Package ‘rfars’

October 22, 2025
Type Package
Title Download and Analyze Crash Data
Version 2.0.2

Description Easily Download Analysis-
Ready Crash Data from the U.S. National Highway Traffic Safety Administration.

License CCO
Encoding UTF-8
LazyData true

Imports data.table, downloader, dplyr, haven, janitor, lubridate,
magrittr, purrr, readr, rlang, stringr, tidyr, tidyselect

RoxygenNote 7.3.2
Depends R (>=3.5.0)

Suggests knitr, rmarkdown, leaflet, leaflet.extras, ggplot2, scales,
stargazer, viridis, Ime4, tidyverse, tidytext, DT, testthat (>=
3.0.0)

VignetteBuilder knitr

URL https://github.com/s87jackson/rfars,
https://s87jackson.github.io/rfars/

BugReports https://github.com/s87jackson/rfars/issues
Config/testthat/edition 3
NeedsCompilation no

Author Steve Jackson [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3337-7846>)

Maintainer Steve Jackson <steve. jackson@toxcel.com>
Repository CRAN
Date/Publication 2025-10-22 07:40:02 UTC

https://github.com/s87jackson/rfars
https://s87jackson.github.io/rfars/
https://github.com/s87jackson/rfars/issues
https://orcid.org/0000-0002-3337-7846

2

Contents

Index

Contents

alcohol e e e e 3
annual_counts L L e 3
appendRDS e 5
bicyclist e 5
check_internet_connection e e e e 6
COMPATE_COUNLS « . o v v v v v v v e e e e e e e e e e e e e e e e e e e 6
COUNES . . . v v v i e e e e e e e e e e e e e e e e e 7
distracted_driver e e e 9
download_fars 9
download_@escrss e e 10
driver_age e e e 10
drugs . .. e 11
fars_codebook L e e e e 11
geo_relations L 13
gescrss_codebook Lo 13
get_fars 15
GEL ESCISS . v v v e 17
GEL_SAS_AMIS o e e e e e e e e e e e e e e e 19
hit_and_run e e 19
import_multi e e e e 20
large_trucks L L e e 20
make_all_ numeric e e e 20
make_id e e e e e e e 21
mMOtOICYClE L e e e 21
parse_sas_format L e 21
pedalcyclist 22
pedbike 22
pedestrian L L. e e e e 22
police_pursuit e 23
prep_fars . . oL e e e 23
PIEP_ZESCISS .« o v v v i e e e e e e e e e e e e e e e e e 24
read_basiC_Sas e e e e e 24
road_depart L. L e e 25
rollover e e 25
speeding L e e e e e 26
USE_TArs s 26
USE_ZESCISS & v v v v e 27
USE_IMP « . v v o v e e e e e e e e e e e e e e e e 27
validate_states L e e 28
29

alcohol 3

alcohol (Internal) Find crashes involving alcohol

Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
alcohol (df)

Arguments

df The FARS or GESCRSS data object to be searched.

annual_counts Annual Crash Counts by Risk Factors

Description

Pre-computed annual crash counts from FARS (fatal crashes) and CRSS (general crash estimates)
databases for 2014-2023, broken down by various risk factors and vulnerable road user categories.

Usage

annual_counts

Format

A tibble with 340 rows and 9 variables:

year Year (2014-2023)

month Month, if included in interval, as the three-letter abbreviation and an ordered factor (Jan=1,
Feb=2, etc.)

what Count unit - currently only "crashes"

states Geographic scope - "all" for national-level data
region Regional scope - "all" for national-level data
urb Urban/rural classification - "all" for combined data
who Person type - "all" for all person types

involved Risk factor or crash type. Options include:

"any' All crashes (general counts)
"each' Each factor listed below, separately

4 annual_counts

""alcohol" Alcohol-involved crashes

"bicyclist' Crashes involving bicyclists
"distracted driver' Distracted driving crashes
""drugs' Drug-involved crashes

""hit and run" Hit-and-run crashes

"large trucks' Large truck-involved crashes
""motorcycle' Motorcycle crashes

""older driver' Crashes involving older drivers
""pedalcyclist' Crashes involving pedalcyclists
""pedbike' Pedestrian and bicyclist crashes combined
"pedestrian' Pedestrian crashes

""police pursuit" Police pursuit-related crashes
""'roadway departure'' Roadway departure crashes
""rollover' Rollover crashes

""'speeding'' Speed-related crashes

""'young driver'' Crashes involving young drivers

n Count of crashes. FARS counts represent actual fatal crashes; CRSS counts represent weighted
estimates of all crashes

Details

This dataset provides quick access to national-level annual crash counts without needing to down-
load and process the full datasets. It combines data from two NHTSA databases:

FARS Fatal crashes (actual counts)
CRSS General crashes (weighted estimates)

The data can be reproduced using the counts() function on downloaded FARS and CRSS data
with involved = "any"” and involved = "each” parameters.

