phase and more than one certificate is published on IdP
metadata.

In order to handle that the toolkit offers the settings['idp']['x509certMulti']
parameter.

When that parameter is used, x509cert and certFingerprint values will be
ignored by the toolkit.

The x509certMulti is an array with 2 keys: - signing: An array of certs that
will be used to validate IdP signature - encryption: An array with one unique
cert that will be used to encrypt data to be sent to the IdP.

21

Replay attacks

In order to avoid replay attacks, you can store the ID of the SAML messages
already processed, to avoid processing them twice. Since the Messages expires
and will be invalidated due that fact, you don’t need to store those IDs longer
than the time frame that you currently accepting.

Get the ID of the last processed message/assertion with the get_last_message_id/get_last_assertion_id
method of the Auth object.

Main classes and methods

Described below are the main classes and methods that can be invoked from the
SAML2 library.

OneLogin_Saml2_Auth - auth.py Main class of SAML Python Toolkit

• __init__ Initializes the SP SAML instance.
• login Initiates the SSO process.
• logout Initiates the SLO process.
• process_response Process the SAML Response sent by the IdP.
• process_slo Process the SAML Logout Response / Logout Request sent

by the IdP.
• redirect_to Redirects the user to the url past by parameter or to the url

that we defined in our SSO Request.
• is_authenticated Checks if the user is authenticated or not.
• get_attributes Returns the set of SAML attributes.
• get_attribute Returns the requested SAML attribute.
• get_nameid Returns the nameID.
• get_session_index Gets the SessionIndex from the AuthnStatement.
• get_session_expiration Gets the SessionNotOnOrAfter from the

AuthnStatement.
• get_errors Returns a list with code errors if something went wrong.
• get_last_error_reason Returns the reason of the last error
• get_sso_url Gets the SSO url.
• get_slo_url Gets the SLO url.
• get_last_request_id The ID of the last Request SAML message gener-

ated (AuthNRequest, LogoutRequest).
• get_last_authn_contexts Returns the list of authentication contexts

sent in the last SAML Response.
• build_request_signature Builds the Signature of the SAML Request.
• build_response_signature Builds the Signature of the SAML Response.
• get_settings Returns the settings info.
• set_strict Set the strict mode active/disable.
• get_last_request_xml Returns the most recently-constructed/processed

XML SAML request (AuthNRequest, LogoutRequest)
• get_last_response_xml Returns the most recently-constructed/processed

22

XML SAML response (SAMLResponse, LogoutResponse). If the SAML-
Response had an encrypted assertion, decrypts it.

• get_last_response_in_response_to The InResponseTo ID of the
most recently processed SAML Response.

• get_last_message_id The ID of the last Response SAML message
processed.

• get_last_assertion_id The ID of the last assertion processed.
• get_last_assertion_not_on_or_after The NotOnOrAfter value of

the valid SubjectConfirmationData node (if any) of the last assertion
processed (is only calculated with strict = true)

• get_last_assertion_issue_instant The IssueInstant value of the
last assertion processed.

OneLogin_Saml2_Auth - authn_request.py SAML 2 Authentication
Request class

• __init__ This class handles an AuthNRequest. It builds an AuthNRequest
object.

• get_request Returns unsigned AuthnRequest.
• get_id Returns the AuthNRequest ID.
• get_xml Returns the XML that will be sent as part of the request.

OneLogin_Saml2_Response - response.py SAML 2 Authentication Re-
sponse class

• __init__ Constructs the SAML Response object.
• is_valid Determines if the SAML Response is valid. Includes checking of

the signature by a certificate.
• check_status Check if the status of the response is success or not
• get_audiences Gets the audiences
• get_issuers Gets the issuers (from message and from assertion)
• get_nameid_data Gets the NameID Data provided by the SAML Re-

sponse from the IdP (returns a dict)
• get_nameid Gets the NameID provided by the SAML Response from

the IdP (returns a string)
• get_session_not_on_or_after Gets the SessionNotOnOrAfter

from the AuthnStatement
• get_session_index Gets the SessionIndex from the AuthnStatement
• get_attributes Gets the Attributes from the AttributeStatement ele-

ment.
• validate_num_assertions Verifies that the document only contains a

single Assertion (encrypted or not)
• validate_timestamps Verifies that the document is valid according to

Conditions Element
• get_error After execute a validation process, if fails this method returns

the cause

23

• get_xml_document Returns the SAML Response document (If contains
an encrypted assertion, decrypts it).

