The 1ttemplates.dtx code”

Frank Mittelbach, Chris Rowley, David Carlisle, IXTEX Project!
October 31, 2025

1 Introduction

There are three broad “layers” between putting down ideas into a source file and ending
up with a typeset document. These layers of document writing are

1. authoring of the text with mark-up;
2. document layout design;
3. implementation (with TEX programming) of the design.

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

IXTEX’s greatest success has been to standardise a system of mark-up that balances
the trade-off between ease of reading and ease of writing to suit almost all forms of
technical writing. It’s other original strength was a good background in typographical
design; while the standard IATEX 2¢ classes look somewhat dated now in terms of their
visual design, their typography is generally sound (barring the occasional minor faults).

However, IXTEX 2¢ has always lacked a standard approach to customising the visual
design of a document. Changing the looks of the standard classes involved either:

e Creating a new version of the implementation code of the class and editing it.

o Loading one of the many packages to customise certain elements of the standard
classes.

e Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customization.

All three of these approaches have their drawbacks and learning curves.

The idea behind Ittemplates is to cleanly separate the three layers introduced at
the beginning of this section, so that document authors who are not programmers can
easily change the design of their documents. Ittemplates also makes it easier for INTEX
programmers to provide their own customizations on top of a pre-existing class.

*This file has version v1.0f dated 2025-07-08, © IATEX Project.
TE-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

2 What is a document?

Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting,
with mark-up such as \section, \caption, \begin{enumerate} and so on. The output
of each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain
the same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \sectionx,
or the difference between an itemized list or an enumerated list.

There are three distinct layers in the definition of “a document” at this level

1. semantic elements such as the ideas of sections and lists;
2. a set of design solutions for representing these elements visually;
3. specific variations for these designs that represent the elements in the document.

In the parlance of the template system, these are called types, templates, and instances,
and they are discussed below in sections 4, 5, and 7, respectively.

3 Types, templates, and instances

By formally declaring documents to be composed of mark-up elements grouped into types,
which are interpreted and typeset with a set of templates, each of which has one or more
instances with which to compose each and every semantic unit of the text, we can cleanly
separate the components of document construction.

All of the structures provided by the template system are global, and do not respect

TEX grouping.

4 Template types

An template type (sometimes just “type”) is an abstract idea of a document element that
takes a fixed number of arguments corresponding to the information from the document
author that it is representing. A sectioning type, for example, might take three inputs:
“title”, “short title”, and “label”.

Any given document class will define which types are to be used in the document,
and any template of a given type can be used to generate an instance for the type.
(Of course, different templates will produce different typeset representations, but the
underlying content will be the same.)

\NewTemplateType

\DeclareTemplateInterface

\NewTemplateType {(template type)} {(no. of args)}
This function defines an (template type) taking (number of arguments), where the
(type) is an abstraction as discussed above. For example,

\NewTemplateType{sectioning}{3}

creates a type “sectioning”, where each use of that type will need three arguments.

5 Templates

A template is a generalized design solution for representing the information of a specified
type. Templates that do the same thing, but in different ways, are grouped together by
their type and given separate names. There are two important parts to a template:

o the parameters it takes to vary the design it is producing;
e the implementation of the design.

As a document author or designer does not care about the implementation but rather only
the interface to the template, these two aspects of the template definition are split into two
independent declarations, \DeclareTemplateInterface and \DeclareTemplateCode.

\DeclareTemplateInterface

{(type)} {(template)} {(no. of args)}

{(key 1list)}
A (template) interface is declared for a particular (type), where the (number of
arguments) must agree with the type declaration. The interface itself is defined by
the (key list), which is itself a key—value list taking a specialized format:

(key1) : (key typel) ,
(key2) : (key type2) ,
(key3) : (key type3) = (default3) ,
(key4) : (key type4) = (default4) ,

Each (key) name should consist of ASCII characters, with the exception of ,, = and :.
The recommended form for key names is to use lower case letters, with dashes to separate
out different parts. Spaces are ignored in key names, so they can be included or missed
out at will. Each (key) must have a (key type), which defines the type of input that
the (key) requires. A full list of key types is given in Table 1. Each key may have a
(default) value, which will be used in by the template if the (key) is not set explicitly.
The (default) should be of the correct form to be accepted by the (key type) of the
(key): this is not checked by the code. Expressions for numerical values are evaluated
when the template is used, thus for example values given in terms of em or ex will be set
respecting the prevailing font.

Key-type

Description of input

boolean true or false

choice{(choices)} A list of pre-defined (choices)

commalist A comma-separated list

function{(N)} A function definition with N arguments (N from 0 to 9)
instance{(name)} An instance of type (name)

integer An integer or integer expression

length A fixed length

muskip A math length with shrink and stretch components
real A real (floating point) value

skip A length with shrink and stretch components
tokenlist A token list: any text or commands

Table 1: Key-types for defining template interfaces with \DeclareTemplateInterface.

