&Out("\%\&plain"); &Out("\n\\font\\TTT=cmr7 \\newcount\\cno"); &Out("\\def\\TT{\\T\\setbox0=\\hbox{\\char\\cno}\\ifdim\\wd0>0pt"); &Out(" \\box0\\lower4pt\\hbox{\\TTT\\the\\cno}\\else"); &Out(" \\ifdim\\ht0>0pt \\box0\\lower4pt\\hbox{\\TTT\\the\\cno}\\fi\\fi"); &Out(" \\global\\advance\\cno by1"); &Out("}"); &Out("\\def\\showfont#1{\\font\\T=#1 at 10pt\\global\\cno=0"); &Out(" \\tabskip1pt plus2pt minus1pt\\halign to\\hsize{&\\hss\\TT ##\\hss\\cr"); &Out(" \\multispan{16}\\hfil \\tt Font #1\\hfil\\cr\\noalign{\\smallskip}"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out(" &&&&&&&&&&&&&&&\\cr"); &Out("}}"); $testfonts = ""; if ($myans =~ /^y/i) { $testfonts = <<"endtestfonts" \\showfont{${fontfam_}$rreg${mathid}7t} \\smallskip \\showfont{${fontfam_}$rreg${mathid}7m} \\smallskip \\showfont{${fontfam_}$rreg${mathid}7y} \\smallskip \\showfont{${fontfam_}$rreg${mathid}7v} %% \\vfill \\eject endtestfonts } $AA = <<"EndAA"; %% This is a `plain tex-ified' version of Alan Jeffrey's %% testmath.tex. \\input z$_[0]$fontfam_ \\advance\\hsize by -4pc \\centerline{\\headingfonts\\bf A Plain Math Test Document} \\centerline{\\it $today} \\raggedbottom \\def\\emph#1{{\\bf #1}} \\def\\framebox[#1]#2{% \\setbox0=\\hbox{#2}\\dimen0=\\wd0 \\vbox{\\hrule\\hbox to#1\\dimen0{\\vrule\\vrule width0pt height8pt depth2pt #2\\vrule}\\hrule}} \\def\\testsize#1{ {\\tt\\string#1}: \$a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, X^{X^X}_{X_X}, a_{0_a}, 0_{a_0}, E=mc^2, X_{E=mc^2}, X_{X_{E=mc^2}}, \\sum_{i=0}^\\infty\$ } \\def\\testdelims#1#2#3{\\sqrt{ #1|#1\\|#1\\uparrow #1\\downarrow#1\\updownarrow#1\\Uparrow#1\\Downarrow #1\\Updownarrow#1\\lfloor#1\\lceil #1(#1\\{#1[#1\\langle #3 #2\\rangle#2]#2\\}#2) #2\\rceil#2\\rfloor#2\\Updownarrow#2\\Downarrow #2\\Uparrow#2\\updownarrow#2\\downarrow#2\\uparrow #2\\|#2| }\\cr} \\def\\testglyphs#1{ \\endgraf \\bgroup\\narrower\\noindent #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z #10#11#12#13#14#15#16#17#18#19 #1\\Gamma#1\\Delta#1\\Theta#1\\Lambda#1\\Xi #1\\Pi#1\\Sigma#1\\Upsilon#1\\Phi#1\\Psi#1\\Omega #1\\alpha#1\\beta#1\\gamma#1\\delta#1\\epsilon #1\\varepsilon#1\\zeta#1\\eta#1\\theta#1\\vartheta #1\\iota#1\\kappa#1\\lambda#1\\mu#1\\nu#1\\xi#1\\omicron #1\\pi#1\\varpi#1\\rho#1\\varrho #1\\sigma#1\\varsigma#1\\tau#1\\upsilon#1\\phi #1\\varphi#1\\chi#1\\psi#1\\omega #1\\partial#1\\ell#1\\imath#1\\jmath#1\\wp \\endgraf \\egroup } \\def\\sidebearings#1{ \$|#1|\$ } \\def\\subscripts#1{ \$#1_\\circ\$ } \\def\\supscripts#1{ \$#1^\\circ\$ } \\def\\scripts#1{ \$#1^\\circ_\\circ\$ } \\def\\vecaccents#1{ \$\\vec#1\$ } \\def\\tildeaccents#1{ \$\\tilde#1\$ } \\ifx\\omicron\\undefined \\let\\omicron=o \\fi \\beginsection Introduction This document (based on a similar document created by Alan Jeffrey) tests the math capabilities of a math package for plain \\TeX. The math package combines the {\\tt $_[0]} math fonts with the {\\tt $fontfam_} text fonts. $testfonts \\beginsection Fonts Math italic: \$\$ ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz \$\$ Text italic: \$\$ {\\it ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} \$\$ Roman: \$\$ {\\rm ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} \$\$ Typewriter: \$\$ {\\tt ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} \$\$ Bold: \$\$ {\\bf ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} \$\$ EndAA &out($AA); $GreekBoldTest = <<"EndGreekBoldTest"; \$\$ {\\bf\\Gamma\\Delta\\Theta\\Lambda\\Xi\\Pi\\Sigma\\Upsilon\\Phi\\Psi\\Omega} \$\$ EndGreekBoldTest $CalTest = <<"EndCalTest"; Calligraphic: \$\$ A{\\cal ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \$\$ EndCalTest $SansTest = "Sans:\n\$\$\n A{\\sf ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\\ "; $SansTest .= " a{\\sf abcdefghijklmnopqrstuvwxyz}z\n\$\$\n"; $FrakTest = "Fraktur:\n\$\$\n A{\\frak ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\\ "; $FrakTest .