• get_id the ID of the response
• get_assertion_id the ID of the assertion in the response
• get_assertion_not_on_or_after the NotOnOrAfter value of the

valid SubjectConfirmationData if any

OneLogin_Saml2_LogoutRequest - logout_request.py SAML 2 Lo-
gout Request class

• __init__ Constructs the Logout Request object.
• get_request Returns the Logout Request deflated, base64-encoded.
• get_id Returns the ID of the Logout Request. (If you have the object

you can access to the id attribute)
• get_nameid_data Gets the NameID Data of the the Logout Request

(returns a dict).
• get_nameid Gets the NameID of the Logout Request Message (returns

a string).
• get_issuer Gets the Issuer of the Logout Request Message.
• get_session_indexes Gets the SessionIndexes from the Logout Re-

quest.
• is_valid Checks if the Logout Request received is valid.
• get_error After execute a validation process, if fails this method returns

the cause.
• get_xml Returns the XML that will be sent as part of the request or that

was received at the SP

OneLogin_Saml2_LogoutResponse - logout_response.py SAML 2
Logout Response class

• __init__ Constructs a Logout Response object.
• get_issuer Gets the Issuer of the Logout Response Message
• get_status Gets the Status of the Logout Response.
• is_valid Determines if the SAML LogoutResponse is valid
• build Creates a Logout Response object.
• get_response Returns a Logout Response object.
• get_error After execute a validation process, if fails this method returns

the cause.
• get_xml Returns the XML that will be sent as part of the response or

that was received at the SP

OneLogin_Saml2_Settings - settings.py Configuration of the SAML
Python Toolkit

• __init__ Initializes the settings: Sets the paths of the different folders
and Loads settings info from settings file or array/object provided.

• check_settings Checks the settings info.

24

• check_idp_settings Checks the IdP settings info.
• check_sp_settings Checks the SP settings info.
• get_errors Returns an array with the errors, the array is empty when

the settings is ok.
• get_sp_metadata Gets the SP metadata. The XML representation.
• validate_metadata Validates an XML SP Metadata.
• get_base_path Returns base path.
• get_cert_path Returns cert path.
• get_lib_path Returns lib path.
• get_ext_lib_path Returns external lib path.
• get_schemas_path Returns schema path.
• check_sp_certs Checks if the X.509 certs of the SP exists and are valid.
• get_sp_key Returns the X.509 private key of the SP.
• get_sp_cert Returns the X.509 public cert of the SP.
• get_sp_cert_new Returns the future X.509 public cert of the SP.
• get_idp_cert Returns the X.509 public cert of the IdP.
• get_sp_data Gets the SP data.
• get_idp_data Gets the IdP data.
• get_security_data Gets security data.
• get_contacts Gets contacts data.
• get_organization Gets organization data.
• format_idp_cert Formats the IdP cert.
• format_idp_cert_multi Formats all registered IdP certs.
• format_sp_cert Formats the SP cert.
• format_sp_cert_new Formats the SP cert new.
• format_sp_key Formats the private key.
• set_strict Activates or deactivates the strict mode.
• is_strict Returns if the strict mode is active.
• is_debug_active Returns if the debug is active.

OneLogin_Saml2_Metadata - metadata.py A class that contains func-
tionality related to the metadata of the SP

• builder Generates the metadata of the SP based on the settings.
• sign_metadata Signs the metadata with the key/cert provided.
• add_x509_key_descriptors Adds the X.509 descriptors (sign/encryption)

to the metadata

OneLogin_Saml2_Utils - utils.py Auxiliary class that contains several
methods

• decode_base64_and_inflate Base64 decodes and then inflates accord-
ing to RFC1951.

• deflate_and_base64_encode Deflates and the base64 encodes a string.
• format_cert Returns a X.509 cert (adding header & footer if required).
• format_private_key Returns a private key (adding header & footer if