See Also

counts for generating custom counts from downloaded data

Examples

Not run:

View total crashes over time by data source
library(dplyr)

library(ggplot2)

annual_counts %>%

filter(involved == "any") %>%
ggplot(aes(x = year, y = n, fill = source)) +
geom_col (position = "dodge") +

labs(title = "Annual Crash Counts by Data Source”,
x = "Year", y = "Number of Crashes”)

appendRDS 5

Compare risk factor trends in fatal crashes
annual_counts %>%
filter(source == "FARS",
involved %in% c("alcohol”, "speeding”, "distracted driver")) %>%
ggplot(aes(x = year, y = n, color = involved)) +
geom_line() +
labs(title = "Fatal Crash Trends by Risk Factor”,
x = "Year", y = "Fatal Crashes")

End(Not run)

appendRDS (Internal) Append RDS files

Description

(Internal) Append RDS files

Usage
appendRDS(object, file, wd)

Arguments
object The object to save or append
file The name of the file to be saved to be saved
wd The directory to check
bicyclist (Internal) Find crashes involving bicyclists
Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
bicyclist(df)

Arguments

df The FARS or GESCRSS data object to be searched.

compare_counts

check_internet_connection

(Internal) Check internet connection

Description

Test if internet connection is available by attempting to reach a reliable host. This function is used
to gracefully handle cases where internet resources are not available.

Usage

check_internet_connection()

Value

Logical indicating whether internet connection is available

compare_counts Compare counts

Description

Compare counts generated by counts()

Usage
compare_counts(
df,
interval = c("year”, "month")[1],

what = c("crashes”, "fatalities”, "injuries”, "people")[1],

where = list(states = "all”, region = c("all"”, "ne”, "mw", "s", "w")[1], urb =c("all",
"rural”, "urban")[1]),

who = c("all”, "drivers”, "passengers"”, "bicyclists”, "pedestrians”)[1],

involved = NULL,

what2 = what,

where2 = where,

who2 = who,

involved2 = involved

counts

Arguments

df
interval
what

where

who

involved

what2
where2
who?2

involved?2

Value

A tibble of counts.

Examples

Not run:

The input FARS object.
The interval in which to count: months or years.
What to count: crashes, fatalities, or people involved.

Where to count, a list with up to three elements: states ("all" by default), region
("all"), urb ("all")

The type of person to count: all (default) drivers, passengers, pedestrians, or
bicyclists.

Factors involved with the crash. Can be any of: distracted driver, police pur-
suit, motorcycle, pedalcyclist, bicyclist, pedestrian, pedbike, young driver, older
driver, speeding, alcohol, drugs, hit and run, roadway departure, rollover, or
large trucks.

Comparison point for what’ (set to *what’ unless specified).
Comparison point for where’ (set to *where’ unless specified).
Comparison point for "'who’ (set to *who’ unless specified).

Comparison point for ’involved’ (set to "involved’ unless specified).

compare_counts(
get_fars(years = 2020, states="Virginia"),

where

list(urb="rural"),

where2 = list(urb="urban")

)

End(Not run)

counts

Generate counts

Description

Use FARS or GES/CRSS data to generate commonly requested counts.

8 counts

Usage

counts(
df,
what = c("crashes”, "fatalities"”, "injuries”, "people”)[1],
interval = c("year”, "month")[1],
where = list(states = "all"”, region = c("all”, "ne", "mw", "s", "w")[1], urb = c("all"”,
"rural”, "urban")[11),

who = c("all"”, "drivers”, "passengers”, "bicyclists”, "pedestrians”)[1],

involved = c("any"”, "each", "alcohol”, "bicyclist”, "distracted driver”, "drugs",
"hit and run”, "large trucks”, "motorcycle”, "older driver"”, "pedalcyclist”,
"pedbike”, "pedestrian”, "police pursuit”, "roadway departure”, "rollover”,

