\documentclass{article} \usepackage{amsmath,amsthm} \usepackage[letterpaper,text={5.95in,9in}]{geometry} \pagestyle{empty} \setlength{\parindent}{0cm} \usepackage{arev} %\theoremstyle{definition} \newtheorem{theorem}{Theorem} \begin{document} \begin{theorem}[Residue Theorem] Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then \[ \frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). \] \end{theorem} Another nice theorem from complex analysis is \begin{theorem}[Maximum Modulus] Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then \[ \max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. \] \end{theorem} \newcommand{\abc}{abcdefgh\hbar\hslash i\imath j\jmath klmnopqrstuvwxyz} \newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \newcommand{\alphabeta}{\alpha\beta\varbeta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega} \newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega} $\mathrm{\ABC}$ \qquad $\ABC$ abcd$\eth$efghijklmnopqrstuvwxyz \qquad $\abc$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial$ $\AlphaBeta\mho$ \qquad $\alphabeta$ \qquad $01234567890$ \end{document}