Package ‘smoothr’

October 21, 2025

Type Package
Title Smooth and Tidy Spatial Features
Version 1.2.1

Description Tools for smoothing and tidying spatial features
(i.e. lines and polygons) to make them more aesthetically pleasing.
Smooth curves, fill holes, and remove small fragments from lines and
polygons.

License GPL-3
URL https://strimas.com/smoothr/, https://github.com/mstrimas/smoothr

BugReports https://github.com/mstrimas/smoothr/issues
Depends R (>=3.1.2)

Imports sf, stats, units

Suggests covr, knitr, Iwgeom, methods, rmarkdown, sp, testthat, terra
VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Matthew Strimas-Mackey [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8929-7776>)

Maintainer Matthew Strimas-Mackey <mstrimas@gmail.com>
Repository CRAN
Date/Publication 2025-10-21 05:10:02 UTC

Contents

densify L
drop_crumbs L
fill_holes e

https://strimas.com/smoothr/
https://github.com/mstrimas/smoothr
https://github.com/mstrimas/smoothr/issues
https://orcid.org/0000-0001-8929-7776

2 density
jagged_lines L. e e e 5
jagged_lines_3d e e 5
jagged_polygons 6
SMOOth o . e e e e e e 6
smooth_chaikin e e 8
smooth_densify L 10
smooth_ksmooth 11
smooth_spline 13

Index 15

densify Densify spatial lines or polygons

Description

A wrapper for smooth(x, method = "densify”). This function adds additional vertices to spatial
feature via linear interpolation, always while keeping the original vertices. Each line segment will
be split into equal length sub-segments. This densification algorithm treats all vertices as Euclidean
points, i.e. new points will not fall on a great circle between existing vertices, rather they’ll be along
a straight line.

Usage

densify(x, n = 10L, max_distance)

Arguments
X spatial features; lines or polygons from either the sf, sp, or terra packages.
n integer; number of times to split each line segment. Ignored if max_distance is

specified.

max_distance numeric; the maximum distance between vertices in the resulting matrix. This

Value

is the Euclidean distance and not the great circle distance.

A densified polygon or line in the same format as the input data.

Examples

library(sf)

1 <- jagged_lines$geometry[[2]]

1_dense <- densify(l, n = 2)

plot(l, 1lwd = 5)

plot(l_dense, col = "red”, lwd = 2, 1ty = 2, add = TRUE)
plot(l_dense %>% st_cast("MULTIPOINT"), col = "red", pch = 19,

add = TRUE)

drop_crumbs 3

drop_crumbs Remove small polygons or line segments

Description

Remove polygons or line segments below a given area or length threshold.

Usage
drop_crumbs(x, threshold, drop_empty = TRUE)

Arguments
X spatial features; lines or polygons from either the sf, sp, or terra packages.
threshold an area or length threshold, below which features will be removed. Provided
either as a units object (see units::set_units()), or a numeric threshold in
the units of the coordinate reference system. If x is in unprojected coordinates,
a numeric threshold is assumed to be in meters.
drop_empty logical; whether features with sizes below the given threshold should be re-
moved (the default) or kept as empty geometries. Note that sp objects cannot
store empty geometries, so this argument will be ignored and empty geometries
will always be removed.
Details

For multipart features, the removal threshold is applied to the individual components. This means
that, in some cases, an entire feature may be removed, while in other cases, only parts of the
multipart feature will be removed.

Value

A spatial feature, with small pieces removed, in the same format as the input data. If none of the
features are larger than the threshold, sf inputs will return a geometry set with zero features, and
sp inputs will return NULL.

Examples

remove polygons smaller than 200km2
p <- jagged_polygons$geometry[7]
area_thresh <- units::set_units(200, km"2)
p_dropped <- drop_crumbs(p, threshold = area_thresh)
plot
par(mar = c(@, @, 1, @), mfrow = c(1, 2))
plot(p, col = "black”, main = "Original”)
if (length(p_dropped) > 0) {
plot(p_dropped, col = "black”, main = "After drop_crumbs()")
3

4 fill_holes

remove lines less than 25 miles
1 <- jagged_lines$geometry[8]
note that any units can be used
conversion to units of projection happens automatically
length_thresh <- units::set_units(25, miles)
1_dropped <- drop_crumbs(l, threshold = length_thresh)
plot
par(mar = c(@, 0, 1, @), mfrow = c(1, 2))
plot(l, lwd = 5, main = "Original")
if (length(l_dropped)) {
plot(l_dropped, lwd = 5, main = "After drop_crumbs()")
}

fill_holes Fill small holes in polygons

Description

Fill polygon holes that fall below a given area threshold.