\KeyValue \KeyValue {(key name)}

There are occasions where the default (or value) for one key should be taken from another.
The \KeyValue function can be used to transfer this information without needing to know
the internal implementation of the key:

\DeclareTemplateInterface {
{

key-name-1 :

key-name-2 :

type } { template } { no. of args }

value ,
\KeyValue { key-name-1 },

key-type
key-type

\DeclareTemplateCode

\AssignTemplateKeys

Key-type Description of binding

boolean Boolean variable, e.g. \1_tmpa_bool

choice List of choice implementations (see Section 6)
commalist Comma list, e.g. \1_tmpa_clist

function Function taking N arguments, e.¢g. \use_i:nn

instance

integer Integer variable, e.g. \1_tmpa_int
length Dimension variable, e.g. \1_tmpa_dim
muskip Muskip variable, e.g. \1_tmpa_muskip
real Floating-point variable, e.g. \1_tmpa_fp
skip Skip variable, e.g. \1_tmpa_skip

tokenlist Token list variable, e.g. \1_tmpa_t1

Table 2: Bindings required for different key types when defining template implementa-
tions with \DeclareTemplateCode. Apart from code, choice and function all of these
accept the key word global to carry out a global assignment.

\DeclareTemplateCode

{(type)} {(template)} {(no. of args)}

{(key bindings)} {(code)}
The relationship between a templates keys and the internal implementation is created
using the \DeclareTemplateCode function. As with \DeclareTemplateInterface, the
(template) name is given along with the (type) and (number of arguments) required.
The (key bindings) argument is a key—value list which specifies the relationship between
each (key) of the template interface with an underlying (variable).

N

(key1) = (variablel),
(key2) = (variable2),
(key3) = global (variable3),
(key4) = global (variabled4),

N

With the exception of the choice, code and function key types, the (variable) here
should be the name of an existing IXTEX3 register. As illustrated, the key word “global”
may be included in the listing to indicate that the (variable) should be assigned globally.
A full list of variable bindings is given in Table 2.

The (code) argument of \DeclareTemplateCode is used as the replacement text for
the template when it is used, either directly or as an instance. This may therefore accept
arguments #1, #2, etc. as detailed by the (number of arguments) taken by the type.

\AssignTemplateKeys

In the final argument of \DeclareTemplateCode the assignment of keys defined by
the template may be delayed by including the command \AssignTemplateKeys. If
this is mot present, keys are assigned immediately before the template code. If an
\AssignTemplateKeys command is present, assignment is delayed until this point. Note
that the command must be directly present in the code, not placed within a nested
command /macro.

\SetKnownTemplateKeys \SetKnownTemplateKeys {(type)} {(template)} {(keyvals)}

\SetTemplateKeys
\UnusedTemplateKeys

\SetTemplateKeys {(type)} {(template)} {(keyvals)}
\UnusedTemplateKeys % all (keyvals) unused by previous \SetKnownTemplateKeys

In the final argument of \DeclareTemplateCode one can also overwrite (some of)
the current template key value settings by using the command \SetKnownTemplateKeys
or \SetTemplateKeys, i.e., they can overwrite the template default values and the values
assigned by the instance.

The \SetKnownTemplateKeys and \SetTemplateKeys commands are only supported
within the code of a template; using them elsewhere has unpredictable results. If they
are used together with \AssignTemplateKeys then the latter command should come first
in the template code.

The main use case for these commands is the situation where there is an argument
(normally #1) to the template in which a key/value list can be specified that overwrites
the normal settings. In that case one could use

\SetKnownTemplateKeys{(type) H (template)}{#1}

to process this key/value list inside the template.

If \SetKnownTemplateKeys is executed and the (keyvals) argument contains keys
not known to the (template) they are simply ignored and stored in the tokenlist
\UnusedTemplateKeys without generating an error. This way it is possible to apply
the same key/val list specified by the user on a document-level command or environment
to several templates, which is useful, if the command or environment is implemented by
calling several different template instances.

As a variation of that, you can use this key/val list the first time, and for the
next template instance use what remains in \UnusedTemplateKeys (i.e., the key/val
list with only the keys that have not been processed previously). The final process-
ing step could then be \SetTemplateKeys, which unconditionally attempts to set the
(keyvals) received in its third argument. This command complains if any of them are
unknown keys. Alternatively, you could use \SetKnownTemplateKeys and afterwards
check whether \UnusedTemplateKeys is empty.'

