The Rocky Road to

Hanno Bock

https://hboeck.de
@hanno

https://hboeck.de/
https://twitter.com/hanno/

Transport Layer Security

A protocol to create an encrypted and authenticated
layer around other protocols

TLS 1.3 was published in August 2018

How did we get there?

In 1995 Netscape introduced Secure
Socket Layer or SSL version 2

In 1996 it was followed up with SSL
version 3

In 1999 the IETF took over and renamed
it to TLS

SSL/TLS History

e 1995:SSL2
e 1996:SSL 3
e 1999:

e 2006:

e 2008: TLS
1.2

e 2018: TLS
1.3

Vulnerabilities

OX@L%

Padding Oracles in CBC mode

Plaintext

[nitialization Vector (IV)

Key

block cipher
encryption

Y

Ciphertext

Plaintext Plaintext
LITTTOTTOTT Il LITTITTTOTTTT]
>
Ke block cipher Ke block cipher
y encryption y encryption
| ¢
Y
LITTTOTTOTT Il LITTITTTOTTTT]
Ciphertext Ciphertext

WhiteTimberwolf, Wikimedia Commons, Public Domain

https://commons.wikimedia.org/wiki/File:CBC_encryption.svg

CBC Padding for Block Ciphers (AES)

Encryption of data blocks means we have to fill up
space

CBCinTLS
MAC-then-Pad-then-Encrypt

Valid Padding

00

0101
020202
03030303

We assume a situation where the attacker can see
whether the padding is valid

Ciphertext Ciphertext
CLITTIPTT T I CLLTTTIITTITTT]

Key block c1pher Key block ClPher
decryption decryption
[nitialization Vector (IV)
CITTTTTITTITT] >
CLLTTTTPTTITTT] LITTTTITTITITH ?==00 -> padding valid
Plaintext Plaintext

E Attacker wants to decrypt
[Attacker manipulates / XOR with guess

Ciphertext Ciphertext

CITITTTTTTT I CLLETTTTTTTTTT]
Key block ClPher Key block C1Pher
decryption decryption
[nitialization Vector (IV)
CITTTITTIIIfll— >
CITTTIPTTTIfT] [ITTTTTTTTTT I ?== 0101 -> padding valid
Plaintext Plaintext

E Attacker knows

[Attacker manipulates to 0 € B € 01
B Attacker wants to know

B Attacker manipulates to guess@l

2002: Serge Vaudenay discovers Padding
Oracle

Vaudenay, 2002

https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf

TLS errors
decryption_failed

bad record mac

If an attacker can see the TLS error he can use a
padding oracle

However TLS errors are encrypted:

Attack is not practical

2003: Timing attack allows practical
padding oracle attack

Canvel et al, 2003

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf

TLS 1.2 fixed it (kind of)

This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough
to be exploitable, due to the large block size of existing
MACs and the small size of the timing signal.

Lucky Thirteen (2013)

Actually it is large enough to be exploitable

AlFardan, Paterson 2013

http://www.isg.rhul.ac.uk/tls/Lucky13.html

It is possible to make TLS with CBC timing safe, but it
adds a lot of complexity to the code

POODLE (2014)
SSLv3 has a padding oracle flaw by design

Moller et al, 2014

https://www.openssl.org/~bodo/ssl-poodle.pdf

POODLE-TLS (2014)

Implementations fail to check the padding, making
TLS vulnerable to POODLE, too

Langley, 2014

https://www.imperialviolet.org/2014/12/08/poodleagain.html

Lucky Microseconds in s2n (2015)

Sorry Amazon, your fix for Lucky Thirteen doesn't work

Albrecht, Paterson, 2015

https://eprint.iacr.org/2015/1129

LuckyMinus20 in OpenSSL (2016)

When OpenSSL tried to fix Lucky Thirteen they
introduced another padding oracle

Somorovsky, 2016

https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html

The original attack didn't work in practice, because
TLS errors are encrypted

But what if there are implementations that create
other errors that an attacker can see? For example TCP
errors, connection resets or timeouts?