25

required).
• redirect Executes a redirection to the provided url (or return the target

url).
• get_self_url_host Returns the protocol + the current host + the port

(if different than common ports).
• get_self_host Returns the current host.
• is_https Checks if https or http.
• get_self_url_no_query Returns the URL of the current host + current

view.
• get_self_routed_url_no_query Returns the routed URL of the cur-

rent host + current view.
• get_self_url Returns the URL of the current host + current view +

query.
• generate_unique_id Generates an unique string (used for example as

ID for assertions).
• parse_time_to_SAML Converts a UNIX timestamp to SAML2 times-

tamp on the form yyyy-mm-ddThh:mm:ss(.s+)?Z.
• parse_SAML_to_time Converts a SAML2 timestamp on the form

yyyy-mm-ddThh:mm:ss(.s+)?Z to a UNIX timestamp.
• now Returns unix timestamp of actual time.
• parse_duration Interprets a ISO8601 duration value relative to a given

timestamp.
• get_expire_time Compares 2 dates and returns the earliest.
• delete_local_session Deletes the local session.
• calculate_X.509_fingerprint Calculates the fingerprint of a X.509

cert.
• format_finger_print Formats a fingerprint.
• generate_name_id Generates a nameID.
• get_status Gets Status from a Response.
• decrypt_element Decrypts an encrypted element.
• write_temp_file Writes some content into a temporary file and returns

it.
• add_sign Adds signature key and senders certificate to an element (Mes-

sage or Assertion).
• validate_sign Validates a signature (Message or Assertion).
• validate_binary_sign Validates signed bynary data (Used to validate

GET Signature).

OneLogin_Saml2_XML- xml_utils.py A class that contains methods to
handle XMLs

• to_string Serialize an element to an encoded string representation of its
XML tree.

• to_etree Parses an XML document or fragment from a string.
• validate_xml Validates a xml against a schema
• query Extracts nodes that match the query from the Element

26

• extract_tag_text

OneLogin_Saml2_IdPMetadataParser - idp_metadata_parser.py
A class that contains methods to obtain and parse metadata from IdP

• get_metadata Get the metadata XML from the provided URL
• parse_remote Get the metadata XML from the provided URL and parse

it, returning a dict with extracted data
• parse Parse the Identity Provider metadata and returns a dict with

extracted data
• merge_settings Will update the settings with the provided new settings

data extracted from the IdP metadata

For more info, look at the source code. Each method is documented and details
about what does and how to use it are provided. Make sure to also check the doc
folder where HTML documentation about the classes and methods is provided.

Demos included in the toolkit
The toolkit includes 3 demos to teach how use the toolkit (A Django, Flask and
a Tornado project), take a look on it. Demos require that SP and IdP are well
configured before test it, so edit the settings files.

Notice that each python framework has it own way to handle routes/urls and
process request, so focus on how it deployed. New demos using other python
frameworks are welcome as a contribution.

Getting Started

We said that this toolkit includes a Django application demo and a Flask
application demo, let’s see how fast is it to deploy them.

Virtualenv

The use of a virtualenv is highly recommended.

Virtualenv helps isolating the python environment used to run the toolkit. You
can find more details and an installation guide in the official documentation.

Once you have your virtualenv ready and loaded, then you can install the toolkit
on it in development mode executing this:

python setup.py develop

Using this method of deployment the toolkit files will be linked instead of copied,
so if you make changes on them you won’t need to reinstall the toolkit.

If you want install it in a normal mode, execute:

python setup.py install

27

http://virtualenv.readthedocs.org/en/latest/
http://virtualenv.readthedocs.org/en/latest/

Demo Flask

You’ll need a virtualenv with the toolkit installed on it.

To run the demo you need to install the requirements first. Load your virtualenv
and execute:

pip install -r demo-flask/requirements.txt

This will install flask and its dependencies. Once it has finished, you
have to complete the configuration of the toolkit. You’ll find it at
demo-flask/settings.json

Now, with the virtualenv loaded, you can run the demo like this:

cd demo-flask
python index.py

You’ll have the demo running at http://localhost:8000

Content The flask project contains:

• index.py Is the main flask file, where or the SAML handle take place.

• templates. Is the folder where flask stores the templates of the project. It
was implemented a base.html template that is extended by index.html and
attrs.html, the templates of our simple demo that shows messages, user
attributes when available and login and logout links.

• saml Is a folder that contains the ‘certs’ folder that could be used to store
the X.509 public and private key, and the saml toolkit settings (settings.json
and advanced_settings.json).

SP setup The SAML Python Toolkit allows you to provide the settings info
in 2 ways: Settings files or define a setting dict. In the demo-flask, it uses the
first method.

In the index.py file we define the app.config['SAML_PATH'], that will target
to the saml folder. We require it in order to load the settings files.

First we need to edit the saml/settings.json file, configure the SP part and
review the metadata of the IdP and complete the IdP info. Later edit the
saml/advanced_settings.json files and configure the how the toolkit will
work. Check the settings section of this document if you have any doubt.