"speeding”, "young driver”)[1],
filterOnly = FALSE

)
Arguments
df The input data object (must be of class 'FARS’ or ’TGESCRSS’ as is produced
by get_fars() and get_gescrss()).
what What to count: crashes (the default), fatalities, injuries, or people involved.
interval The interval in which to count: months or years (the default).
where Where to count. Must be a list with any of the elements: states (can be ’all’, full
or abbreviated state names, or FIPS codes), region (’all’, 'ne’, 'mw’, ’s’, or 'w’;
short for northeast, midwest, south, and west), urb (’all’, ’rural’, or ’urban’).
Any un-specified elements are set to “all’ by default.
who The type of person to count: ’all’ (default) ’drivers’, *passengers’, 'pedestrians’,
or ’bicyclists’.
involved Factors involved with the crash: ’any’ (the default, produces general counts),
“each’ (produces separate counts for each factor), *distracted driver’, *police pur-
suit’, “motorcycle’, 'pedalcyclist’, ’bicyclist’, ’pedestrian’, ’pedbike’, *young
driver’, ’older driver’, ’speeding’, alcohol’, ’drugs’, ’hit and run’, ’roadway de-
parture’, ‘rollover’, or ’large trucks’.
filterOnly Logical, whether to only filter data or reduce to counts (FALSE by default).
Value

Either a filtered tibble (filterOnly=TRUE) or a tibble of counts (filterOnly=FALSE). If filterOnly=TRUE,
the tibble that is returned is the ’flat’ tibble from the input FARS object, filtered according to other
parameters.

If ‘df* is a GESCRSS object, the counts returned are the sum of the appropriate weights.

Examples

Not run:
counts(get_fars(years = 2019), where = list(states="Virginia”, urb="rural"))

End(Not run)

distracted_driver 9

distracted_driver (Internal) Find crashes involving distracted drivers

Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

distracted_driver(df)

Arguments
df The FARS or GESCRSS data object to be searched.
download_fars (Internal) Download FARS data files
Description

Download files from NHTSA, unzip, and prepare them.

Usage

download_fars(years, dest_raw, dest_prepd, states)

Arguments
years Years to be downloaded, in yyyy (character or numeric formats)
dest_raw Directory to store raw CSV files
dest_prepd Directory to store prepared CSV files
states (Optional) Inherits from get_fars()
Details

Raw files are downloaded from NHTSA.

Value

Nothing directly to the current environment. Various CSV files are stored either in a temporary
directory or dir as specified by the user.

https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/

10 driver_age

download_gescrss (Internal) Download GES/CRSS data files

Description

Download files from NHTSA, unzip, and prepare them.

Usage

download_gescrss(years, dest_raw, dest_prepd, regions)

Arguments
years Years to be downloaded, in yyyy (character or numeric formats)
dest_raw Directory to store raw CSV files
dest_prepd Directory to store prepared CSV files
regions (Optional) Inherits from get_gescrss()
Details

Raw files are downloaded directly from NHTSA.

Value

Nothing directly to the current environment. Various CSV files are stored either in a temporary
directory or dir as specified by the user.

driver_age (Internal) Find crashes involving drivers of a given age

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

driver_age(df, age_min, age_max)

Arguments
df The FARS or GESCRSS data object to be searched.
age_min Lower bound on driver age (inclusive).

age_max Upper bound on driver age (inclusive).

https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/

drugs 11

drugs (Internal) Find crashes involving drugs

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
drugs(df)

Arguments

df The FARS or GESCRSS data object to be searched.

fars_codebook FARS Codebook

Description

A table describing each FARS variable name, value, and corresponding value label.

Usage

fars_codebook

Format
A data frame with 15,951 rows and 19 variables:

source The source of the data (either FARS or GES/CRSS).

file The data file that contains the given variable.

name_ncsa The original name of the data element.

name_rfars The modified data element name used in rfars

label The label of the data element itself (not its constituent values).

Definition The data element’s definition, pulled from the Analytical User Manual.

Additional Information Additional information on the data element, pulled from the Analytical
User Manual.

value The original value of the data element.
value_label The de-coded value label.

