
The Rocky Road toThe Rocky Road to

Hanno Böck

https://hboeck.de

@hanno

1

https://hboeck.de/
https://twitter.com/hanno/

Transport Layer SecurityTransport Layer Security
A protocol to create an encrypted and authenticated

layer around other protocols

2

TLS 1.3 was published in August 2018TLS 1.3 was published in August 2018

3

How did we get there?How did we get there?

4

In 1995 Netscape introduced SecureIn 1995 Netscape introduced Secure
Socket Layer or SSL version 2Socket Layer or SSL version 2

5

In 1996 it was followed up with SSLIn 1996 it was followed up with SSL
version 3version 3

6

In 1999 the IETF took over and renamedIn 1999 the IETF took over and renamed
it to TLSit to TLS

7

SSL/TLS HistorySSL/TLS History
1995: SSL 2
1996: SSL 3
1999: TLS
1.0
2006: TLS
1.1
2008: TLS
1.2
2018: TLS
1.3

8

VulnerabilitiesVulnerabilities

C C S
C C S
C C S

9

Padding Oracles in CBC modePadding Oracles in CBC mode

10

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

Initialization Vector (IV)

WhiteTimberwolf, Wikimedia Commons, Public Domain

11

https://commons.wikimedia.org/wiki/File:CBC_encryption.svg

CBC Padding for Block Ciphers (AES)CBC Padding for Block Ciphers (AES)
Encryption of data blocks means we have to fill up

space

12

CBC in TLSCBC in TLS
MAC-then-Pad-then-Encrypt

13

Valid PaddingValid Padding
00
01 01
02 02 02
03 03 03 03
...

14

We assume a situation where the attacker can see
whether the padding is valid

15

block cipher
decryptionKey

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryptionKey

Plaintext

Ciphertext

Attacker wants to decrypt
Attacker manipulates / XOR with guess

?== 00 -> padding valid

16

block cipher
decryptionKey

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryptionKey

Plaintext

Ciphertext

Attacker knows
Attacker manipulates to 01
Attacker wants to know
Attacker manipulates to guess 01

?== 01 01 -> padding valid

17

2002: Serge Vaudenay discovers Padding2002: Serge Vaudenay discovers Padding
OracleOracle

Vaudenay, 2002

18

https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf

TLS errorsTLS errors
decryption_failed

bad_record_mac

19

If an attacker can see the TLS error he can use a
padding oracle

20

However TLS errors are encrypted:

Attack is not practical

21

2003: Timing attack allows practical2003: Timing attack allows practical
padding oracle attackpadding oracle attack

Canvel et al, 2003

22

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf

TLS 1.2 fixed it (kind of)TLS 1.2 fixed it (kind of)
This leaves a small timing channel, since MAC

performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough
to be exploitable, due to the large block size of existing

MACs and the small size of the timing signal.

23

Lucky Thirteen (2013)Lucky Thirteen (2013)
Actually it is large enough to be exploitable

AlFardan, Paterson 2013

24

http://www.isg.rhul.ac.uk/tls/Lucky13.html

It is possible to make TLS with CBC timing safe, but it
adds a lot of complexity to the code

25

POODLE (2014)POODLE (2014)
SSLv3 has a padding oracle flaw by design

Möller et al, 2014

26

https://www.openssl.org/~bodo/ssl-poodle.pdf

POODLE-TLS (2014)POODLE-TLS (2014)
Implementations fail to check the padding, making

TLS vulnerable to POODLE, too
Langley, 2014

27

https://www.imperialviolet.org/2014/12/08/poodleagain.html

Lucky Microseconds in s2n (2015)Lucky Microseconds in s2n (2015)
Sorry Amazon, your fix for Lucky Thirteen doesn't work

Albrecht, Paterson, 2015

28

https://eprint.iacr.org/2015/1129

LuckyMinus20 in OpenSSL (2016)LuckyMinus20 in OpenSSL (2016)
When OpenSSL tried to fix Lucky Thirteen they

introduced another padding oracle
Somorovsky, 2016

29

https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html

The original attack didn't work in practice, because
TLS errors are encrypted

30

But what if there are implementations that create
other errors that an attacker can see? For example TCP

errors, connection resets or timeouts?