Yes, you can find servers doing that

Bleichenbacher attacks
RSA Encryption

Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard
PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave., Murray Hill, NJ 07974

bleichen@research.bell-labs.com

Abstract. This paper introduces a new adaptive chosen ciphertext at-
tack against certain protocols based on RSA. We show that an RSA
private-key operation can be performed if the attacker has access to
an oracle that, for any chosen ciphertext, returns only one bit telling
whether the ciphertext corresponds to some unknown block of data en-
crypted using PKCS #1. An example of a protocol susceptible to our
attack is SSL V.3.0.

Keywords: chosen ciphertext attack, RSA, PKCS, SSL

Bleichenbacher, 1998

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

RSA PKCS #1 1.5 Encryption

00 | 02 | [random] | G0 | 03 | 03 | [secret]

A valid decryption always starts with 00 02

What shall a server do if it doesn't?

Send an error?

Sending an error tells the attacker something:

Decrypted data does not start with 00 02

Attacker can send modified ciphertext and learn
enough to decrypt data

So TLS 1.0 introduced some countermeasures

2003: Klima-Pokorny-Rosa attack

Countermeasures were incomplete

Klima et al, 2003

https://eprint.iacr.org/2003/052/

2014: Javais vulnerable to Bleichenbacher attacks

And OpenSSL via timing

Meyer et al, 2014

https://www.usenix.org/node/184424

2016: DROWN

SSL 2 is vulnerable to Bleichenbacher attacks by
design

Aviram et al, 2016

https://drownattack.com/#paper

2017: Return of Bleichenbacher's Oracle Threat
(ROBOT)

~1/3 of top webpages and at least 15 different
implementations vulnerable

Bdck, Somorovsky, Young, 2017

https://robotattack.org/
https://robotattack.org/

2018: 9 Lives of Bleichenbacher's CAT

Cache sidechannels that work against almost most
RSA implementations

Ronen et al, 2018

http://cat.eyalro.net/

Bleichenbacher attack countermeasures
TLS1.0 TLS1.1 TLS1.2

Note: An attack discovered by Daniel Bleichenbacher [BLET] can be used Note: An attack discovered by Daniel Bleichenbacher [BLET] can be Note: Attacks discovered by Bleichenbacher [BLET) and Klima et al
t0 attack a TLS server which is using PKCS#1 encoded RSA. The used to attack a TLS server that is u #1 v 1.5 encoded [KPRO3] Can be used to attack a TLS server that reveals whether a
ateack takes advantage of the fact that by failing in different RSA. The attack takes advantage of the fact that, by failing particular message, when decrypted, is properly PKCS® formatted,
ways, & TLS server can be coerced into revealing whether in different ways, a TLS server can be coerced into revealing Contains a valid PreMasterSecret structure, or has the correct

particular message, vhen decrypted, 15 properly PKCSAL formatted Whether a particular message, when decrypted, is properly version nusber
t