2014 Indicator: 1 if valid for 2014, NA otherwise.
2015 Indicator: 1 if valid for 2015, NA otherwise.

12 fars_codebook

2016 Indicator: 1 if valid for 2016, NA otherwise.
2017 Indicator: 1 if valid for 2017, NA otherwise.
2018 Indicator: 1 if valid for 2018, NA otherwise.
2019 Indicator: 1 if valid for 2019, NA otherwise.
2020 Indicator: 1 if valid for 2020, NA otherwise.
2021 Indicator: 1 if valid for 2021, NA otherwise.
2022 Indicator: 1 if valid for 2022, NA otherwise.
2023 Indicator: 1 if valid for 2023, NA otherwise.

Details

This codebook serves as a useful reference for researchers using FARS data. The ’source’ variable
is intended to help combine with the gescrss_codebook. Data elements are relatively stable but are
occasionally discontinued, created anew, or modified. The ’year’ variable helps indicate the avail-
ability of data elements, and differentiates between different definitions over time. Users should
always check for discontinuities when tabulating cases.

The ’file’ variable indicates the file in which the given data element originally appeared. Here,
files refers to the SAS files downloaded from NHTSA. Most data elements stayed in their original
file. Those that did not were moved to the multi_ files. For example, *weather’ originates from the
“accident’ file, but appears in the multi_acc data object created by rfars.

The 'name_ncsa’ variable describes the data element’s name as assigned by NCSA (the orga-
nization within NHTSA that manages the database). To maximize compatibility between years
and ease of use for programming, 'name_rfars’ provides a cleaned naming convention (via jani-
tor::clean_names()).

Each data element has a ’label’, a more human-readable version of the element names. For example,
the label for ’road_fnc’ is 'Roadway Function Class’. These are not definitions but may provide
enough information to help users conduct their analysis. Consult the Analytical User’s Manual for
definitions and further details.

’Definition’ and * Additional Information’ were extracted from the Analytical User’s Manual.

Each data element has multiple ’value’-’value_label’ pairs: ’value’ represents the original, non-
human-readable value (usually a number), and ’value_label represents the corresponding text value.
For example, for 'road_fnc’, 1 (the ’value’) corresponds to ’Rural-Principal Arterial-Interstate’ (the
’value_label’), 2 corresponds to *Rural-Principal Arterial-Other’, etc.

@source Codebooks are automatically generated by extracting SAS format catalogs (.sas7bcat files)
and VALUE statements from .sas files during data processing, then consolidating variable names,
labels, and value-label mappings across all years into searchable reference tables. Source files are
published by NHTSA and available here.

See Also

"gescrss_codebook"

Examples

head(rfars: :fars_codebook)

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813706
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813706
https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/

geo_relations 13

geo_relations Synonym table for various geographical scales

Description

A dataset providing different ways to refer to states and counties.

Usage

geo_relations

Format

A data frame with 3,142 rows and 6 variables:

fips_state 2-digit FIPS code indicating a state

fips_county 3-digit FIPS code indicating a county within a state

fips_tract 6-digit FIPS code indicating a tract within a county

state_name_abbr 2-character, capitalized state abbreviation

state_name_full fully spelled and case-sensitive state name

county_name_abbr abbreviated county name (usually minus the word *’County’)
county_name_full fully spelled and case-sensitive county name

region fully spelled out and case-sensitive NHTSA region and constituent states

region_abbr abbreviated NHTSA region (ne, mw, s, w)

Source

https://www.census.gov/geographies/reference-files/2015/demo/popest/2015-fips.html

gescrss_codebook GESCRSS Codebook

Description

A table describing each GESCRSS variable name, value, and corresponding value label.

Usage

gescrss_codebook

https://www.census.gov/geographies/reference-files/2015/demo/popest/2015-fips.html

14 gescrss_codebook

Format

A data frame with 34,662 rows and 8 variables:

source The source of the data (either FARS or GESCRSS).

file The data file that contains the given variable.

name_ncsa The original name of the data element.

name_rfars The modified data element name used in rfars

label The label of the data element itself (not its constituent values).

Definition The data element’s definition, pulled from the Analytical User Manual

Additional Information Additional information on the data element, pulled from the Analytical
User Manual.

value The original value of the data element.
value label The de-coded value label.

2014 Indicator: 1 if valid for 2014, NA otherwise.
2015 Indicator: 1 if valid for 2015, NA otherwise.
2016 Indicator: 1 if valid for 2016, NA otherwise.
2017 Indicator: 1 if valid for 2017, NA otherwise.
2018 Indicator: 1 if valid for 2018, NA otherwise.
2019 Indicator: 1 if valid for 2019, NA otherwise.
2020 Indicator: 1 if valid for 2020, NA otherwise.
2021 Indicator: 1 if valid for 2021, NA otherwise.
2022 Indicator: 1 if valid for 2022, NA otherwise.
2023 Indicator: 1 if valid for 2023, NA otherwise.