31

Yes, you can find servers doing that

32

Bleichenbacher attacksBleichenbacher attacks
RSA EncryptionRSA Encryption

33

Bleichenbacher, 1998

34

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

RSA PKCS #1 1.5 EncryptionRSA PKCS #1 1.5 Encryption
00 | 02 | [random] | 00 | 03 | 03 | [secret]

35

A valid decryption always starts with 00 02

36

What shall a server do if it doesn't?

Send an error?

37

Sending an error tells the attacker something:

Decrypted data does not start with 00 02

38

Attacker can send modified ciphertext and learn
enough to decrypt data

39

So TLS 1.0 introduced some countermeasures

40

2003: Klima-Pokorny-Rosa attack

Countermeasures were incomplete
Klima et al, 2003

41

https://eprint.iacr.org/2003/052/

2014: Java is vulnerable to Bleichenbacher attacks

And OpenSSL via timing
Meyer et al, 2014

42

https://www.usenix.org/node/184424

2016: DROWN2016: DROWN

SSL 2 is vulnerable to Bleichenbacher attacks by
design

Aviram et al, 2016

43

https://drownattack.com/#paper

2017: Return of Bleichenbacher's Oracle Threat2017: Return of Bleichenbacher's Oracle Threat
(ROBOT)(ROBOT)

~1/3 of top webpages and at least 15 different
implementations vulnerable

Böck, Somorovsky, Young, 2017

44

https://robotattack.org/
https://robotattack.org/

2018: 9 Lives of Bleichenbacher's CAT2018: 9 Lives of Bleichenbacher's CAT

Cache sidechannels that work against almost most
RSA implementations

Ronen et al, 2018

45

http://cat.eyalro.net/

Bleichenbacher attack countermeasuresBleichenbacher attack countermeasures
TLS 1.0 TLS 1.1 TLS 1.2

 Note: An attack discovered by Daniel Bleichenbacher [BLEI] can be used
 to attack a TLS server which is using PKCS#1 encoded RSA. The
 attack takes advantage of the fact that by failing in different
 ways, a TLS server can be coerced into revealing whether a
 particular message, when decrypted, is properly PKCS#1 formatted
 or not.

 The best way to avoid vulnerability to this attack is to treat
 incorrectly formatted messages in a manner indistinguishable from
 correctly formatted RSA blocks. Thus, when it receives an
 incorrectly formatted RSA block, a server should generate a
 random 48-byte value and proceed using it as the premaster
 secret. Thus, the server will act identically whether the
 received RSA block is correctly encoded or not.

 Note: An attack discovered by Daniel Bleichenbacher [BLEI] can be
 used to attack a TLS server that is using PKCS#1 v 1.5 encoded
 RSA. The attack takes advantage of the fact that, by failing
 in different ways, a TLS server can be coerced into revealing
 whether a particular message, when decrypted, is properly
 PKCS#1 v1.5 formatted or not.

 The best way to avoid vulnerability to this attack is to treat
 incorrectly formatted messages in a manner indistinguishable
 from correctly formatted RSA blocks. Thus, when a server
 receives an incorrectly formatted RSA block, it should generate
 a random 48-byte value and proceed using it as the premaster
 secret. Thus, the server will act identically whether the
 received RSA block is correctly encoded or not.

 [PKCS1B] defines a newer version of PKCS#1 encoding that is
 more secure against the Bleichenbacher attack. However, for
 maximal compatibility with TLS 1.0, TLS 1.1 retains the
 original encoding. No variants of the Bleichenbacher attack
 are known to exist provided that the above recommendations are
 followed.

 Implementation Note: Public-key-encrypted data is represented as an
 opaque vector <0..2^16-1> (see Section 4.7).
 Thus, the RSA-encrypted PreMasterSecret in a
 ClientKeyExchange is preceded by two length
 bytes. These bytes are redundant in the case of
 RSA because the EncryptedPreMasterSecret is the
 only data in the ClientKeyExchange and its
 length can therefore be unambiguously
 determined. The SSLv3 specification was not
 clear about the encoding of public-key-encrypted
 data, and therefore many SSLv3 implementations
 do not include the length bytes, encoding the
 RSA encrypted data directly in the
 ClientKeyExchange message.

 This specification requires correct encoding of
 the EncryptedPreMasterSecret complete with
 length bytes. The resulting PDU is incompatible
 with many SSLv3 implementations. Implementors
 upgrading from SSLv3 must modify their
 implementations to generate and accept the
 correct encoding. Implementors who wish to be
 compatible with both SSLv3 and TLS should make
 their implementation's behavior dependent on the
 protocol version.