PKCS#1 V1.5 formatted or not

2 duserond by (limn (10801, these wulnerabilities can be avolded
Tne best way to avoid vulnerability to this attack i to tr The best way to avoid vulnerability to this attack is to treat by treating incorrectly fornatted message blocks and/or mismatched
incorrectly formatted nessages n & nanner indistingutshabie from incorrectly formatted messages in a manner indistinguishable Varsion numbers. in a nanner. indistinguisnable from correctly
correctly formatted RsA blocks. Thus, when it receives an ron correctly formatted RSA blocks. Thus, when a server Formatted RSA blocks. 1In other words
incorrectly formatted RSA block, a server should generate a receives an incorrectly formatted RSA block, it should generate
don 48-byte value and proceed using it as the premaster a randon 48-byte value and proceed using it as the premaster 1. Generate a string R of 46 randon bytes
secret. Thus, the server will act identically whether the secret. Thus, the server will act identically whether the
received RSA block is correctly encoded or not received RSA block is correctly encoded or not. 2. Decrypt the message to recover the plaintext M
[peosis) defines a never version of PKCS#2 encoding chat is 5. IF the pKCS#L padding s not correct, or the Lengch of nessage
re secure against the Bleichenbacher attack. However, for is not exactly 45
Daxinal compativilicy it 6, TLS 1.1 retains the Sre masrer shcrat L cmm«na client version || &
original encoding. Mo variants of the Bleichenbacher attack else T Clienthelto.cliont version <= TLS 1.0, and version
are known to exist provided that the above recomnendations are nunber check is explicitly it
followed. premaster_secre
Inplenentation Note: Public-key-encrypted data is represented as an *Bre_master_secret = Clienthello.client version || H[2..47]
u (s o
Thus, the RSA-encrypted PreMasterSecret in a Note that explicitly constructing the pre_master_secret with the
CLientKeyExchange 1s preceded by two length ClientHello.client_version produces an invalid master_secret if the
es. These bytes are redundant in the case of client has sent the wrong version in the original pre master_secret
RSA because the EncryptedPreMastersecret is t
only data in the ClientkeyExchange and its An alternative approach is to treat a version number misnatch as a
Length can therefore be unanbig KCS-1 formatting error and randonize the premaster secret
deternined. The SSLv3 specification was not completely
Clear about the encoding of public-key-encrypted
data, and therefore many SSLv3 inplenentations 1. Generate a string R of 48 random bytes
do not_include the length bytes, encod
RSA encrypted data directly in the 2. Decrypt the message to recover the plaintext M

ClientKeyExchange message.
5. I the PYCSKL padding s not correct, or the Lengch of message
by

This specification requires correct encoding of ot exactly

the Encryptedpretastersecret complete with Dreomaster suoret ¥

length bytes. The resulting POU is incompatible els6 IF Clienthello.client version <= TUS 1.6, and version
with many SSLv3 implenentations. Inplenentors number check is explicitly disabled

upgrading fron SSL3 must modify their premaster secret = 1

inplenentations to generate and accept the else If M[0..1] I= ClientHello.client version:

correct encoding. Inplenentors who wish to be premaster sacret = R

Compatible with both SSLv3 and TLS should make

their inplementation's behavior dependent on the premaster secret = 1
protocol version.
Although no practical attacks against this construction are known,

Inplenencation Note: It is now known that remste tining-hased attacks Klina et al. [KPR03) describe sone theoretical attacks, and therefore
5SS are possible, at least when the clien e first construction described is RECOMENDED
and server are on che same LAN. Accordingly,
inplenentations that use static RSA keys SHOULD Tn any case, a TLS server MUST NOT generate an alert if processing an
RSA blinding or some other anti-timing RSA-encrypted premaster secret message fails, or the version number
technique, as described in [TINING] 15 not as expected. Instead, it WUST continle the handshake with a
randonly generated premaster be useful to log the
Note: The version nusber i the pretasterseret WUST be the version real cause of failure for troubleshooting purposes; however, care
Frered by the client in the ClientHello, not the version nust be taken to avoid leaking the information to an att:

Tegotiated for the.connection. Tnis feature 15 dosigned to (through, e.g., tining, log files, or other channels

use the negotiated version instead, and therefore checking the The RSAES-OAEP encryption scheme defined in [PKCS1) is more secure

version nunber may lead to failure’to interoperate wich such anainst che Bleichenbacher attack, However, for maxina
incorrect client Client st ¢ r versions of TUS, this specification uses
2 Sereer' Impleneneations WAY. check.ehe version nosber e RSALS Pl 5 ants of the Bleichenbacher
praceice, since the TLS handsnake MACs prevent dongrade and o attack are known o exist provided that the above reconmendations are
good attacks are known on those NACs, ambiguity is not Folloved
Inplementation note: Public-key-encrypted data is represented as an
opaque vector <0..2016-1> (see Section Thus, the RsA-encrypted
Pratastersecret in a Ciientkeyexchange 1o dreceded by 1o Longch
tes. These bytes are redundant in the case of RSA because the
EncryptedpreMastersecre he only data in the ClientKeyExchang

and its length can therefore be unambiguously determined. The SSLVS
pecification was not clear about the encoding of public.key
encrypted data, and therefore many SSLv3 implenentations do not

e the length bytes -- they encode the RSA-encrypted data
directly in the ClientkeyExchange message

