
Package ‘promises’
October 22, 2025

Type Package

Title Abstractions for Promise-Based Asynchronous Programming

Version 1.4.0

Description Provides fundamental abstractions for doing asynchronous
programming in R using promises. Asynchronous programming is useful
for allowing a single R process to orchestrate multiple tasks in the
background while also attending to something else. Semantics are
similar to 'JavaScript' promises, but with a syntax that is idiomatic
R.

License MIT + file LICENSE

URL https://rstudio.github.io/promises/,

https://github.com/rstudio/promises

BugReports https://github.com/rstudio/promises/issues

Depends R (>= 4.1.0)

Imports fastmap (>= 1.1.0), later, lifecycle, magrittr (>= 1.5), otel
(>= 0.2.0), R6, rlang

Suggests future (>= 1.21.0), knitr, mirai, otelsdk (>= 0.2.0), purrr,
Rcpp, rmarkdown, spelling, testthat (>= 3.0.0), vembedr

VignetteBuilder knitr

Config/Needs/website rsconnect, tidyverse/tidytemplate

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-05-27

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

NeedsCompilation no

Author Joe Cheng [aut],
Barret Schloerke [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9986-114X>),

1

https://rstudio.github.io/promises/
https://github.com/rstudio/promises
https://github.com/rstudio/promises/issues
https://orcid.org/0000-0001-9986-114X

2 future_promise_queue

Winston Chang [aut] (ORCID: <https://orcid.org/0000-0002-1576-2126>),
Charlie Gao [aut] (ORCID: <https://orcid.org/0000-0002-0750-061X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Barret Schloerke <barret@posit.co>

Repository CRAN

Date/Publication 2025-10-22 07:40:09 UTC

Contents
future_promise_queue . 2
hybrid_then . 5
is.promise . 7
pipes . 8
promise . 9
promise_all . 11
promise_map . 12
promise_reduce . 13
promise_resolve . 14
then . 14
with_ospan_async . 17
with_promise_domain . 22

Index 25

future_promise_queue future promise

Description

When submitting future work, future (by design) will block the main R session until a worker
becomes available. This occurs when there is more submitted future work than there are available
future workers. To counter this situation, we can create a promise to execute work using future
(using future_promise()) and only begin the work if a future worker is available.

Usage

future_promise_queue()

future_promise(
expr = NULL,
envir = parent.frame(),
...,
substitute = TRUE,
queue = future_promise_queue()

)

https://orcid.org/0000-0002-1576-2126
https://orcid.org/0000-0002-0750-061X
https://ror.org/03wc8by49

future_promise_queue 3

Arguments

expr An R expression. While the expr is eventually sent to future::future(),
please use the same precautions that you would use with regular promises::promise()
expressions. future_promise() may have to hold the expr in a promise()
while waiting for a future worker to become available.

envir The environment from where global objects should be identified.

... extra parameters provided to future::future()

substitute If TRUE, argument expr is substitute():ed, otherwise not.

queue A queue that is used to schedule work to be done using future::future().
This queue defaults to future_promise_queue() and requires that method queue$schedule_work(fn)
exist. This method should take in a function that will execute the promised fu-
ture work.

Details

Using future_promise() is recommended whenever a continuous runtime is used, such as with
plumber or shiny.

For more details and examples, please see the vignette("future_promise", "promises") vi-
gnette.

Value

Unlike future::future(), future_promise() returns a promise() object that will eventually
resolve the future expr.

Functions

• future_promise_queue(): Default future_promise() work queue to use. This function
returns a WorkQueue that is cached per R session.

• future_promise(): Creates a promise() that will execute the expr using future::future().