 Implementation Note: It is now known that remote timing-based attacks
 on SSL are possible, at least when the client
 and server are on the same LAN. Accordingly,
 implementations that use static RSA keys SHOULD
 use RSA blinding or some other anti-timing
 technique, as described in [TIMING].

 Note: The version number in the PreMasterSecret MUST be the version
 offered by the client in the ClientHello, not the version
 negotiated for the connection. This feature is designed to
 prevent rollback attacks. Unfortunately, many implementations
 use the negotiated version instead, and therefore checking the
 version number may lead to failure to interoperate with such
 incorrect client implementations. Client implementations, MUST
 and Server implementations MAY, check the version number. In
 practice, since the TLS handshake MACs prevent downgrade and no
 good attacks are known on those MACs, ambiguity is not
 considered a serious security risk. Note that if servers
 choose to check the version number, they should randomize the
 PreMasterSecret in case of error, rather than generate an
 alert, in order to avoid variants on the Bleichenbacher attack.
 [KPR03]

 Note: Attacks discovered by Bleichenbacher [BLEI] and Klima et al.
 [KPR03] can be used to attack a TLS server that reveals whether a
 particular message, when decrypted, is properly PKCS#1 formatted,
 contains a valid PreMasterSecret structure, or has the correct
 version number.

 As described by Klima [KPR03], these vulnerabilities can be avoided
 by treating incorrectly formatted message blocks and/or mismatched
 version numbers in a manner indistinguishable from correctly
 formatted RSA blocks. In other words:

 1. Generate a string R of 46 random bytes

 2. Decrypt the message to recover the plaintext M

 3. If the PKCS#1 padding is not correct, or the length of message
 M is not exactly 48 bytes:
 pre_master_secret = ClientHello.client_version || R
 else If ClientHello.client_version <= TLS 1.0, and version
 number check is explicitly disabled:
 pre_master_secret = M
 else:
 pre_master_secret = ClientHello.client_version || M[2..47]

 Note that explicitly constructing the pre_master_secret with the
 ClientHello.client_version produces an invalid master_secret if the
 client has sent the wrong version in the original pre_master_secret.

 An alternative approach is to treat a version number mismatch as a
 PKCS-1 formatting error and randomize the premaster secret
 completely:

 1. Generate a string R of 48 random bytes

 2. Decrypt the message to recover the plaintext M

 3. If the PKCS#1 padding is not correct, or the length of message
 M is not exactly 48 bytes:
 pre_master_secret = R
 else If ClientHello.client_version <= TLS 1.0, and version
 number check is explicitly disabled:
 premaster secret = M
 else If M[0..1] != ClientHello.client_version:
 premaster secret = R
 else:
 premaster secret = M

 Although no practical attacks against this construction are known,
 Klima et al. [KPR03] describe some theoretical attacks, and therefore
 the first construction described is RECOMMENDED.

 In any case, a TLS server MUST NOT generate an alert if processing an
 RSA-encrypted premaster secret message fails, or the version number
 is not as expected. Instead, it MUST continue the handshake with a
 randomly generated premaster secret. It may be useful to log the
 real cause of failure for troubleshooting purposes; however, care
 must be taken to avoid leaking the information to an attacker
 (through, e.g., timing, log files, or other channels.)

 The RSAES-OAEP encryption scheme defined in [PKCS1] is more secure
 against the Bleichenbacher attack. However, for maximal
 compatibility with earlier versions of TLS, this specification uses
 the RSAES-PKCS1-v1_5 scheme. No variants of the Bleichenbacher
 attack are known to exist provided that the above recommendations are
 followed.

 Implementation note: Public-key-encrypted data is represented as an
 opaque vector <0..2^16-1> (see Section 4.7). Thus, the RSA-encrypted
 PreMasterSecret in a ClientKeyExchange is preceded by two length
 bytes. These bytes are redundant in the case of RSA because the
 EncryptedPreMasterSecret is the only data in the ClientKeyExchange
 and its length can therefore be unambiguously determined. The SSLv3
 specification was not clear about the encoding of public-key-
 encrypted data, and therefore many SSLv3 implementations do not
 include the length bytes -- they encode the RSA-encrypted data
 directly in the ClientKeyExchange message.