Tnis speciication requires correct encoding of the
EniryptedprevastarSectet complate with engih bytes. The resulting

U is inconpatible with many SSLv3 implementations. Inplementors
upgrading fron SSLva WUST modify their inplenentations to generate
and accept the correct encoding. Implementors who wish to be
compatible with both SSLv3 and TLS should make their inplementation’s
behavior dependent on the protocol version

Tnplementation note: It is now known that remote timing-based attacks

S are possible, at least when the client and server are on the
same LAN. Accordingly, implementations that use static RSA keys MUST
use RSA blinding or some other anti-tining technique, as described in
[TIMING]

With every new TLS version the
countermeasures became more
complicated

Many more attacks on poor choices in
TLS 1.2 and earlier

SLOTH, FREAK, Logjam, SWEET32, Triple Handshake

Fixing bugs like TLS 1.2 and earlier

Use workarounds for known security issues

If workarounds are insufficient use more workarounds

Create optional secure modes, but keep the insecure
ones

Fixing bugs like TLS 1.3

Remove insecure cryptographic constructions

TLS 1.3 Deprecations

CBC-Modes, RC4, Triple-DES

GCM with explicit nonces

RSA Encryption, PKCS #1 1.5

MD5, SHA1L

Diffie Hellman with custom or small
parameters

Obscure, custom and insecure Elliptic Curves

Formal Verification

Researchers have started to formally analyze TLS in
recent years

Many vulnerabilities were found during protocol
analysis

These analyses have contributed to and guided the
design of TLS 1.3

Security is nice, but there's something
else we care about:

Speed!

TLS Fresh Handshake

TLS 1.2 TLS 1.3
T T
- = e
/ /
e

TLS 1.3 handshake removes one round trip from fresh
handshakes

Handshake improves forward secrecy on session
resumption and protects more data

TLS 1.3 has a faster and more secure handshake

Watch 33C3 talk

https://media.ccc.de/v/33c3-8348-deploying_tls_1_3_the_great_the_good_and_the_bad

TLS 1.3 Zero Round Trip (0-RTT)

N

If we previously connected we can use a pre-shared
Key (PSK) to send data without any round trip

More speed!

But O-RTT is not for free

Replay attacks

0-RTT should only be used where it's
safe

Example HTTPS

GET Request: Idempotent
POST Request: Not Idempotent

In theory HTTP GET requests are
idempotent and safe for O-RTT

Do web developers know what
idempotent means?

0-RTT does not have strong forward secrecy

Many speculate that future TLS 1.3 attacks will exploit
O-RTT

0-RTT is optional

If it turns out being too bad we can disable it

Deployment

It's not enough to design a faster, more secure TLS
protocol, you also have to deploy it

On the Internet

The real Internet

The version number

This may sound trivial, but one other new thing that
TLS 1.3 brings is a new version number

= Transport Layer Security
= TL5v1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.0 (@x0301) $f—
Length: 311
= Handshake Protocol: Client Hello

i v v v v v ¥

Handshake Type: Client Hello (1)

Length: 307

Version: TLS 1.2 (0x0303) €&—

Random: a9a®383cfc3067c3915T5e3471d03975a62ab22664c18ed9..
Session ID Length: 32

Session ID: b22%9cd21e81d1d37d3Tedcl26383e03a227d835005537905..

Cipher Suites Length: 62
Cipher Suites (31 suites)
Compression Methods Length: 1
Compression Methods (1 method)
Extensions Length: 172
Extension: server_name (len=19)
Extension: ec_point_formats (len=4)
Extension: supported_groups (len=12)
Extension: session_ticket (len=0@)
Extension: encrypt_then_mac (len=@})
Extension: extended_master_secret (len=0)
Extension: signature_algorithms (len=48})
Extension: supported_versions (len=93)
Type: supported_versions (43)
Length: 9
Supported Versions length: 8
Supported Version: TLS 1.3 (0x0304) €—
Supported Version: TLS 1.2 ([@xB303)
Supported Version: TLS 1.1 ([@x0302)
Supported Version: TLS 1.0 [@x0301)
Extension: psk_key_exchange_modes (len=2)
Extension: key_share (len=38)