IdP setup Once the SP is configured, the metadata of the SP is published at
the /metadata url. Based on that info, configure the IdP.

How it works

28

1. First time you access to the main view (http://localhost:8000), you can
select to login and return to the same view or login and be redirected to
/?attrs (attrs view).

2. When you click:

2.1 in the first link, we access to /?sso (index view). An AuthNRequest is
sent to the IdP, we authenticate at the IdP and then a Response is sent
through the user’s client to the SP, specifically the Assertion Consumer
Service view: /?acs. Notice that a RelayState parameter is set to the
url that initiated the process, the index view.

2.2 in the second link we access to /?attrs (attrs view), we will expe-
tience have the same process described at 2.1 with the diference that as
RelayState is set the attrs url.

3. The SAML Response is processed in the ACS /?acs, if the Response is
not valid, the process stops here and a message is shown. Otherwise we
are redirected to the RelayState view. a) / or b) /?attrs

4. We are logged in the app and the user attributes are showed. At this point,
we can test the single log out functionality.

The single log out functionality could be tested by 2 ways.

5.1 SLO Initiated by SP. Click on the ``logout`` link at the SP, after that a Logout Request is sent to the IdP, the session at the IdP is closed and replies through the client to the SP with a Logout Response (sent to the Single Logout Service endpoint). The SLS endpoint ``/?sls`` of the SP process the Logout Response and if is valid, close the user session of the local app. Notice that the SLO Workflow starts and ends at the SP.

5.2 SLO Initiated by IdP. In this case, the action takes place on the IdP side, the logout process is initiated at the IdP, sends a Logout Request to the SP (SLS endpoint, ``/?sls``). The SLS endpoint of the SP process the Logout Request and if is valid, close the session of the user at the local app and send a Logout Response to the IdP (to the SLS endpoint of the IdP). The IdP receives the Logout Response, process it and close the session at of the IdP. Notice that the SLO Workflow starts and ends at the IdP.

Notice that all the SAML Requests and Responses are handled at a unique view
(index) and how GET parameters are used to know the action that must be
done.

Demo Tornado

You’ll need a virtualenv with the toolkit installed on it.

First of all you need some packages, execute:

apt-get install libxml2-dev libxmlsec1-dev libxmlsec1-openssl

To run the demo you need to install the requirements first. Load your virtualenv
and execute:

pip install -r demo-tornado/requirements.txt

This will install tornado and its dependencies. Once it has finished,
you have to complete the configuration of the toolkit. You’ll find it at
demo-tornado/saml/settings.json

Now, with the virtualenv loaded, you can run the demo like this:

cd demo-tornado

29

python views.py

You’ll have the demo running at http://localhost:8000

Content The tornado project contains:

• views.py Is the main flask file, where or the SAML handle take place.

• settings.py Contains the base path and the path where is located the
saml folder and the template folder

• templates. Is the folder where tornado stores the templates of the project.
It was implemented a base.html template that is extended by index.html
and attrs.html, the templates of our simple demo that shows messages,
user attributes when available and login and logout links.

• saml Is a folder that contains the ‘certs’ folder that could be used to store
the X.509 public and private key, and the saml toolkit settings (settings.json
and advanced_settings.json).

SP setup The SAML Python Toolkit allows you to provide the settings info
in 2 ways: Settings files or define a setting dict. In the demo-tornado, it uses
the first method.

In the settings.py file we define the SAML_PATH, that will target to the saml
folder. We require it in order to load the settings files.

First we need to edit the saml/settings.json file, configure the SP part and
review the metadata of the IdP and complete the IdP info. Later edit the
saml/advanced_settings.json files and configure the how the toolkit will
work. Check the settings section of this document if you have any doubt.

IdP setup Once the SP is configured, the metadata of the SP is published at
the /metadata url. Based on that info, configure the IdP.

How it works

1. First time you access to the main view (http://localhost:8000), you can
select to login and return to the same view or login and be redirected to
/?attrs (attrs view).

2. When you click:

2.1 in the first link, we access to /?sso (index view). An AuthNRequest is
sent to the IdP, we authenticate at the IdP and then a Response is sent
through the user’s client to the SP, specifically the Assertion Consumer
Service view: /?acs. Notice that a RelayState parameter is set to the
url that initiated the process, the index view.

30

2.2 in the second link we access to /?attrs (attrs view), we will expe-
tience have the same process described at 2.1 with the diference that as
RelayState is set the attrs url.