Details

This codebook serves as a useful reference for researchers using GES/CRSS data. The ’source’
variable is intended to help combine with the fars_codebook. Data elements are relatively stable
but are occasionally discontinued, created anew, or modified. The ’year’ variable helps indicate
the availability of data elements, and differentiates between different definitions over time. Users
should always check for discontinuities when tabulating cases.

The ’file’ variable indicates the file in which the given data element originally appeared. Here,
files refers to the SAS files downloaded from NHTSA. Most data elements stayed in their original
file. Those that did not were moved to the multi_ files. For example, *weather’ originates from the
“accident’ file, but appears in the multi_acc data object created by rfars.

The 'name_ncsa’ variable describes the data element’s name as assigned by NCSA (the orga-
nization within NHTSA that manages the database). To maximize compatibility between years
and ease of use for programming, 'name_rfars’ provides a cleaned naming convention (via jani-
tor::clean_names()).

Each data element has a ’label’, a more human-readable version of the element names. For example,
the label for "harm_ev’ is *First Harmful Event’. These are not definitions but may provide enough

get_fars 15

information to help users conduct their analysis. Consult the CRSS User Manual for definitions and
further details.

’Definition’ and ’Additional Information’ were extracted from the Analytical User’s Manual.

Each data element has multiple ’value’-’value_label’ pairs: ’value’ represents the original, non-
human-readable value (usually a number), and ’value_label” represents the corresponding text value.
For example, for harm_ev’, 1 (the ’value’) corresponds to 'Rollover/Overturn’ (the ’value_label’),
2 corresponds to 'Fire/Explosion’, etc.

@source Codebooks are automatically generated by extracting SAS format catalogs (.sas7bcat files)
and VALUE statements from .sas files during data processing, then consolidating variable names,
labels, and value-label mappings across all years into searchable reference tables. Source files are
published by NHTSA and available here.

See Also

"fars_codebook"

Examples

head(rfars: :gescrss_codebook)

get_fars Get FARS data

Description
Bring FARS data into the current environment, whether by downloading it anew or by using pre-
existing files.

Usage

get_fars(
years = 2014:2023,
states = NULL,

source = c("zenodo"”, "nhtsa"),
proceed = FALSE,
dir = NULL,
cache = NULL

)

Arguments
years Years to be downloaded, in yyyy (character or numeric formats, defaults to last
10 years).
states States to keep. Leave as NULL (the default) to keep all states. Can be specified

as full state name (e.g. "Virginia"), abbreviation ("VA"), or FIPS code (51).

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813707
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813707
https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/

16 get_fars

source The source of the data: zenodo’ (the default) pulls the prepared dataset from
Zenodo, 'nhtsa’ pulls the raw files from NHTSA’s FTP site and prepares them on
your machine. ’zenodo’ is much faster and provides the same dataset produced
by using source="nhtsa’.

proceed Logical, whether or not to proceed with downloading files without asking for
user permission (defaults to FALSE, thus asking permission)
dir Directory in which to search for or save a 'FARS data’ folder. If NULL (the de-

fault), files are downloaded and unzipped to temporary directories and prepared
in memory. Ignored if source = ’zenodo’.

cache The name of an RDS file to save or use. If the specified file (e.g., ’'myFARS.rds’)
exists in ’dir’ it will be returned; if not, an RDS file of this name will be saved
in “dir’ for quick use in subsequent calls. Ignored if source = ’zenodo’.

Details

This function provides the FARS database for the specified years and states. By default, it pulls
from a Zenodo repository for speed and memory efficiency. It can also pull the raw files from
NHTSA and process them in memory, or use an RDS file saved on your machine.

If source = ’nhtsa’ and no directory (dir) is specified, SAS files are downloaded into a tempdir(),
where they are also prepared, combined, and then brought into the current environment. If you
specify a directory (dir), the function will look there for a "FARS data’ folder. If not found, it will
be created and populated with raw and prepared SAS and RDS files, otherwise the function makes
sure all requested years are present and asks permission to download any missing years.

The object returned is a list with class ’FARS’. It contains six tibbles: flat, multi_acc, multi_veh,
multi_per, events, and codebook.