For example, a list, such as enumerate, is made up from a blockenv, block, list,
and a para template and in the single user-supplied optional argument of enumerate
key/values for any of these templates might be specified.

In fact, in the particular example of list environments, the supplied key/value list
is also saved and then applied to each \item which is implemented through an item
template. This way, one can specify one-off settings for all the items of a single list
(on the environment level), as well as to individual items within that list (by specify-
ing them in the optional argument of an \item). With \SetKnownTemplateKeys and
\SetTemplateKeys working together, it is possible to provide this flexibility and still
alert the user when one of their keys is misspelled.

On the other hand you may want to allow for “misspellings” without generating an
error or a warning. For example, if you define a template that accepts only a few keys,
you might just want to ignore anything specified in the source when you use this template
in place of a different one, without the need to alter the document source. Or you might

1Using \SetTemplateKeys exposes the inner structure of the template keys when generating an er-
ror. This is something one may want to avoid as it can be confusing to the user, especially if sev-
eral templates are involved. In that case use \SetKnownTemplateKeys and afterwards check whether
\UnusedTemplateKeys is empty; if it is not empty then generate your own error message.

\DeclareTemplateCopy

just generate a warning message, which is easy, given that the unused key/values are
available in the \UnusedTemplateKeys variable.

\DeclareTemplateCopy
{(type)} {(template2)} {(templatel)}

Copies (templatel) of (type) to a new name (template2): the copy can then be edited
independent of the original.

6 Multiple choices

The choice key type implements multiple choice input. At the interface level, only the
list of valid choices is needed:

\DeclareTemplateInterface { foo } { bar > { 0 }
{ key-name : choice { A, B, C } }

where the choices are given as a comma-list (which must therefore be wrapped in braces).
A default value can also be given:

\DeclareTemplateInterface { foo } { bar } { 0 }
{ key-name : choice { A, B, C} =4}

At the implementation level, each choice is associated with code, using a nested
key—value list.

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C
}
}
{...}

The two choice lists should match, but in the implementation a special unknown choice
is also available. This can be used to ignore values and implement an “else” branch:

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C ,
unknown = Else-code
}
}
{...}

\Declarelnstance

\IfInstanceExistsT
\IfInstanceExistsF
\IfInstanceExistsTF

\DeclareInstanceCopy

The unknown entry must be the last one given, and should not be listed in the interface
part of the template.

For keys which accept the values true and false both the boolean and choice key
types can be used. As template interfaces are intended to prompt clarity at the design
level, the boolean key type should be favored, with the choice type reserved for keys
which take arbitrary values.

7 Instances

After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.

For example, a template might say “here is a section with or without a number that
might be centered or left aligned and print its contents in a certain font of a certain size,
with a bit of a gap before and after it” whereas an instance declares “this is a section
with a number, which is centered and set in 12 pt italic with a 10 pt skip before and a
12 pt skip after it”. Therefore, an instance is just a frozen version of a template with
specific settings as chosen by the designer.

\DeclareInstance
{(type)} {(instance)} {(template)} {(parameters)}

This function uses a (template) for an (type) to create an (instance). The (instance)
will be set up using the (parameters), which will set some of the (keys) in the
(template).

As a practical example, consider a type for document sections (which might include
chapters, parts, sections, etc.), which is called sectioning. One possible template for
this type might be called basic, and one instance of this template would be a numbered
section. The instance declaration might read:

\DeclareInstance { sectioning } { section-num } { basic }

{

numbered

true ,
justification = center ,

font =\normalsize\itshape ,
before-skip = 10pt ,
after-skip = 12pt ,

3

Of course, the key names here are entirely imaginary, but illustrate the general idea of
fixing some settings.

\IfInstanceExistsTF {(type)} {(instance)} {(true code)} {(false code)}

Tests if the named (instance) of a (type) exists, and then inserts the appropriate code
into the input stream.

\DeclareInstanceCopy
{{type)} {(instance2)} {(instancel)}

Copies the (values) for (instancel) for an (type) to (instance2).

\UseInstance

\UseTemplate

\EditTemplateDefaults

\EditInstance

8 Document interface

After the instances have been chosen, document commands must be declared to use those
instances in the document. \UselInstance calls instances directly, and this command
should be used internally in document-level mark-up.

\UseInstance

{(type)} {(instance)} (arguments)
Uses an (instance) of the (type), which will require (arguments) as determined by the
number specified for the (type). The (instance) must have been declared before it can
be used, otherwise an error is raised.