See Also

WorkQueue

Examples

Not run: # Relative start time
start <- Sys.time()
Helper to force two `future` workers
with_two_workers <- function(expr) {

if (!require("future")) {
message("`future` not installed")
return()

}
old_plan <- future::plan(future::multisession, workers = 2)
on.exit({future::plan(old_plan)}, add = TRUE)
start <<- Sys.time()

https://rstudio.github.io/promises/articles/promises_05b_future_promise.html

4 future_promise_queue

force(expr)
while(!later::loop_empty()) {Sys.sleep(0.1); later::run_now()}
invisible()

}
Print a status message. Ex: `"PID: XXX; 2.5s promise done"`
print_msg <- function(pid, msg) {

message(
"PID: ", pid, "; ",
round(difftime(Sys.time(), start, units = "secs"), digits = 1), "s " ,
msg

)
}

`"promise done"` will appear after four workers are done and the main R session is not blocked
The important thing to note is the first four times will be roughly the same
with_two_workers({

promise_resolve(Sys.getpid()) |>
then(\(x) {print_msg("promise done")})

for (i in 1:6) {
future::future({Sys.sleep(1); Sys.getpid()}) |>

then(\(x) {print_msg("future done")})
}

})
{
#> PID: XXX; 2.5s promise done
#> PID: YYY; 2.6s future done
#> PID: ZZZ; 2.6s future done
#> PID: YYY; 2.6s future done
#> PID: ZZZ; 2.6s future done
#> PID: YYY; 3.4s future done
#> PID: ZZZ; 3.6s future done
}

`"promise done"` will almost immediately, before any workers have completed
The first two `"future done"` comments appear earlier the example above
with_two_workers({

promise_resolve(Sys.getpid()) |>
then(\(x) {print_msg("promise")})

for (i in 1:6) {
future_promise({Sys.sleep(1); Sys.getpid()}) |>

then(\(x) {print_msg("future done")})
}

})
{
#> PID: XXX; 0.2s promise done
#> PID: YYY; 1.3s future done
#> PID: ZZZ; 1.4s future done
#> PID: YYY; 2.5s future done
#> PID: ZZZ; 2.6s future done
#> PID: YYY; 3.4s future done
#> PID: ZZZ; 3.6s future done
}
End(Not run)

hybrid_then 5

hybrid_then Asynchronous or synchronous then()

Description

This is a helper function that behaves like then, however if is.promising() returns FALSE then
the handlers will be executed immediately.

Usage

hybrid_then(expr, on_success = NULL, on_failure = NULL, ..., tee = FALSE)

Arguments

expr An expression that evaluates to either a promise or a non-promise value.
on_success A function to be called when no error occurs synchronously or asynchronously.

When invoked, the function will be called with a single argument: the resolved
value. Optionally, the function can take a second parameter .visible if you
care whether the promise was resolved with a visible or invisible value. Can
return a value or a promise.

on_failure A function to be called if an error occurs synchronously or asynchronously.
Takes one argument: the error object. Can return a value or a promise to recover
from the error, or throw a new error. If on_failure is provided and doesn’t
throw an error (or return a promise that fails) then this is the async equivalent of
catching an error.

... Reserved for future use. Currently must be empty.
tee If TRUE, ignore the return value of the callback, and use the original value of

expr as the result. For on_failure with tee = TRUE, the callback executes but
the original error is re-thrown afterward.

Details

Execution paths:

• If expr evaluates to a promise (p), it will call p |> then(on_success, on_failure).
• If expr evaluates to a non-promise value (x), it will call on_success(x).
• If expr throws an error (e) during calculation, it will call on_failure(e).

In all cases, the on_success and on_failure callbacks are executed (when provided).

Value

• If expr evaluates to a promise, a promise with a single followup promise to handle the
on_success or on_failure callbacks.

• If expr evaluates to a non-promise value, the result of the synchronous operation after being
processed by on_success or on_failure.

• If a callback returns a promise, the result is always a promise.

6 hybrid_then

Utility

This function is useful for writing functions that need to execute followup behavior now or within a
promise. This is different behavior than then() where everything is made into a promise.

hybrid_then() allows authors to keep synchronous execution on the same tick without requiring
the use of a followup promise. This is particularly appealing for situations where the author does
not control the execution flow for items that may be either synchronous or asynchronous, such as
within {plumber2}.

Error Handling

If no on_failure callback is provided and an error occurs, the error is re-thrown immediately (for
synchronous errors) or propagated through the returned promise (for asynchronous errors).