= TL5v1.2 Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.0 (@x0301) f—

Length: 311

+ Handshake Protocol: Client Hello

Handshake Type: Client Hello (1)
Length: 307
Version: TLS 1.2 (@x0303) €&—

= Extension: supported_versions (len=9)
Type: supported_versions (43)

Length: 9

supported Versions
supported Version:
supported Version:
supported Version:
supported Version:

length: 8

TLS 1.3 (9x0304) €f—
TLS 1.2 (@xB383)

TLS 1.1 (exb3e2)

TLS 1.0 (@x0361)

TLS 1.0 came after SSL 3

SSL3 03 00

 S1.0 0301

TLS1.1 0302

TLS1.2 0303

TLS 1.3 It'scomplicated

TLS record layer

A protocol inside the protocol which has its own
meaningless version number

We can't update the whole Internet at once

When we deploy a new version of TLS we need to still
support old versions

Let's assume we have a client supporting TLS 1.2 and a
server supporting TLS 1.0

TLS Version Negotiation

This is very simple

if (client_max_version < server_max_version) {
connection_version = client_max_version;
} else {
connection_version = server_max_version;
}

There's no way anyone could possibly get that wrong

Okay, we were talking about the real Internet

There are Enterprise Products

TLS Version Negotiation Enterprise Edition

Version intolerance

Version intolerance shows up every single time a new
TLS version is introduced

What did browsers do?

102

Remember POODLE (2014)?

Guanaco, Wikimedia Commons, CCO

103

https://commons.wikimedia.org/wiki/File:Poodle.jpg

POODLE was a Padding Oracle in SSL 3

Who used SSL 31n 2014?
It was deprecated for 16 years

Nokia Phones with Windows Mobile (built 2011)

Image: Petar Milosevic, CC by 4.0

106

https://commons.wikimedia.org/wiki/File:Nokia_Lumia_800_front.jpg

But most browsers and most servers
used at least TLS 1.0

So how to fix these insecure
downgrades?

Let's add another workaround

SCSV: Introduce a mechanism that lets well-behaving
servers detect when clients did a downgrade

At some point Enterprise servers had fixed version
intolerance and browsers stopped these downgrades

Have | said they fixed version intolerance?

Of course not!

They fixed version intolerance for TLS 1.2, not for 1.3

New version negotiation in TLS 1.3
Old version field (legacy_version) stays at TLS 1.2

New extension (supported_versions) signals support
for future TLS versions.

Does that mean we will have the same problem again
with TLS 1.47

GREASE

(Generate Random Extensions And Sustain
Extensibility)

Servers should ignore unknown versions in
supported_versions

Let's train servers to actually do that

GREASE values are reserved, bogus TLS versions that
will never be used for real TLS versions

Clients can randomly send GREASE values in the TLS
handshake

Implementors with broken version negotiation will
hopefully notice that before shipping their product

Okay, so with the new version negotiation and GREASE
we can ship TLS 1.3?

The Middlebox disaster

In summer 2017 TLS 1.3 was almost finished and ready
to go, but it took another year until it was actually
finalized

Browser vendors noticed a high number of connection
failures when trying to deploy TLS 1.3

The reason: Devices analyzing traffic and trying to be
smart

"Let's look at this TLS package. I've never seen
something like that... let's better discard it."

These were largely passive middleboxes that should
just pass traffic through

How to fix

Browser vendors proposed some changes to TLS 1.3
that made it look more like TLS 1.2

ChangeCipherSpecin TLS 1.2

The ChangeCipherSpec (CCS) message signals the
change from unencrypted to encrypted content

Let's send a bogus CCS early in the handshake and
hope this will confuse "smart" middleboxes into
thinking that everything afterwards is encrypted and
shouldn't be touched

MiNe, Wikimedia Commons, CC by 2.0

132

https://commons.wikimedia.org/wiki/File:Canon_PIXMA_MG3670_White_20161229.jpg

2

L[

=

133

Dual EC DRBG

The NSA created a random number generator with a
backdoor and convinced NIST to standardize it

With a generous offer of 10 Million Dollar they
convinced RSA security to use Dual EC DRBG

Extended Random

There exists a draft for a TLS extension that adds some
extra random numbers to the TLS handshake

Why?