Flat files are wide-formatted and presented at the person level. All crashes involve at least one
motor vehicle, each of which may contain one or multiple people. These are the three entities of
crash data. The flat files therefore repeat some data elements across multiple rows. Please conduct
your analysis with your entity in mind.

Some data elements can include multiple values for any data level (e.g., multiple weather conditions
corresponding to the crash, or multiple crash factors related to vehicle or person). These elements
have been collected in the yyyy_multi_[acc/veh/per].rds files in long format. These files contain
crash, vehicle, and person identifiers, and two variables labelled name and value. These correspond
to variable names from the raw data files and the corresponding values, respectively.

The events tibble provides a sequence of events for all vehicles involved in the crash. See Crash
Sequences vignette for an example.

Finally, the codebook tibble serves as a searchable codebook for all files of any given year.

Please review the FARS Analytical User’s Manual

Value

A FARS data object (list of six tibbles: flat, multi_acc, multi_veh, multi_per, events, and codebook),
described below.

https://zenodo.org/records/17162673
https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813706

get_gescrss

Examples

Not run:

17

Use defaults to get 10 years of national data
myFARS <- get_fars()

Get latest year of data
myFARS <- get_fars(2023)

Get data for one state
myFARS <- get_fars(states = "VA")

End(Not run)

get_gescrss

Get GES/CRSS data

Description

Bring GES/CRSS data into the current environment, whether by downloading it anew or by using

pre-existing files.

Usage

get_gescrss(

years = 2014:2023,

regions = C(”mW“, Ilnell, IISIIy ”WII)’
source = c("zenodo"”, "nhtsa"),
proceed = FALSE,
dir = NULL,
cache = NULL
)
Arguments
years Years to be downloaded, in yyyy (character or numeric formats, defaults to last
10 years).
regions (Optional) Regions to keep: mw=midwest, ne=northeast, s=south, w=west.
source The source of the data: ’zenodo’ (the default) pulls the prepared dataset from
Zenodo, 'nhtsa’ pulls the raw files from NHTSA’s FTP site and prepares them on
your machine. *zenodo’ is much faster and provides the same dataset produced
by using source="nhtsa’.
proceed Logical, whether or not to proceed with downloading files without asking for
user permission (defaults to FALSE, thus asking permission)
dir Directory in which to search for or save a ’"GESCRSS data’ folder. If NULL

(the default), files are downloaded and unzipped to temporary directories and
prepared in memory. Ignored if source = *zenodo’.

https://zenodo.org/records/17162674

18 get_gescrss

cache The name of an RDS file to save or use. If the specified file (e.g., 'myFARS.rds’)
exists in ’dir’ it will be returned; if not, an RDS file of this name will be saved
in ’dir’ for quick use in subsequent calls. Ignored if source = *zenodo’.

Details

This function provides the GES/CRSS database for the specified years and regions By default, it
pulls from a Zenodo repository for speed and memory efficiency. It can also pull the raw files from
NHTSA and process them in memory, or use an RDS file saved on your machine.

If source = ’nhtsa’ and no directory (dir) is specified, SAS files are downloaded into a tempdir(),
where they are also prepared, combined, and then brought into the current environment. If you
specify a directory (dir), the function will look there for a "GESCRSS data’ folder. If not found,
it will be created and populated with raw and prepared SAS and RDS files, otherwise the function
makes sure all requested years are present and asks permission to download any missing years.

The object returned is a list with class "GESCRSS’. It contains six tibbles: flat, multi_acc, multi_veh,
multi_per, events, and codebook.

Flat files are wide-formatted and presented at the person level. All crashes involve at least one
motor vehicle, each of which may contain one or multiple people. These are the three entities of
crash data. The flat files therefore repeat some data elements across multiple rows. Please conduct
your analysis with your entity in mind.

Some data elements can include multiple values for any data level (e.g., multiple weather conditions
corresponding to the crash, or multiple crash factors related to vehicle or person). These elements
have been collected in the yyyy_multi_[acc/veh/per].rds files in long format. These files contain
crash, vehicle, and person identifiers, and two variables labelled name and value. These correspond
to variable names from the raw data files and the corresponding values, respectively.

The events tibble provides a sequence of events for all vehicles involved in the crash. See Crash
Sequences vignette for an example.

