## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----example------------------------------------------------------------------ library(resLIK) # 1. Initialize # Assume z_t is a latent vector from your model (e.g., shape 1x3) z_t <- c(0.5, -0.2, 0.1) z_prev <- c(0.5, -0.2, 0.0) # Previous state at t-1 # Define reference statistics (normally derived from training data) ref_mean <- 0 ref_sd <- 1 # 2. Sensing # Check population fit (ResLik) res_out <- reslik(z_t, ref_mean = ref_mean, ref_sd = ref_sd) print(paste("ResLik Discrepancy:", res_out$diagnostics$discrepancy)) # Check stability (TCS) tcs_out <- tcs(z_t, z_prev) print(paste("TCS Drift:", tcs_out$drift)) # 3. Decision decision <- rlcs_control(res_out, tcs = tcs_out) print(paste("Control Signal:", decision)) # Expected: "PROCEED"