Usage
fill_holes(x, threshold)

Arguments
X spatial features; lines or polygons from either the sf, sp, or terra packages.
threshold an area threshold, below which holes will be removed. Provided either as a
units object (see units::set_units()), or a numeric threshold in the units of
the coordinate reference system. If x is in unprojected coordinates, a numeric
threshold is assumed to be in square meters. A threshold of 0 will return the
input polygons unchanged.
Value

A spatial feature, with holes filled, in the same format as the input data.

Examples

fill holes smaller than 1000km2

p <- jagged_polygons$geometry[5]

area_thresh <- units::set_units(1000, km*2)

p_dropped <- fill_holes(p, threshold = area_thresh)

plot

par(mar = c(@, @, 1, @), mfrow = c(1, 2))

plot(p, col = "black”, main = "Original)

plot(p_dropped, col = "black”, main = "After fill_holes()")

jagged_lines 5

jagged_lines Jagged lines for smoothing

Description
Spatial lines in sf format for smoothing. There are examples of lines forming a closed loop and
multipart lines.

Usage

jagged_lines

Format
An sf object with 9 features and 3 attribute:
* type: character; the geometry, i.e. "polygon" or "line".

* closed: logical; whether the line forms a closed loop or not.

* multipart: logical; whether the feature is single or multipart.

jagged_lines_3d 3D jagged line with Z-dimension for smoothing

Description
Spatial lines in sf format for smoothing in three dimensions. There are examples of open and closed
loops

Usage

jagged_lines_3d

Format
An sf object with 9 features and 3 attribute:
* type: character; the geometry, i.e. "polygon" or "line".

* closed: logical; whether the line forms a closed loop or not.

* multipart: logical; whether the feature is single or multipart.

6 smooth

jagged_polygons Jagged polygons for smoothing

Description

Spatial polygons in sf format for smoothing. Most of these polygons have been created by con-
verting rasters to polygons and therefore consist entirely of right angles. There are examples of
polygons with holes and multipart polygons.

Usage

jagged_polygons

Format
An sf object with 9 features and 3 attribute:
* type: character; the geometry, i.e. "polygon" or "line".

* hole: logical; whether the polygon has holes or not.

e multipart: logical; whether the feature is single or multipart.

smooth Smooth a spatial feature

Description

Smooth out the jagged or sharp corners of spatial lines or polygons to make them appear more
aesthetically pleasing and natural.

Usage
smooth(x, method = c("chaikin”, "ksmooth", "spline", "densify"), ...)

Arguments
X spatial features; lines or polygons from either the sf, sp, or terra packages.
method character; specifies the type of smoothing method to use. Possible methods are:

"chaikin"”, "ksmooth"”, "spline”, and "densify”. Each method has one or
more parameters specifying the amount of smoothing to perform. See Details
for descriptions.

additional arguments specifying the amount of smoothing, passed on to the spe-
cific smoothing function, see Details below.

smooth 7

Details

Specifying a method calls one of the following underlying smoothing functions. Each smoothing
method has one or more parameters that specify the extent of smoothing. Note that for multiple
features, or multipart features, these parameters apply to each individual, singlepart feature.

* smooth_chaikin(): Chaikin’s corner cutting algorithm smooths a curve by iteratively replac-
ing every point by two new points: one 1/4 of the way to the next point and one 1/4 of the way
to the previous point. Smoothing parameters:

— refinements: number of corner cutting iterations to apply.

* smooth_ksmooth(): kernel smoothing via the stats::ksmooth() function. This method
first calls smooth_densify() to densify the feature, then applies Gaussian kernel regression
to smooth the resulting points. Smoothing parameters:

— smoothness: a positive number controlling the smoothness and level of generalization.
At the default value of 1, the bandwidth is chosen as the mean distance between adjacent
vertices. Values greater than 1 increase the bandwidth, yielding more highly smoothed
and generalized features, and values less than 1 decrease the bandwidth, yielding less
smoothed and generalized features.