In 2014 researchers figured out that Extended Random
makes the Dual EC DRBG backdoor much more
effective

Checkoway et al, 2014

http://dualec.org/

Coincidentally RSA's BSAFE library also contained
support for Extended Random - but it was switched off
by default, so everyone thought it's no big deal

Canon Pixma printers had a local HTTPS server,
implemented with RSA BSAFE and Extended Random
switched on

Extended Random was only a draft, so it had no official
Extension number, RSA just used one of the next
available numbers

This number collided with one of the new extensions
in TLS 1.3, resulting in connection failures of TLS 1.3
supporting browsers and these Canon printers

There were many more TLS deployment issues and
they continue

What about future TLS versions?

We have GREASE, which helps a bit

There's even a proposal to regularly roll out temporary
TLS versions every few months

My prediction: These deployment problems are going
to get worse

148

= Gisco
Detecting Encrypted
Malware Traffic
(Without Decryption)

In the future we may have Al-supported TLS change
intolerance, and that may be much harder to fix

Speaking of Enterprise environments

TLS removed the RSA encryption
handshake very early

It doesn't have Forward Secrecy and it
suffers from Bleichenbacher attacks

An E-Mail to the TLS Working Group from
the Banking Industry

[tls] Industry Concerns about TLS 1.3

| recently learned of a proposed change that would
affect many of my organization's member institutions:
the deprecation of RSA key exchange.

Deprecation of the RSA key exchange in TLS 1.3 will
cause significant problems for financial institutions,
almost all of whom are running TLS internally and have
significant, security-critical investments in out-of-band
TLS decryption.

BITS/TLS list

https://www.ietf.org/mail-archive/web/tls/current/msg21275.html

My view concerning your request: no.

Rationale: We're trying to build a more secure internet.

Kenny Paterson

https://www.ietf.org/mail-archive/web/tls/current/msg21278.html

You're a bit late to the party. We're metaphorically
speaking at the stage of emptying the ash trays and
hunting for the not quite empty beer cans.

More exactly, we are at draft 15 and RSA key transport

disappeared from the spec about a dozen drafts ago. |

know the banking industry is usually a bit slow off the
mark, but this takes the biscuit.

Kenny Paterson

https://www.ietf.org/mail-archive/web/tls/current/msg21278.html

This led to several proposals to add a "visibility" mode
to TLS 1.3, which were all rejected by the IETF TLS
working group

The prevailing opinion in the TLS working group was
that the goal of monitoring traffic content is
fundamentally at odds with the goal of TLS

So the industry went to ETSI, the European
standardization organization

They published Enterprise TLS (ETLS)

The IETF wasn't happy about the abuse of the name
TLS

What's left?

Many attacks aren't against the cryptography of the
protocol itself

Despite all the protocol issues the biggest TLS security
flaw is probably that people aren't using it

SSL Stripping

We should use HTTPS by default

We also need to enforce it with HSTS (HTTP Strict
Transport Security)

E-Mail

Server-to-Server STARTTLS is usually optional and
unauthenticated

MTA-STS
Publishing a TLS policy for SMTP via HTTPS

Certificates

Popular Hacker Opinion

"The whole Certificate Authority system is broken"

Things have improved considerably, yet not everyone
wants to recognize that

Certificates Transparency

CAs that repeatedly violate rules get
distrusted

No CA s too big to fail

If you don't believe it ask Symantec

Future attacks

Compression attacks
CRIME, BREACH, TIME, HEIST

There's yet no satisfying fix for compression attacks

Domain Validation

Certificates are issued based on checks of domain
ownership, yet these checks happen over an
unencrypted Internet

Getting Certificates via BGP Hijacking

This is definitely possible, but hasn't been seen in the
real world yet

No, Extended Validation does not help

Summary

TLS 1.3 deprecates many insecure
constructions

TLS 1.3 is faster

Deploying new things on the Internet is a
mess

Encrypt your connections!

