Internet v2.0? Rethinking the Internet - exemplified by Cjdns

Lasse Grinderslev Andersen

20th of July, 2015 @ The Camp

Lasse Grinderslev Andersen Internet v2.0?

Contents of this talk

Introduction

The Internet

- History of the Internet
- Basic mechanics
- Challenges

• Cjdns

- Technical outline
- Present status
- Future

Contents of this talk

- Introduction
- The Internet
 - History of the Internet
 - Basic mechanics
 - Challenges
- Cjdns
 - Technical outline
 - Present status
 - Future

Contents of this talk

Introduction

The Internet

- History of the Internet
- Basic mechanics
- Challenges
- Cjdns
 - Technical outline
 - Present status
 - Future

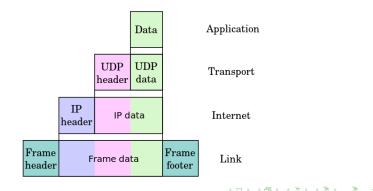
Why this talk?

- Internet is a fundamental/generative/general technology
- The Internet was made under *completely* different circumstances than today
- Cjdns is a daring (and experimental!) attempt at rethinking this basic technology.

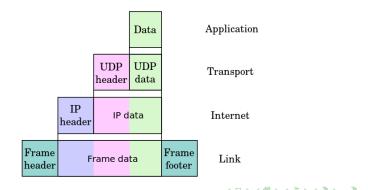
Why this talk?

- Internet is a fundamental/generative/general technology
- The Internet was made under *completely* different circumstances than today
- Cjdns is a daring (and experimental!) attempt at rethinking this basic technology.

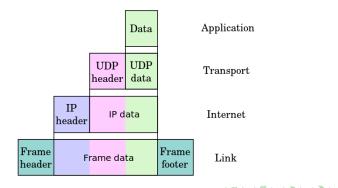
Why this talk?


- Internet is a fundamental/generative/general technology
- The Internet was made under *completely* different circumstances than today
- Cjdns is a daring (and experimental!) attempt at rethinking this basic technology.

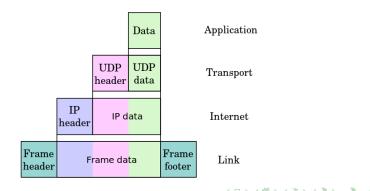
<1973 Packet switching but numerous networks: ARPANET, CYCLADES, etc. - unable to talk!


1973-83 Robert E. Kahn & Vinton Cerf (et.al) standardized communication across different networks: TCP/IP.

- Unique address-format across networks
- Networks connected by gateways
- Simplicity in design \Rightarrow End-to-end principle
- By academics for academics


1973-83 Robert E. Kahn & Vinton Cerf (et.al) standardized communication across different networks: TCP/IP.

- Unique address-format across networks
- Networks connected by gateways
- Simplicity in design \Rightarrow End-to-end principle
- By academics for academics

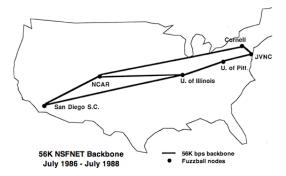

1973-83 Robert E. Kahn & Vinton Cerf (et.al) standardized communication across different networks: TCP/IP.

- Unique address-format across networks
- Networks connected by gateways
- Simplicity in design \Rightarrow End-to-end principle

1973-83 Robert E. Kahn & Vinton Cerf (et.al) standardized communication across different networks: TCP/IP.

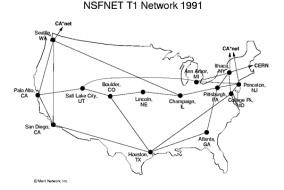
- Unique address-format across networks
- Networks connected by gateways
- Simplicity in design ⇒ End-to-end principle
- By academics for academics

1983-90 Gradual commercialisation:


- Military part of ARPANET broke off in 1983.
- Several US government bodies working on TCP/IP networks, NASA, NSF, Dept. of Energy etc.

1983-90 Gradual commercialisation:

- Military part of ARPANET broke off in 1983.
- Several US government bodies working on TCP/IP networks, NASA, NSF, Dept. of Energy etc.


1983-90 Gradual commercialisation:

• 1986 NSFNET started up: Six 56kbit/s backbones connecting universities and their super computers. "primarily for research and education in the sciences and engineering."