— bandwidth: the bandwidth of the Guassian kernel. If this argument is supplied, then
smoothness is ignored and an optimal bandwidth is not estimated.

— n: number of times to split each line segment in the densification step. Ignored if
max_distance is specified.

— max_distance: the maximum distance between vertices in the resulting features for the
densification step. This is the Euclidean distance and not the great circle distance.

* smooth_spline(): spline interpolation via the stats::spline() function. This method
interpolates between existing vertices and can be used when the resulting smoothed feature
should pass through the vertices of the input feature. Smoothing parameters:

— vertex_factor: the proportional increase in the number of vertices in the smooth fea-
ture. For example, if the original feature has 100 vertices, a value of 2.5 will yield a new,
smoothed feature with 250 vertices. Ignored if n is specified.

— n: number of vertices in each smoothed feature.

* smooth_densify(): densification of vertices for lines and polygons. This is not a true
smoothing algorithm, rather new vertices are added to each line segment via linear interpola-
tion. Densification parameters:

— n: number of times to split each line segment. Ignored if max_distance is specified.

— max_distance: the maximum distance between vertices in the resulting feature. This is
the Euclidean distance and not the great circle distance.

Value

A smoothed polygon or line in the same format as the input data.

References

See specific smoothing function help pages for references.

8 smooth_chaikin
See Also
smooth_chaikin() smooth_ksmooth() smooth_spline() smooth_densify()
Examples
library(sf)
compare different smoothing methods
polygons
par(mar = c(0, @, @, @), oma = c(4, 0, 0, @), mfrow = c(3, 3))
p_smooth_chaikin <- smooth(jagged_polygons, method = "chaikin")
p_smooth_ksmooth <- smooth(jagged_polygons, method = "ksmooth")
p_smooth_spline <- smooth(jagged_polygons, method = "spline")
for (i in 1:nrow(jagged_polygons)) {
plot(st_geometry(p_smooth_spline[i, 1), col = NA, border = NA)
plot(st_geometry(jagged_polygons[i, 1), col = "grey40"”, border = NA, add = TRUE)
plot(st_geometry(p_smooth_chaikin[i, 1), col = NA, border = "#E41A1C", lwd = 2, add = TRUE)
plot(st_geometry(p_smooth_ksmooth[i, 1), col = NA, border = "#4DAF4A", 1lwd = 2, add = TRUE)
plot(st_geometry(p_smooth_spline[i,]), col = NA, border = "#377EB8", 1lwd = 2, add = TRUE)
3
par(fig = c(o, 1, @, 1), oma = c(@, @, 0, @), new = TRUE)
plot(@, @, type = "n", bty = "n", xaxt = "n", yaxt = "n", axes = FALSE)
legend("bottom”, legend = c("chaikin”, "ksmooth”, "spline"),
col = c("#E41A1C", "#4DAF4A", "#377EB8"),
lwd = 2, cex = 2, box.lwd = @, inset = @, horiz = TRUE)
lines
par(mar = c(0, @, @, @), oma = c(4, 0, 0, 0), mfrow = c(3, 3))
1_smooth_chaikin <- smooth(jagged_lines, method = "chaikin")
1_smooth_ksmooth <- smooth(jagged_lines, method = "ksmooth")
1_smooth_spline <- smooth(jagged_lines, method = "spline")
for (i in 1:nrow(jagged_lines)) {
plot(st_geometry(l_smooth_spline[i,]), col = NA)
plot(st_geometry(jagged_lines[i, 1), col = "grey20", lwd = 3, add = TRUE)
plot(st_geometry(l_smooth_chaikin[i, 1), col = "#E41A1C", lwd = 2, 1ty = 2, add = TRUE)
plot(st_geometry(l_smooth_ksmooth[i, 1), col = "#4DAF4A", 1lwd = 2, 1ty = 2, add = TRUE)
plot(st_geometry(l_smooth_spline[i, 1), col = "#377EB8", 1lwd = 2, lty = 2, add = TRUE)
3
par(fig = c(o, 1, @, 1), oma = c(@, 0, @, @), new = TRUE)
plot(@, @, type = "n", bty = "n", xaxt = "n", yaxt = "n", axes = FALSE)
legend("bottom”, legend = c("”chaikin”, "smooth”, "spline"),
col = c("#E41A1C", "#4DAF4A", "#377EB8"),
lwd = 2, cex = 2, box.lwd = @, inset = @, horiz = TRUE)
smooth_chaikin Chaikin’s corner cutting algorithm
Description