If an on_failure callback is provided but it throws an error, that new error replaces the original
error. With tee = TRUE, even if on_failure executes successfully, the original error is still re-
thrown.

Callback Return Values

Callbacks can return any value, including promises. If a callback returns a promise, the entire
hybrid_then() call will return a promise, even if the input was synchronous. This allows seamless
transitions between synchronous and asynchronous execution.

See Also

then(), is.promising(), promise_resolve()

Examples

Basic usage - works with both sync and async values
add_to <- function(x, k) {

hybrid_then(
x,
on_success = function(value) {

value + k
},
on_failure = function(err) {

message("Error: ", err$message)
NA_real_

}
)

}

Synchronous
42 |> add_to(100)
#> [1] 142

Synchronous error
add_to({stop("Bad input!")}, 8)
#> Error: Bad input!
#> [1] NA

is.promise 7

Not run:
Asynchronous
promise_resolve(42) |>

add_to(8) |>
then(print)

When resolved...
#> [1] 50

Error handling - asynchronous
promise_resolve(stop("Bad async input!")) |>

add_to(8) |>
then(print)

When resolved...
#> Error: Bad async input!
#> [1] NA

Chaining multiple operations
(Move the `promise_resolve()` around to see sync vs async behavior)
1 |>

hybrid_then(on_success = \(x) x + 1) |>
hybrid_then(on_success = \(x) promise_resolve(x * 2)) |>
hybrid_then(on_success = \(x) x - 1) |>
hybrid_then(print)

When resolved...
#> [1] 3

End(Not run)

is.promise Coerce to a promise

Description

Use is.promise to determine whether an R object is a promise. Use as.promise (an S3 generic
method) to attempt to coerce an R object to a promise, and is.promising (another S3 generic
method) to test whether as.promise is supported. mirai::mirai objects have an as.promise method
defined in the mirai package, and this package provides one for converting future::Future objects
into promises.

Usage

is.promise(x)

is.promising(x)

as.promise(x)

8 pipes

Arguments

x An R object to test or coerce.

Value

as.promise returns a promise object, or throws an error if the object cannot be converted.

is.promise returns TRUE if the given value is a promise object, and FALSE otherwise.

is.promising returns TRUE if the given value is a promise object or if it can be converted to a
promise object using as.promise, and FALSE otherwise.

pipes Promise pipe operators

Description

With R 4.1, the promise pipe operators are [Superseded] by then, catch, and finally methods
when used in tandem with the function shorthand (\(x) rhs(x)) and |>.

Usage

lhs %...>% rhs

lhs %...T>% rhs

lhs %...!% rhs

lhs %...T!% rhs

Arguments

lhs A promise object.

rhs A function call using the magrittr semantics. It can return either a promise or
non-promise value, or throw an error.

Details

Promise-aware pipe operators, in the style of magrittr. Like magrittr pipes, these operators can be
used to chain together pipelines of promise-transforming operations. Unlike magrittr pipes, these
pipes wait for promise resolution and pass the unwrapped value (or error) to the rhs function call.

The > variants are for handling successful resolution, the ! variants are for handling errors. The T
variants of each return the lhs instead of the rhs, which is useful for pipeline steps that are used for
side effects (printing, plotting, saving).

1. promise %...>% func() is equivalent to promise %>% then(func).

2. promise %...!% func() is equivalent to promise %>% catch(func).

https://CRAN.R-project.org/package=magrittr/vignettes/magrittr.html

promise 9

3. promise %...T>% func() is equivalent to promise %T>% then(func).

4. promise %...T!% func() is equivalent to promise %T>% catch(func) or promise %>% catch(func,
tee = TRUE).

One situation where 3. and 4. above break down is when func() throws an error, or returns a
promise that ultimately fails. In that case, the failure will be propagated by our pipe operators but
not by the magrittr-plus-function "equivalents".

For simplicity of implementation, we do not support the magrittr feature of using a . at the head of
a pipeline to turn the entire pipeline into a function instead of an expression.

Value

A new promise.

