--- title: "Package Options" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Package Options} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Quick read Add these options to your `.Rprofile` for persistent use or add to the beginning of your table building script for ease of sharing. ```r options(sumExtras.auto_labels = TRUE) options(sumExtras.prefer_dictionary = TRUE) ``` ## Auto-Labeling with `sumExtras.auto_labels` If you keep a `dictionary` object in your environment (or your data already has label attributes), you can skip calling `add_auto_labels()` on every table. Set this once: ```{r, eval=FALSE} options(sumExtras.auto_labels = TRUE) ``` Now `extras()` handles labeling automatically: ```{r, eval=FALSE} # Define your dictionary once dictionary <- tibble::tribble( ~variable, ~description, "age", "Age at Enrollment (years)", "marker", "Marker Level (ng/mL)", "grade", "Tumor Grade" ) # Every extras() call picks it up trial |> tbl_summary(by = trt) |> extras() ``` Put `options(sumExtras.auto_labels = TRUE)` in your `.Rprofile` to enable this for every session. Another option is to add it at the beginning of the script that creates your tables. If no dictionary is found and the data has no label attributes, `extras()` continues normally. If something goes wrong, it warns and moves on. You can still call `add_auto_labels()` explicitly whenever you need per-table control. ## Dictionary Priority with `sumExtras.prefer_dictionary` By default, attribute labels (from `attr(data$var, "label")`) take priority over dictionary labels. If you maintain a centralized data dictionary and want it to win over attribute labels, set: ```{r, eval=FALSE} options(sumExtras.prefer_dictionary = TRUE) ``` This changes the label priority to: 1. **Manual labels** (from `label = list(...)` in `tbl_summary()`) -- always win 2. **Dictionary labels** -- from the dictionary data frame 3. **Attribute labels** -- from `attr(data$var, "label")` This is useful when your imported data has generic attribute labels (e.g., from `{haven}` or `{labelled}`) but your dictionary has the labels you actually want in publication tables. Without the option (or with `sumExtras.prefer_dictionary = FALSE`), the default priority is manual > attributes > dictionary. ## More Vignettes * `vignette("sumExtras-intro")` -- getting started with extras() * `vignette("labeling")` -- dictionary-based labeling and cross-package workflows * `vignette("themes")` -- JAMA compact themes for `{gtsummary}` and `{gt}` tables * `vignette("styling")` -- group headers and advanced formatting