The codebook tibble serves as a searchable codebook for all files of any given year.
Please review the CRSS Analytical User’s Manual

Regions are as follows: mw = Midwest = OH, IN, IL, MI, WI, MN, ND, SD, NE, IA, MO, KS ne
= Northeast = PA, NJ, NY, NH, VT, RI, MA, ME, CT s = South = MD, DE, DC, WV, VA, KY, TN,
NC, SC, GA, FL, AL, MS, LA, AR, OK, TX w = West = MT, ID, WA, OR, CA, NV, NM, AZ, UT,
CO, WY, AK, HI

Value

A GESCRSS data object (a list with six tibbles: flat, multi_acc, multi_veh, multi_per, events, and
codebook).

Examples

Not run:
Use defaults to get 10 years of national data
myCRSS <- get_gescrss()

Get latest year of data
myCRSS <- get_gescrss(2023)

https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813707

get_sas_attrs 19

Get data for one region
myCRSS <- get_gescrss(regions = "s")

End(Not run)

get_sas_attrs (Internal) Check SAS attributes

Description

(Internal) Check SAS attributes

Usage

get_sas_attrs(data)

Arguments
data An object produced by haven::read_sas()
hit_and_run (Internal) Find hit and run crashes
Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

hit_and_run(df)

Arguments

df The FARS or GESCRSS data object to be searched.

20 make_all numeric

import_multi (Internal) Import the multi_ files

Description

An internal function that imports the multi_ files

Usage

import_multi(filename, where)

Arguments
filename The filename (e.g. "multi_acc.csv") to be imported
where The directory to search within
large_trucks (Internal) Find crashes involving large trucks
Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
large_trucks(df)

Arguments
df The FARS or GESCRSS data object to be searched.
make_all_numeric (Internal) Make id and year numeric
Description

(Internal) Make id and year numeric

Usage

make_all_numeric(df)

Arguments

df The input dataframe

make_id 21

make_id (Internal) Generate an ID variable

Description

(Internal) Generate an ID variable

Usage
make_id(df)

Arguments
df The dataframe from which to make the id
motorcycle (Internal) Find crashes involving motorcycles
Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
motorcycle(df)

Arguments

df The FARS or GESCRSS data object to be searched.

parse_sas_format (Internal) Parse formats.sas instead of using a .sas7bcat file

Description

(Internal) Parse formats.sas instead of using a .sas7bcat file

Usage

parse_sas_format(file_path)

Arguments

file_path The path of the formats.sas file

22 pedestrian

pedalcyclist (Internal) Find crashes involving pedalcyclists

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
pedalcyclist(df)

Arguments

df The FARS or GESCRSS data object to be searched.

pedbike (Internal) Find crashes involving pedstrians or bicyclists

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
pedbike (df)

Arguments

df The FARS or GESCRSS data object to be searched.

pedestrian (Internal) Find crashes involving pedestrians

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage
pedestrian(df)

Arguments

df The FARS or GESCRSS data object to be searched.

police_pursuit 23

police_pursuit (Internal) Find crashes involving police pursuits

Description
These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

police_pursuit(df)

Arguments
df The FARS or GESCRSS data object to be searched.
prep_fars Prepare downloaded FARS files for use
Description

Prepare downloaded FARS files for use

Usage

prep_fars(y, wd, rawfiles, prepared_dir, states)

Arguments
y year, to be passed from prep_fars
wd working directory, , to be passed from prep_fars
rawfiles dataframe translating filenames into standard terms, to be passed from prep_fars

prepared_dir the location where prepared files will be saved, to be passed from prep_fars

states (Optional) Inherits from get_fars()

Value

Produces six files: yyyy_flat.rds, yyyy_multi_acc.rds, yyyy_multi_veh.rds, yyyy_multi_per.rds,
yyyy_events.rds, and codebook.rds

24 read_basic_sas

prep_gescrss Prepare downloaded GES/CRSS files for use

Description

Prepare downloaded GES/CRSS files for use

Usage

prep_gescrss(y, wd, rawfiles, prepared_dir, regions)

Arguments
y year, to be passed from prep_gescrss
wd working directory, , to be passed from prep_gescrss
rawfiles dataframe translating filenames into standard terms, to be passed from prep_gescrss

prepared_dir the location where prepared files will be saved, to be passed from prep_gescrss

regions (Optional) Inherits from get_gescrss()