 This specification requires correct encoding of the
 EncryptedPreMasterSecret complete with length bytes. The resulting
 PDU is incompatible with many SSLv3 implementations. Implementors
 upgrading from SSLv3 MUST modify their implementations to generate
 and accept the correct encoding. Implementors who wish to be
 compatible with both SSLv3 and TLS should make their implementation's
 behavior dependent on the protocol version.

 Implementation note: It is now known that remote timing-based attacks
 on TLS are possible, at least when the client and server are on the
 same LAN. Accordingly, implementations that use static RSA keys MUST
 use RSA blinding or some other anti-timing technique, as described in
 [TIMING].

46

With every new TLS version theWith every new TLS version the
countermeasures became morecountermeasures became more

complicatedcomplicated

47

Many more attacks on poor choices inMany more attacks on poor choices in
TLS 1.2 and earlierTLS 1.2 and earlier

SLOTH, FREAK, Logjam, SWEET32, Triple Handshake

48

Fixing bugs like TLS 1.2 and earlierFixing bugs like TLS 1.2 and earlier

49

Use workarounds for known security issues

50

If workarounds are insufficient use more workarounds

51

Create optional secure modes, but keep the insecure
ones

52

Fixing bugs like TLS 1.3Fixing bugs like TLS 1.3

53

Remove insecure cryptographic constructions

54

TLS 1.3 DeprecationsTLS 1.3 Deprecations
CBC-Modes, RC4, Triple-DES
GCM with explicit nonces
RSA Encryption, PKCS #1 1.5
MD5, SHA1
Diffie Hellman with custom or small
parameters
Obscure, custom and insecure Elliptic Curves

55

Formal VerificationFormal Verification
Researchers have started to formally analyze TLS in

recent years

56

Many vulnerabilities were found during protocol
analysis

57

These analyses have contributed to and guided the
design of TLS 1.3

58

Security is nice, but there's somethingSecurity is nice, but there's something
else we care about:else we care about:

Speed!Speed!

59

TLS Fresh HandshakeTLS Fresh Handshake
TLS 1.2 TLS 1.3

60

TLS 1.3 handshake removes one round trip from fresh
handshakes

61

Handshake improves forward secrecy on session
resumption and protects more data

62

TLS 1.3 has a faster and more secure handshake
Watch 33C3 talk

63

https://media.ccc.de/v/33c3-8348-deploying_tls_1_3_the_great_the_good_and_the_bad

TLS 1.3 Zero Round Trip (0-RTT)TLS 1.3 Zero Round Trip (0-RTT)

64

If we previously connected we can use a pre-shared
Key (PSK) to send data without any round trip

65

More speed!More speed!

66

But 0-RTT is not for freeBut 0-RTT is not for free

67

Replay attacksReplay attacks

68

0-RTT should only be used where it's0-RTT should only be used where it's
safesafe

69

Example HTTPSExample HTTPS
GET Request: Idempotent

POST Request: Not Idempotent

70

In theory HTTP GET requests areIn theory HTTP GET requests are
idempotent and safe for 0-RTTidempotent and safe for 0-RTT

71

Do web developers know whatDo web developers know what
idempotent means?idempotent means?

72

0-RTT does not have strong forward secrecy

73

Many speculate that future TLS 1.3 attacks will exploit
0-RTT

74

0-RTT is optional

75

If it turns out being too bad we can disable it

76

DeploymentDeployment

77

It's not enough to design a faster, more secure TLS
protocol, you also have to deploy it

78

On the Internet

79

The real Internet

80

The version numberThe version number

81

This may sound trivial, but one other new thing that
TLS 1.3 brings is a new version number

82

83

84

85

TLS 1.0 came a�er SSL 3

86

SSL 3 03 00
TLS 1.0 03 01
TLS 1.1 03 02
TLS 1.2 03 03
TLS 1.3 It's complicated

87

TLS record layerTLS record layer
A protocol inside the protocol which has its own

meaningless version number

88

We can't update the whole Internet at once

89

When we deploy a new version of TLS we need to still
support old versions

90

Let's assume we have a client supporting TLS 1.2 and a
server supporting TLS 1.0

91

TLS Version NegotiationTLS Version Negotiation

92

This is very simpleThis is very simple

93

if (client_max_version < server_max_version) {
 connection_version = client_max_version;
} else {
 connection_version = server_max_version;
}

94

There's no way anyone could possibly get that wrong

95

Okay, we were talking about the real Internet

96

There are Enterprise ProductsThere are Enterprise Products

97

TLS Version Negotiation Enterprise EditionTLS Version Negotiation Enterprise Edition

98

Version intoleranceVersion intolerance

99

Version intolerance shows up every single time a new
TLS version is introduced

100

What did browsers do?What did browsers do?