Chaikin’s corner cutting algorithm smooths a curve by iteratively replacing every point by two new
points: one 1/4 of the way to the next point and one 1/4 of the way to the previous point.

smooth_chaikin 9

Usage

smooth_chaikin(x, wrap = FALSE, refinements = 3L)

Arguments
X numeric matrix; 2-column matrix of coordinates.
wrap logical; whether the coordinates should be wrapped at the ends, as for polygons
and closed lines, to ensure a smooth edge.
refinements integer; number of corner cutting iterations to apply.
Details

This function works on matrices of points and is generally not called directly. Instead, use smooth ()
with method = "chaikin” to apply this smoothing algorithm to spatial features.

Value

A matrix with the coordinates of the smoothed curve.

References
The original reference for Chaikin’s corner cutting algorithm is:
e Chaikin, G. An algorithm for high speed curve generation. Computer Graphics and Image Processing 3 (
This implementation was inspired by the following StackOverflow answer:

e Where to find Python implementation of Chaikin’s corner cutting algorithm?

See Also

smooth()

Examples

smooth_chaikin works on matrices of coordinates

use the matrix of coordinates defining a polygon as an example
m <- jagged_polygons$geometry[[2]1][[1]]

m_smooth <- smooth_chaikin(m, wrap = TRUE)

class(m)

class(m_smooth)

plot(m, type = "1", axes = FALSE, xlab = NA, ylab = NA)
lines(m_smooth, col = "red")

smooth is a wrapper for smooth_chaikin that works on spatial features
library(sf)

p <- jagged_polygons$geometry[[2]]

p_smooth <- smooth(p, method = "chaikin")

class(p)

class(p_smooth)

plot(p)
plot(p_smooth, border = "red”, add = TRUE)

https://stackoverflow.com/a/47255374/3591386

10

smooth_densify

smooth_densify Densify lines or polygons

Description

This function adds additional vertices to lines or polygons via linear interpolation, always while
keeping the original vertices. Each line segment will be split into equal length sub-segments. This
densification algorithm treats all vertices as Euclidean points, i.e. new points will not fall on a great

circle between existing vertices, rather they’ll be along a straight line.

Usage

smooth_densify(x, wrap = FALSE, n = 10L, max_distance)

Arguments
X numeric matrix; matrix of coordinates.
wrap logical; whether the coordinates should be wrapped at the ends, as for polygons
and closed lines, to ensure a smooth edge.
n integer; number of times to split each line segment. Ignored if max_distance is

specified.

max_distance numeric; the maximum distance between vertices in the resulting matrix. This

is the Euclidean distance and not the great circle distance.

Details

This function works on matrices of points and is generally not called directly. Instead, use smooth()

with method = "densify" to apply this smoothing algorithm to spatial features.

Value

A matrix with the coordinates of the densified curve.

Examples

smooth_densify works on matrices of coordinates

use the matrix of coordinates defining a line as an example
m <- jagged_lines$geometry[[2]]1[]

m_dense <- smooth_densify(m, n = 5)

class(m)

class(m_dense)

plot(m, type = "b", pch = 19, cex = 1.5, axes = FALSE, xlab = NA, ylab = NA)

points(m_dense, col = "red”, pch = 19, cex = 0.5)

max_distance can be used to ensure vertices are at most a given dist apart

m_md <- smooth_densify(m, max_distance = 0.05)

plot(m, type = "b", pch = 19, cex = 1.5, axes = FALSE, xlab = NA, ylab = NA)

points(m_md, col = "red”, pch = 19, cex = 0.5)

smooth_ksmooth 11

smooth is a wrapper for smooth_densify that works on spatial features
library(sf)