= " a{\\frak abcdefghijklmnopqrstuvwxyz}z\n\$\$\n"; $BBoldTest = "Blackboard Bold:\n\$\$\n"; $BBoldTest .= " A{\\bb ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\n\$\$\n"; $BBplain = < \\geq \$\$ Are these the same size? \$\$\\textstyle \\oint \\int \\quad \\bigodot \\bigoplus \\bigotimes \\sum \\prod \\bigcup \\bigcap \\biguplus \\bigwedge \\bigvee \\coprod \$\$ Are these? \$\$ \\oint \\int \\quad \\bigodot \\bigoplus \\bigotimes \\sum \\prod \\bigcup \\bigcap \\biguplus \\bigwedge \\bigvee \\coprod \$\$ \\beginsection Sizing \$\$ abcde + x^{abcde} + 2^{x^{abcde}} \$\$ The subscripts should be appropriately sized: {\\narrower\\noindent\\headingfonts \\testsize\\headingfonts \\endgraf } {\\narrower\\noindent\\bodyfonts \\testsize\\bodyfonts \\endgraf } {\\narrower\\noindent\\notefonts \\testsize\\notefonts \\endgraf } \\beginsection Delimiters Each row should be a different size, but within each row the delimiters should be the same size. First with {\\tt\\string\\big}, etc: \$\$\\vbox{\\halign{\\hfil\$#\$\\hfil\\cr \\testdelims\\relax\\relax{a} \\testdelims\\bigl\\bigr{a} \\testdelims\\Bigl\\Bigr{a} \\testdelims\\biggl\\biggr{a} \\testdelims\\Biggl\\Biggr{a} }}\$\$ Then with {\\tt\\string\\left} and {\\tt\\string\\right}: \$\$\\vbox{\\halign{\\hfil\$#\$\\hfil\\cr \\testdelims\\left\\right{\\vcenter{{\\halign{\\hss\$#\$\\hss\\cr a \\cr}}}} \\testdelims\\left\\right{\\vcenter{{\\halign{\\hss\$#\$\\hss\\cr a\\cr a \\cr}}}} \\testdelims\\left\\right{\\vcenter{{\\halign{\\hss\$#\$\\hss\\cr a\\cr a\\cr a \\cr}}}} \\testdelims\\left\\right{\\vcenter{{\\halign{\\hss\$#\$\\hss\\cr a\\cr a\\cr a\\cr a \\cr}}}} }}\$\$ \\beginsection Spacing This paragraph should appear to be a monotone grey texture. Suppose \$f \\in {\\cal S}_n\$ and \$g(x) = (-1)^{|\\alpha|}x^\\alpha f(x)\$. Then \$g \\in {\\cal S}_n\$; now (\\emph{c}) implies that \$\\hat g = D_\\alpha \\hat f\$ and \$P \\cdot D_\\alpha\\hat f = P \\cdot \\hat g = (P(D)g)\\hat{}\$, which is a bounded function, since \$P(D)g \\in L^1(R^n)\$. This proves that \$\\hat f \\in {\\cal S}_n\$. If \$f_i \\rightarrow f\$ in \${\\cal S}_n\$, then \$f_i \\rightarrow f\$ in \$L^1(R^n)\$. Therefore \$\\hat f_i(t) \\rightarrow \\hat f(t)\$ for all \$t \\in R^n\$. That \$f \\rightarrow \\hat f\$ is a \\emph{continuous} mapping of \${\\cal S}_n\$ into \${\\cal S}_n\$ follows now from the closed graph theorem. \\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. And thus for \$x_1\$ through \$x_i\$. {\\it This paragraph should appear to be a monotone grey texture. Suppose \$f \\in {\\cal S}_n\$ and \$g(x) = (-1)^{|\\alpha|}x^\\alpha f(x)\$. Then \$g \\in {\\cal S}_n\$; now (\\emph{c}) implies that \$\\hat g = D_\\alpha \\hat f\$ and \$P \\cdot D_\\alpha\\hat f = P \\cdot \\hat g = (P(D)g)\\hat{}\$, which is a bounded function, since \$P(D)g \\in L^1(R^n)\$. This proves that \$\\hat f \\in {\\cal S}_n\$. If \$f_i \\rightarrow f\$ in \${\\cal S}_n\$, then \$f_i \\rightarrow f\$ in \$L^1(R^n)\$. Therefore \$\\hat f_i(t) \\rightarrow \\hat f(t)\$ for all \$t \\in R^n\$. That \$f \\rightarrow \\hat f\$ is a \\emph{continuous} mapping of \${\\cal S}_n\$ into \${\\cal S}_n\$ follows now from the closed graph theorem. \\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.} The text in these boxes should spread out as much as the math does: \$\$\\vbox{\\halign{\\hfil#\\hfil\\cr \\framebox[.95]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[.975]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1.025]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1.05]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1.075]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1.1]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\framebox[1.125]{For example \$x+y = \\min\\{x,y\\} + \\max\\{x,y\\}\$ is a formula.} \\cr \\cr}}\$\$ \\bye EndBBplain