101

102

Remember POODLE (2014)?Remember POODLE (2014)?

Guanaco, Wikimedia Commons, CC0

103

https://commons.wikimedia.org/wiki/File:Poodle.jpg

POODLE was a Padding Oracle in SSL 3POODLE was a Padding Oracle in SSL 3

104

Who used SSL 3 in 2014?Who used SSL 3 in 2014?
It was deprecated for 16 yearsIt was deprecated for 16 years

105

Nokia Phones with Windows Mobile (built 2011)Nokia Phones with Windows Mobile (built 2011)
Image: Petar Milošević, CC by 4.0

106

https://commons.wikimedia.org/wiki/File:Nokia_Lumia_800_front.jpg

But most browsers and most serversBut most browsers and most servers
used at least TLS 1.0used at least TLS 1.0

107

108

So how to fix these insecureSo how to fix these insecure
downgrades?downgrades?

Let's add another workaround

109

SCSV: Introduce a mechanism that lets well-behaving
servers detect when clients did a downgrade

110

At some point Enterprise servers had fixed version
intolerance and browsers stopped these downgrades

111

Have I said they fixed version intolerance?

Of course not!

112

They fixed version intolerance for TLS 1.2, not for 1.3

113

New version negotiation in TLS 1.3New version negotiation in TLS 1.3
Old version field (legacy_version) stays at TLS 1.2

New extension (supported_versions) signals support
for future TLS versions.

114

Does that mean we will have the same problem again
with TLS 1.4?

115

GREASEGREASE
(Generate Random Extensions And Sustain

Extensibility)

116

Servers should ignore unknown versions in
supported_versions

117

Let's train servers to actually do that

118

GREASE values are reserved, bogus TLS versions that
will never be used for real TLS versions

119

Clients can randomly send GREASE values in the TLS
handshake

120

Implementors with broken version negotiation will
hopefully notice that before shipping their product

121

Okay, so with the new version negotiation and GREASE
we can ship TLS 1.3?

122

The Middlebox disasterThe Middlebox disaster

123

In summer 2017 TLS 1.3 was almost finished and ready
to go, but it took another year until it was actually

finalized

124

Browser vendors noticed a high number of connection
failures when trying to deploy TLS 1.3

125

The reason: Devices analyzing traffic and trying to be
smart

126

"Let's look at this TLS package. I've never seen
something like that... let's better discard it."

127

These were largely passive middleboxes that should
just pass traffic through

128

How to fixHow to fix
Browser vendors proposed some changes to TLS 1.3

that made it look more like TLS 1.2

129

ChangeCipherSpec in TLS 1.2ChangeCipherSpec in TLS 1.2
The ChangeCipherSpec (CCS) message signals the

change from unencrypted to encrypted content

130

Let's send a bogus CCS early in the handshake and
hope this will confuse "smart" middleboxes into

thinking that everything a�erwards is encrypted and
shouldn't be touched

131

MiNe, Wikimedia Commons, CC by 2.0

132

https://commons.wikimedia.org/wiki/File:Canon_PIXMA_MG3670_White_20161229.jpg

133

Dual EC DRBGDual EC DRBG
The NSA created a random number generator with a

backdoor and convinced NIST to standardize it

134

With a generous offer of 10 Million Dollar they
convinced RSA security to use Dual EC DRBG

135

Extended RandomExtended Random
There exists a dra� for a TLS extension that adds some

extra random numbers to the TLS handshake

136

Why?Why?

137

In 2014 researchers figured out that Extended Random
makes the Dual EC DRBG backdoor much more

effective
Checkoway et al, 2014

138

http://dualec.org/

Coincidentally RSA's BSAFE library also contained
support for Extended Random - but it was switched off

by default, so everyone thought it's no big deal

139

Canon Pixma printers had a local HTTPS server,
implemented with RSA BSAFE and Extended Random

switched on

140

Extended Random was only a dra�, so it had no official
Extension number, RSA just used one of the next

available numbers

141

This number collided with one of the new extensions
in TLS 1.3, resulting in connection failures of TLS 1.3

supporting browsers and these Canon printers

142

There were many more TLS deployment issues andThere were many more TLS deployment issues and
they continuethey continue

143

What about future TLS versions?What about future TLS versions?