3. The SAML Response is processed in the ACS /?acs, if the Response is
not valid, the process stops here and a message is shown. Otherwise we
are redirected to the RelayState view. a) / or b) /?attrs

4. We are logged in the app and the user attributes are showed. At this point,
we can test the single log out functionality.

The single log out functionality could be tested by 2 ways.

5.1 SLO Initiated by SP. Click on the ``logout`` link at the SP, after that a Logout Request is sent to the IdP, the session at the IdP is closed and replies through the client to the SP with a Logout Response (sent to the Single Logout Service endpoint). The SLS endpoint ``/?sls`` of the SP process the Logout Response and if is valid, close the user session of the local app. Notice that the SLO Workflow starts and ends at the SP.

5.2 SLO Initiated by IdP. In this case, the action takes place on the IdP side, the logout process is initiated at the IdP, sends a Logout Request to the SP (SLS endpoint, ``/?sls``). The SLS endpoint of the SP process the Logout Request and if is valid, close the session of the user at the local app and send a Logout Response to the IdP (to the SLS endpoint of the IdP). The IdP receives the Logout Response, process it and close the session at of the IdP. Notice that the SLO Workflow starts and ends at the IdP.

Notice that all the SAML Requests and Responses are handled at a unique view
(index) and how GET parameters are used to know the action that must be
done.

Demo Django

You’ll need a virtualenv with the toolkit installed on it.

To run the demo you need to install the requirements first. Load your virtualenv
and execute:

pip install -r demo-django/requirements.txt

This will install django and its dependencies. Once it has finished, you have to
complete the configuration of the toolkit.

Later, with the virtualenv loaded, you can run the demo like this:

cd demo-django
python manage.py runserver 0.0.0.0:8000

You’ll have the demo running at http://localhost:8000.

Note that many of the configuration files expect HTTPS. This is not required by
the demo, as replacing these SP URLs with HTTP will work just fine. HTTPS
is however highly encouraged, and left as an exercise for the reader for their
specific needs.

If you want to integrate a production django application, take a look on this
SAMLServiceProviderBackend that uses our toolkit to add SAML support:
https://github.com/KristianOellegaard/django-saml-service-provider

Content The django project contains:

• manage.py. A file that is automatically created in each Django project.
Is a thin wrapper around django-admin.py that takes care of putting the

31

project’s package on sys.path and sets the DJANGO_SETTINGS_MODULE
environment variable.

• saml Is a folder that contains the ‘certs’ folder that could be used to
store the X.509 public and private key, and the saml toolkit settings
(settings.json and advanced_settings.json).

• demo Is the main folder of the django project, that contains the typical
files:

– settings.py Contains the default parameters of a django project
except the SAML_FOLDER parameter, that may contain the path where
is located the saml folder.

– urls.py A file that define url routes. In the demo we defined '/'
that is related to the index view, '/attrs' that is related with the
attrs view and '/metadata', related to the metadata view.

– views.py This file contains the views of the django project and some
aux methods.

– wsgi.py A file that let as deploy django using WSGI, the Python
standard for web servers and applications.

• templates. Is the folder where django stores the templates of the project.
It was implemented a base.html template that is extended by index.html
and attrs.html, the templates of our simple demo that shows messages,
user attributes when available and login and logout links.

SP setup The SAML Python Toolkit allows you to provide the settings info
in 2 ways: settings files or define a setting dict. In the demo-django it used the
first method.

After set the SAML_FOLDER in the demo/settings.py, the settings of the Python
toolkit will be loaded on the Django web.

First we need to edit the saml/settings.json, configure the SP part and
review the metadata of the IdP and complete the IdP info. Later edit the
saml/advanced_settings.json files and configure the how the toolkit will
work. Check the settings section of this document if you have any doubt.

IdP setup Once the SP is configured, the metadata of the SP is published at
the /metadata url. Based on that info, configure the IdP.

How it works This demo works very similar to the flask-demo (We did it
intentionally).

Getting up and running on Heroku

Getting python3-saml up and running on Heroku will require some extra legwork:
python3-saml depends on python-xmlsec which depends on headers from the
xmlsec1-dev Linux package to install correctly.

32

First you will need to add the apt buildpack to your build server:

heroku buildpacks:add --index=1 -a your-app heroku-community/apt
heroku buildpacks:add --index=2 -a your-app heroku/python

You can confirm the buildpacks have been added in the correct order with heroku
buildpacks -a your-app, you should see the apt buildpack first followed by
the Python buildpack.