Value

Produces six files: yyyy_flat.rds, yyyy_multi_acc.rds, yyyy_multi_veh.rds, yyyy_multi_per.rds,
yyyy_events.rds, and codebook.rds

read_basic_sas (Internal) Takes care of basic SAS file reading

Description

(Internal) Takes care of basic SAS file reading

Usage

read_basic_sas(x, wd, rawfiles, catfile, imps = NULL, omits = NULL)

Arguments
X The cleaned name of the data table (SAS7BDAT).
wd The working directory for these files
rawfiles The data frame connecting raw filenames to cleaned ones.
catfile The location of the sas7bcat file
imps A named list to be passed to use_imp(). Each item’s name represents the non-

imputed variable name; the item itself represents the related imputed variable.

omits Character vector of columns to omit

road_depart 25

See Also

read_basic_sas_nocat

road_depart (Internal) Find crashes involving road departures

Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

road_depart (df)

Arguments
df The FARS or GESCRSS data object to be searched.
rollover (Internal) Find crashes involving rollovers
Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

rollover(df)

Arguments

df The FARS or GESCRSS data object to be searched.

26 use_fars

speeding (Internal) Find crashes involving speeding

Description

These internal functions take the FARS object created by use_fars and look for various cases, such
as distracted or drowsy drivers.

Usage

speeding(df)

Arguments

df The FARS or GESCRSS data object to be searched.

use_fars (Internal) Use FARS data files

Description

Compile multiple years of prepared FARS data.

Usage

use_fars(dir, prepared_dir, cache)

Arguments

dir Inherits from get_fars().
prepared_dir Inherits from get_fars().

cache Inherits from get_fars().

Value

Returns an object of class "FARS’ which is a list of six tibbles: flat, multi_acc, multi_veh, multi_per,
events, and codebook.

use_gescrss 27

use_gescrss (Internal) Use GESCRSS data files

Description

Compile multiple years of prepared GESCRSS data.

Usage

use_gescrss(dir, prepared_dir, cache)

Arguments

dir Inherits from get_gescrss().
prepared_dir Inherits from get_gescrss().

cache Inherits from get_gescrss().

Value

Returns an object of class ’GESCRSS’ which is a list of six tibbles: flat, multi_acc, multi_veh,
multi_per, events, and codebook.

use_imp (Internal) use_imp

Description

An internal function that uses imputed variables (present in many GES/CRSS tables)

Usage

use_imp(df, original, imputed, show = FALSE)

Arguments
df The input data frame.
original The original, non-imputed variable.
imputed The imputed variable (often with an _im suffix).
show Logical (FALSE by default) Show differences between original and imputed

values.

28 validate_states

validate_states (Internal) Validate user-provided list of states

Description

(Internal) Validate user-provided list of states

Usage

validate_states(states)

Arguments

states States specified in get_fars, prep_fars, or counts

Index

+ datasets
annual_counts, 3
fars_codebook, 11
geo_relations, 13
gescrss_codebook, 13

alcohol, 3
annual_counts, 3
appendRDS, 5

bicyclist, 5

check_internet_connection, 6
compare_counts, 6
counts, 4, 7

distracted_driver, 9
download_fars, 9
download_gescrss, 10
driver_age, 10
drugs, 11

fars_codebook, 11

geo_relations, 13
gescrss_codebook, 13
get_fars, 15
get_gescrss, 17
get_sas_attrs, 19

hit_and_run, 19
import_multi, 20
large_trucks, 20

make_all_numeric, 20
make_id, 21
motorcycle, 21

parse_sas_format, 21
pedalcyclist, 22

29

pedbike, 22
pedestrian, 22
police_pursuit, 23
prep_fars, 23
prep_gescrss, 24

read_basic_sas, 24
road_depart, 25
rollover, 25

speeding, 26

use_fars, 26
use_gescrss, 27
use_imp, 27

validate_states, 28

	alcohol
	annual_counts
	appendRDS
	bicyclist
	check_internet_connection
	compare_counts
	counts
	distracted_driver
	download_fars
	download_gescrss
	driver_age
	drugs
	fars_codebook
	geo_relations
	gescrss_codebook
	get_fars
	get_gescrss
	get_sas_attrs
	hit_and_run
	import_multi
	large_trucks
	make_all_numeric
	make_id
	motorcycle
	parse_sas_format
	pedalcyclist
	pedbike
	pedestrian
	police_pursuit
	prep_fars
	prep_gescrss
	read_basic_sas
	road_depart
	rollover
	speeding
	use_fars
	use_gescrss
	use_imp
	validate_states
	Index