144

We have GREASE, which helps a bitWe have GREASE, which helps a bit

145

There's even a proposal to regularly roll out temporary
TLS versions every few months

146

My prediction: These deployment problems are goingMy prediction: These deployment problems are going
to get worseto get worse

147

148

149

In the future we may have AI-supported TLS change
intolerance, and that may be much harder to fix

150

Speaking of Enterprise environmentsSpeaking of Enterprise environments

151

TLS removed the RSA encryptionTLS removed the RSA encryption
handshake very earlyhandshake very early

152

It doesn't have Forward Secrecy and itIt doesn't have Forward Secrecy and it
suffers from Bleichenbacher attackssuffers from Bleichenbacher attacks

153

An E-Mail to the TLS Working Group fromAn E-Mail to the TLS Working Group from
the Banking Industrythe Banking Industry

[tls] Industry Concerns about TLS 1.3

154

I recently learned of a proposed change that would
affect many of my organization's member institutions:

the deprecation of RSA key exchange.

Deprecation of the RSA key exchange in TLS 1.3 will
cause significant problems for financial institutions,

almost all of whom are running TLS internally and have
significant, security-critical investments in out-of-band

TLS decryption.
BITS/TLS list

155

https://www.ietf.org/mail-archive/web/tls/current/msg21275.html

My view concerning your request: no.

Rationale: We're trying to build a more secure internet.
Kenny Paterson

156

https://www.ietf.org/mail-archive/web/tls/current/msg21278.html

You're a bit late to the party. We're metaphorically
speaking at the stage of emptying the ash trays and

hunting for the not quite empty beer cans.

More exactly, we are at dra� 15 and RSA key transport
disappeared from the spec about a dozen dra�s ago. I
know the banking industry is usually a bit slow off the

mark, but this takes the biscuit.
Kenny Paterson

157

https://www.ietf.org/mail-archive/web/tls/current/msg21278.html

This led to several proposals to add a "visibility" mode
to TLS 1.3, which were all rejected by the IETF TLS

working group

158

The prevailing opinion in the TLS working group was
that the goal of monitoring traffic content is
fundamentally at odds with the goal of TLS

159

So the industry went to ETSI, the European
standardization organization

160

They published Enterprise TLS (ETLS)They published Enterprise TLS (ETLS)

161

The IETF wasn't happy about the abuse of the name
TLS

162

163 . 1

What's le�?What's le�?

163 . 2

Many attacks aren't against the cryptography of the
protocol itself

163 . 3

Despite all the protocol issues the biggest TLS security
flaw is probably that people aren't using it

163 . 4

SSL StrippingSSL Stripping

163 . 5

We should use HTTPS by default

163 . 6

We also need to enforce it with HSTS (HTTP Strict
Transport Security)

163 . 7

E-MailE-Mail

163 . 8

Server-to-Server STARTTLS is usually optional and
unauthenticated

163 . 9

MTA-STSMTA-STS
Publishing a TLS policy for SMTP via HTTPS

163 . 10

CertificatesCertificates

163 . 11

Popular Hacker OpinionPopular Hacker Opinion
"The whole Certificate Authority system is broken"

163 . 12

Things have improved considerably, yet not everyone
wants to recognize that

163 . 13

Certificates TransparencyCertificates Transparency

163 . 14

CAs that repeatedly violate rules getCAs that repeatedly violate rules get
distrusteddistrusted

163 . 15

No CA is too big to failNo CA is too big to fail
If you don't believe it ask Symantec

163 . 16

Future attacksFuture attacks

163 . 17

Compression attacksCompression attacks
CRIME, BREACH, TIME, HEIST

163 . 18

There's yet no satisfying fix for compression attacks

163 . 19

Domain ValidationDomain Validation

163 . 20

Certificates are issued based on checks of domain
ownership, yet these checks happen over an

unencrypted Internet

163 . 21

Getting Certificates via BGP HijackingGetting Certificates via BGP Hijacking

163 . 22

This is definitely possible, but hasn't been seen in the
real world yet

163 . 23

No, Extended Validation does not help

163 . 24

SummarySummary

164

TLS 1.3 deprecates many insecureTLS 1.3 deprecates many insecure
constructionsconstructions

165

TLS 1.3 is fasterTLS 1.3 is faster

166

Deploying new things on the Internet is aDeploying new things on the Internet is a
messmess

167

Encrypt your connections!Encrypt your connections!

168