Then add an Aptfile into the root of your repository containing the
libxmlsec1-dev package, the file should look like:

libxmlsec1-dev

Finally, add python3-saml to your requirements.txt and git push to trigger
a build.

Demo Pyramid

Unlike the other two projects, you don’t need a pre-existing virtualenv to get up
and running here, since Pyramid comes from the buildout school of thought.

To run the demo you need to install Pyramid, the requirements, etc.:

cd demo_pyramid
python3 -m venv env
env/bin/pip install --upgrade pip setuptools
env/bin/pip install -e ".[testing]"

If you want to make sure the tests pass, run:

env/bin/pytest

Next, edit the settings in demo_pyramid/saml/settings.json. (Pyramid runs
on port 6543 by default.)

Now you can run the demo like this:

env/bin/pserve development.ini

If that worked, the demo is now running at http://localhost:6543.

Content The Pyramid project contains:

• ***__init__.py*** is the main Pyramid file that configures the app and
its routes.

• views.py is where all the SAML handling takes place.

• templates is the folder where Pyramid stores the templates of the project.
It was implemented a layout.jinja2 template that is extended by
index.jinja2 and attrs.jinja2, the templates of our simple demo that
shows messages, user attributes when available and login and logout links.

33

http://www.buildout.org/en/latest/

• saml is a folder that contains the ‘certs’ folder that could be used to
store the X.509 public and private key, and the saml toolkit settings
(settings.json and advanced_settings.json).

SP setup The SAML Python Toolkit allows you to provide the settings info in
2 ways: settings files or define a setting dict. In demo_pyramid the first method
is used.

In the views.py file we define the SAML_PATH, which will target the saml folder.
We require it in order to load the settings files.

First we need to edit the saml/settings.json, configure the SP part and
review the metadata of the IdP and complete the IdP info. Later edit the
saml/advanced_settings.json files and configure the how the toolkit will
work. Check the settings section of this document if you have any doubt.

IdP setup Once the SP is configured, the metadata of the SP is published at
the /metadata url. Based on that info, configure the IdP.

How it works

1. First time you access to the main view (http://localhost:6543), you can
select to login and return to the same view or login and be redirected to
/?attrs (attrs view).

2. When you click:

2.1 in the first link, we access to /?sso (index view). An AuthNRequest is
sent to the IdP, we authenticate at the IdP and then a Response is sent
through the user’s client to the SP, specifically the Assertion Consumer
Service view: /?acs. Notice that a RelayState parameter is set to the
url that initiated the process, the index view.

2.2 in the second link we access to /?attrs (attrs view), we will experience
the same process described at 2.1 with the diference that as RelayState
is set the attrs url.

3. The SAML Response is processed in the ACS /?acs, if the Response is
not valid, the process stops here and a message is shown. Otherwise we
are redirected to the RelayState view. a) / or b) /?attrs

4. We are logged in the app and the user attributes are showed. At this point,
we can test the single log out functionality.

The single log out functionality could be tested by 2 ways.

5.1 SLO Initiated by SP. Click on the "logout" link at the SP, after that a Logout Request is sent to the IdP, the session at the IdP is closed and replies through the client to the SP with a Logout Response (sent to the Single Logout Service endpoint). The SLS endpoint /?sls of the SP process the Logout Response and if is valid, close the user session of the local app. Notice that the SLO Workflow starts and ends at the SP.

5.2 SLO Initiated by IdP. In this case, the action takes place on the IdP side, the logout process is initiated at the IdP, sends a Logout Request to the SP (SLS endpoint, /?sls). The SLS endpoint of the SP process the Logout Request and if is valid, close the session of the user at the local app and send a Logout Response to the IdP (to the SLS endpoint of the IdP). The IdP receives the Logout Response, process it and close the session at of the IdP. Notice that the SLO Workflow starts and ends at the IdP.

34

Notice that all the SAML Requests and Responses are handled at a unique view
(index) and how GET parameters are used to know the action that must be
done.

35

	SAML Python Toolkit (compatible with Python3)
	Why add SAML support to my software?
	General Description
	Installation
	Dependencies
	Code

	Security Warning
	Avoiding Open Redirect attacks
	Avoiding Replay attacks

	Getting Started
	Knowing the toolkit
	How It Works
	SP Key rollover
	IdP with multiple certificates
	Replay attacks
	Main classes and methods

	Demos included in the toolkit
	Getting Started
	Demo Flask
	Demo Tornado
	Demo Django
	Getting up and running on Heroku
	Demo Pyramid