1 <- jagged_lines$geometry[[2]]

1_dense <- smooth(l, method = "densify”, n = 2)

class(l)

class(1l_dense)

plot(l, 1lwd = 5)

plot(l_dense, col = "red”, 1lwd = 2, 1ty = 2, add = TRUE)

plot(l_dense %>% st_cast("MULTIPOINT"), col = "red”, pch = 19,

add = TRUE)
smooth_ksmooth Kernel smooth
Description

Kernel smoothing uses stats::ksmooth() to smooth out existing vertices using Gaussian ker-
nel regression. Kernel smoothing is applied to the x and y coordinates are independently. Prior
to smoothing, smooth_densify() is called to generate additional vertices, and the smoothing is
applied to this densified set of vertices.

Usage
smooth_ksmooth(
X,
wrap = FALSE,
smoothness = 1,
bandwidth,
n = 10L,
max_distance
)
Arguments
X numeric matrix; 2-column matrix of coordinates.
wrap logical; whether the coordinates should be wrapped at the ends, as for polygons
and closed lines, to ensure a smooth edge.
smoothness numeric; a parameter controlling the bandwidth of the Gaussian kernel, and
therefore the smoothness and level of generalization. By default, the bandwidth
is chosen as the mean distance between adjacent points. The smoothness pa-
rameter is a multiplier of this chosen bandwidth, with values greater than 1
yielding more highly smoothed and generalized features and values less than
1 yielding less smoothed and generalized features.
bandwidth numeric; the bandwidth of the Guassian kernel. If this argument is supplied,

then smoothness is ignored and an optimal bandwidth is not estimated.

12 smooth_ksmooth

n integer; number of times to split each line segment for smooth_densify(). Ig-
nored if max_distance is specified.

max_distance numeric; the maximum distance between vertices for smooth_densify(). This
is the Euclidean distance and not the great circle distance.

Details

Kernel smoothing both smooths and generalizes curves, and the extent of these effects is dependent
on the bandwidth of the smoothing kernel. Therefore, choosing a sensible bandwidth is critical
when using this method. The choice of bandwidth will be dependent on the projection, scale, and
desired amount of smoothing and generalization. The are two methods of adjusting the bandwidth.
By default, the bandwidth will be set to the average distances between adjacent vertices. The
smoothness factor can then be used to adjust this calculated bandwidth, values greater than 1 will
lead to more smoothing, values less than 1 will lead to less smoothing. Alternatively, the bandwidth
can be chosen manually with the bandwidth argument. Typically, users will need to explore a range
of bandwidths to determine which yields the best results for their situation.

This function works on matrices of points and is generally not called directly. Instead, use smooth ()
with method = "ksmooth” to apply this smoothing algorithm to spatial features.

Value

A matrix with the coordinates of the smoothed curve.

References

The kernel smoothing method was inspired by the following StackExchange answers:

* Nadaraya-Watson Optimal Bandwidth

* Smoothing polygons in contour map?

See Also

smooth ()

Examples

smooth_ksmooth works on matrices of coordinates

use the matrix of coordinates defining a polygon as an example

m <- jagged_polygons$geometry[[2]11[[1]]

m_smooth <- smooth_ksmooth(m, wrap = TRUE)

class(m)

class(m_smooth)

plot(m, type = "1", col = "black”, lwd = 3, axes = FALSE, xlab = NA,
ylab = NA)

lines(m_smooth, lwd = 3, col = "red")

lines can also be smoothed

1 <- jagged_lines$geometry[[2]]1[]

1_smooth <- smooth_ksmooth(l, wrap = FALSE, max_distance = 0.05)
plot(l, type = "1", col = "black”, 1lwd = 3, axes = FALSE, xlab = NA,

https://stats.stackexchange.com/a/143608/44268
https://gis.stackexchange.com/a/24929/26661

smooth_spline 13

ylab = NA)
lines(1_smooth, lwd = 3, col = "red")