\UseTemplate {(type)} {(template)}
{(settings)} (arguments)
Uses the (template) of the specified (type), applying the (settings) and absorbing
(arguments) as detailed by the (type) declaration. This in effect is the same as creating
an instance using \DeclareInstance and immediately using it with \UseInstance, but
without the instance having any further existence. This command is therefore useful
when a template needs to be used only once.
This function can also be used as the argument to instance key types:

\DeclareInstance { type } { template } { instance }
{
instance-key =
\UseTemplate { type2 } { template2 } { <settings> }

9 Changing existing definitions

Template parameters may be assigned specific defaults for instances to use if the instance
declaration doesn’t explicit set those parameters. In some cases, the document designer
will wish to edit these defaults to allow them to “cascade” to the instances. The alterna-
tive would be to set each parameter identically for each instance declaration, a tedious
and error-prone process.

\EditTemplateDefaults
{(type)} {(template)} {(new defaults)}

Edits the (defaults) for a (template) for an (type). The (new defaults), given as
a key—value list, replace the existing defaults for the (template). This means that the
change will apply to instances declared after the editing, but that instances which have
already been created are unaffected.

\EditInstance
{(type)} {(instance)} {(new values)}

Edits the (values) for an (instance) for an (type). The (new values), given as a key—
value list, replace the existing values for the (instance). This function is complementary
to \EditTemplateDefaults: \EditInstance changes a single instance while leaving the
template untouched.

\ShowInstanceValues

\ShowTemplateCode

\ShowTemplateDefaults

\ShowTemplateInterface

\ShowTemplateVariables

9.1 Expanding the values of keys

To allow the user to apply expansion of values when the key is set, key names can be
followed by an expansion specifier. This is given by appending : and a single letter
specifier to the key name. These letters are the normal argument specifiers for expl3,
thus they may be one of n (redundant but supported), o, V, v, e, N (again redundant) or
c. Expansion of a control sequence name is particularly useful when you need to refer to
an internal IMTEX 2¢ or an L3 programming layer variable, e.g.,

key-a:c = Qitemdepth , % use \@itemdepth as the value
key-b:v @itemdepth % use the current value of \@itempdepth as the value

10 Getting information about templates and instances

\ShowInstanceValues {(type)} {(instance)}

Shows the (values) for an (instance) of the given (type) at the terminal.

\ShowTemplateCode {(type)} {(template)}

Shows the (code) of a (template) for an (type) in the terminal.

\ShowTemplateDefaults {(type)} {(template)}

Shows the (default) values of a (template) for an (type) in the terminal.

\ShowTemplateInterface {(type)} {(template)}

Shows the (keys) and associated (key types) of a (template) for an (type) in the
terminal.

\ShowTemplateVariables {(type)} {(template)}

Shows the (variables) and associated (keys) of a (template) for an (type) in the
terminal. Note that code and choice keys do not map directly to variables but to
arbitrary code. For choice keys, each valid choice is shown as a separate entry in the
list, with the key name and choice separated by a space, for example

Template ’example’ of type ’example’ has variable mapping:
> demo unknown => \def \demo {7}

> demo ¢ => \def \demo {c}

> demo b => \def \demo {b}

> demo a => \def \demo {a}.

would be shown for a choice key demo with valid choices a, b and ¢, plus code for an
unknown branch.

10

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AssignTemplateKeys 5
B

bool commands:
\1_tmpa_bool 5
C
\caption, 2
clist commands:
\l_tmpa_clist 5
D
\DeclareInstance 9
\DeclareInstanceCopy 8
\DeclareTemplateCode 0
\DeclareTemplateCopy 7
\DeclareTemplateInterface 3
dim commands:
\l_tmpa_dim 5
E
\EditInstance 9
\EditTemplateDefaults 9
F
fp commands:
\l_tmpa_fpovviii 5
I
\IfInstanceExistsF 8
\IfInstanceExistsT 8
\IfInstanceExistsTF 8
int commands:
\l_tmpa_int 5

11

\item 6
K
\KeyValue 4
M
muskip commands:
\1_tmpa_muskip 5
N
\NewTemplateType 3
S
\section 2
\SetKnownTemplateKeys 6
\SetTemplateKeys 6
\ShowInstanceValues 10
\ShowTemplateCode 10
\ShowTemplateDefaults 10
\ShowTemplateInterface 10
\ShowTemplateVariables 10
skip commands:
\l_tmpa_skip 5
T
tl commands:
\l_tmpa_tl]
U
\UnusedTemplateKeys 6
use commands:
\use_i:nn 5
\UseInstance 9
\UseTemplate 9

	1 Introduction
	2 What is a document?
	3 Types, templates, and instances
	4 Template types
	5 Templates
	6 Multiple choices
	7 Instances
	8 Document interface
	9 Changing existing definitions
	9.1 Expanding the values of keys

	10 Getting information about templates and instances
	Index
	A
	B
	C
	D
	E
	F
	I
	K
	M
	N
	S
	T
	U