1983-90 Gradual commercialisation:

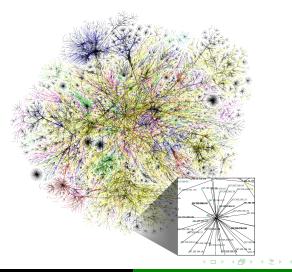
 1988 T1 upgrade: Thirteen 1.5mbit/s backbones. Many networks joined in, e.g., NASA (NSN), US Military (MILNET) etc. ARPANET decomissioned 1990.

1983-90 Gradual commercialisation:

- 1991 T3 upgrade: Sixteen 45mbit/s backbones.
- 1995 Goverment backbones replaced by commerical ISPs.

NSFNET T3 Network 1992

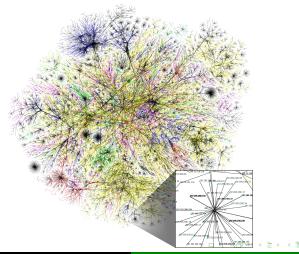
The Internet now


Basic functioning of the Internet:

- AS numbers and IP blocks are delegated by IANA
- AS holders routes prefixes to each other using BGP

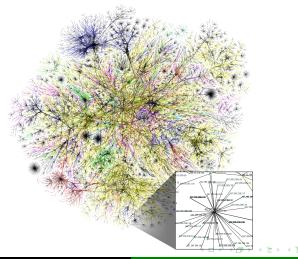
The Internet now

Basic functioning of the Internet:


Huge network but security was not built into core protocols

The Internet now - challenges

Issues & solutions


- Data encryption \Rightarrow TLS/SSL, VPN, IPSEC
- Authenticity \Rightarrow CA, CRL, OCSP (stapling), DNSSEC, PGP

The Internet now - challenges

Issues & solutions

- Route hijacking \Rightarrow BGPSEC (RPKI)
- Centralized administration of network addresses

What Cjdns isn't:

- Tor replacement
- Something to do with DNS (yes, silly name!)

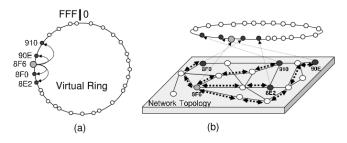
What Cjdns **tries** to be:

- Decentralized routing (friend-2-friend, no central address management)
- Secure (data encryption & authenticity)
- Modular (generate address and connect to peer)

A system is only secure if nobody has total control. - Caleb James DeLisle What Cjdns **isn't**:

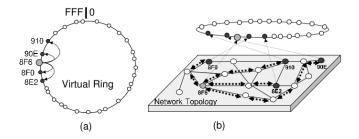
- Tor replacement
- Something to do with DNS (yes, silly name!)

What Cjdns tries to be:

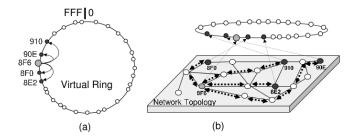

- Decentralized routing (friend-2-friend, no central address management)
- Secure (data encryption & authenticity)
- Modular (generate address and connect to peer)

A system is only secure if nobody has total control. - Caleb James DeLisle

Cjdns - Overview


Overall architecture

- Decentralized routing layer (DHT) using pub-keys as virtual addresses
- Simple packet switching/forwarding layer
- Crypto-layer creating encrypted tunnels for sending down packets


Cjdns - Routing

- Separation between physical links and address space
- Virtual address space used to locate nodes by routers
- Pub-keys as addresses \Rightarrow identity-integrity at *transport layer*.
- Hash of pubkey used as ipv6 address (fc00:/9)

Sending packets does not require the router:

- Routing label: Network path expressed as series of switch-directors
- Switching labels are not unique and vary in size
- When a packet travels through the network the label is changed s.t. the return label is obtained by reversing the route label.

Tunnels of encrypted traffic are created between node

- Verified by address/pubkey but using symmetric encryption (afaik)
- $\bullet \ \Rightarrow \text{ infeasible to eavesdrop}$
- $\bullet \ \Rightarrow \mathsf{man-in-the-middle} \ \mathsf{attack} \ \mathsf{infeasible}$

No need to use encryption in applications and relying on CA/DNS for identity!

...although malicious nodes can advertise false routes

Uses of cjdns atm.

- hyperboria: Global (testing) network based on 'friend-2-friend' peering (few public nodes)
- Use in meshnets, e.g, in Seattle, Vancouve, London etc. Some of these also provide internet tunneling.
- Russia?

Highly experimental, not well-documented etc.

Future uses:

- Global network for privacy/hackers/computer entusiasts?
- Privacy enhancement?

Developments:

- Anycast?
- CIDR-style blocks?

Inspect/test routing/network discovery algorithms and design details.

Tak for jeres opmærksomhed! :-)

Lasse Grinderslev Andersen Internet v2.0?