explore different levels of smoothness
p <- jagged_polygons$geometry[[2]11[[1]]
ps1 <- smooth_ksmooth(p, wrap = TRUE, max_distance = 0.01, smoothness = 0.5)
ps2 <- smooth_ksmooth(p, wrap = TRUE, max_distance = ©.01, smoothness = 1)
ps3 <- smooth_ksmooth(p, wrap = TRUE, max_distance = 0.01, smoothness = 2)
plot
par(mar = c(@, @, @, @), oma = c(10, @, @, 0))
plot(p, type = "1", col = "black”, lwd = 3, axes = FALSE, xlab
ylab = NA)
lines(ps1, 1lwd = 3, col "#E41A1C")
lines(ps2, 1lwd = 3, col = "#4DAF4A")
lines(ps3, 1lwd = 3, col = "#377EB8")
par(fig = c(o, 1, @, 1), oma = c(@, @, @, @), new = TRUE)
plot(@, @, type = "n", bty = "n", xaxt = "n", yaxt = "n", axes = FALSE)
legend("bottom”, legend = c("0.5", "1", "2"),
col = c("#E41A1C", "#4DAF4A", "#377EB8"),
lwd = 3, cex = 2, box.lwd = @, inset = @, horiz = TRUE)

NA,

library(sf)

p <- jagged_polygons$geometry[[2]]
p_smooth <- smooth(p, method = "ksmooth")
class(p)

class(p_smooth)

plot(p_smooth, border = "red")

plot(p, add = TRUE)

smooth_spline Spline interpolation

Description

Spline interpolation uses stats: : spline() to interpolate between existing vertices using piecewise
cubic polynomials. The coordinates are interpolated independently. The curve will always pass
through the vertices of the original feature.

Usage

smooth_spline(x, wrap = FALSE, vertex_factor = 5, n)

Arguments
X numeric matrix; matrix of coordinates.
wrap logical; whether the coordinates should be wrapped at the ends, as for polygons

and closed lines, to ensure a smooth edge.

vertex_factor double; the proportional increase in the number of vertices in the smooth curve.
For example, if the original curve has 100 points, a value of 2.5 will yield a new
smoothed curve with 250 points. Ignored if n is specified.

14 smooth_spline

n integer; number of vertices in the smoothed curve.

Details

This function works on matrices of points and is generally not called directly. Instead, use smooth()
with method = "spline” to apply this smoothing algorithm to spatial features.

Value

A matrix with the coordinates of the smoothed curve.

References
The spline method was inspired by the following StackExchange answers:

* Create polygon from set of points distributed

* Smoothing polygons in contour map?

See Also

smooth()

Examples

smooth_spline works on matrices of coordinates

use the matrix of coordinates defining a polygon as an example

m <- jagged_polygons$geometry[[2]1[[1]1]

m_smooth <- smooth_spline(m, wrap = TRUE)

class(m)

class(m_smooth)

plot(m_smooth, type = "1", col = "red"”, axes = FALSE, xlab = NA, ylab = NA)
lines(m, col = "black")

smooth is a wrapper for smooth_spline that works on spatial features
library(sf)

p <- jagged_polygons$geometry[[2]]

p_smooth <- smooth(p, method = "spline")

class(p)

class(p_smooth)

plot(p_smooth, border = "red")

plot(p, add = TRUE)

https://stackoverflow.com/a/26089377/3591386
https://gis.stackexchange.com/a/24929/26661

Index

+ datasets
jagged_lines, 5
jagged_lines_3d, 5
jagged_polygons, 6

densify, 2
drop_crumbs, 3

fill_holes, 4

jagged_lines, 5
jagged_lines_3d, 5
jagged_polygons, 6

sf, 5, 6

smooth, 6
smooth(), 9, 10, 12, 14
smooth_chaikin, 8
smooth_chaikin(), 7, 8
smooth_densify, 10
smooth_densify(), 7, 8, 11, 12
smooth_ksmooth, 11
smooth_ksmooth(), 7, 8
smooth_spline, 13
smooth_spline(), 7, 8
stats: :ksmooth(), 7, 11
stats::spline(), 7, 13

units::set_units(), 3, 4

15

	densify
	drop_crumbs
	fill_holes
	jagged_lines
	jagged_lines_3d
	jagged_polygons
	smooth
	smooth_chaikin
	smooth_densify
	smooth_ksmooth
	smooth_spline
	Index