See Also

https://rstudio.github.io/promises/articles/promises_03_overview.html#using-pipes

Examples

Not run:
library(mirai)

mirai(cars) %...>%
head(5) %...T>%
print()

If the read.csv fails, resolve to NULL instead
mirai(read.csv("http://example.com/data.csv")) %...!%

{ NULL }

End(Not run)

promise Create a new promise object

Description

promise() creates a new promise. A promise is a placeholder object for the eventual result (or er-
ror) of an asynchronous operation. This function is not generally needed to carry out asynchronous
programming tasks; instead, it is intended to be used mostly by package authors who want to write
asynchronous functions that return promises.

Usage

promise(action)

10 promise

Arguments

action A function with signature function(resolve, reject).

Details

The action function should be a piece of code that returns quickly, but initiates a potentially long-
running, asynchronous task. If/when the task successfully completes, call resolve(value) where
value is the result of the computation (like the return value). If the task fails, call reject(reason),
where reason is either an error object, or a character string.

It’s important that asynchronous tasks kicked off from action be coded very carefully–in particular,
all errors must be caught and passed to reject(). Failure to do so will cause those errors to be lost,
at best; and the caller of the asynchronous task will never receive a response (the asynchronous
equivalent of a function call that never returns, i.e. hangs).

The return value of action will be ignored.

Value

A promise object (see then).

action= formulas

[Superseded]

With {promises} depending on R >= 4.1, the shorthand of a formula, ~ fn(.) for action is
no longer recommended by the {promises} package or tidyverse (for example, {purrr}) as we
now have access to the function shorthand, \(x) fn(x). Please update your action code to use
the new function shorthand syntax \(resolve, reject) resolve(arg1, arg2) instead of ~ {
resolve(arg1, arg2) }. The magically created resolve/reject functions can be confusing when
chained with other methods.

Examples

Create a promise that resolves to a random value after 2 secs
p1 <- promise(\(resolve, reject) {

later::later(\() resolve(runif(1)), delay = 2)
})

p1 |> then(print)

Create a promise that errors immediately
p2 <- promise(\(resolve, reject) {

reject("An error has occurred")
})
then(p2,

onFulfilled = \(value) message("Success"),
onRejected = \(err) message("Failure")

)

https://github.com/tidyverse/purrr/commit/670c3ed9920f15da0d4175068ecddc41f0f1f335#diff-c4dcc43795da5c7f6bf5a94d957b5507ce795fedd6d3eb092ccad03678c4f76dR15

promise_all 11

promise_all Combine multiple promise objects

Description

Use promise_all to wait for multiple promise objects to all be successfully fulfilled. Use promise_race
to wait for the first of multiple promise objects to be either fulfilled or rejected.

Usage

promise_all(..., .list = NULL)

promise_race(..., .list = NULL)

Arguments

... Promise objects. Either all arguments must be named, or all arguments must be
unnamed. If .list is provided, then these arguments are ignored.

.list A list of promise objects–an alternative to

Value

A promise.

For promise_all, if all of the promises were successful, the returned promise will resolve to a list
of the promises’ values; if any promise fails, the first error to be encountered will be used to reject
the returned promise.

For promise_race, the first of the promises to either fulfill or reject will be passed through to the
returned promise.

Examples

p1 <- promise(\(resolve, reject) later::later(\() resolve(1), delay = 1))
p2 <- promise(\(resolve, reject) later::later(\() resolve(2), delay = 2))

Resolves after 1 second, to the value: 1
promise_race(p1, p2) |>

then(\(x) {
cat("promise_race:\n")
str(x)

})

Resolves after 2 seconds, to the value: list(1, 2)
promise_all(p1, p2) |>

then(\(x) {
cat("promise_all:\n")
str(x)

})

12 promise_map

promise_map Promise-aware lapply/map

Description

Similar to base::lapply() or purrr::map, but promise-aware: the .f function is permitted to
return promises, and while lapply returns a list, promise_map returns a promise that resolves to a
similar list (of resolved values only, no promises).

Usage

promise_map(.x, .f, ...)

Arguments

.x A vector (atomic or list) or an expression object (but not a promise). Other
objects (including classed objects) will be coerced by base::as.list.

.f The function to be applied to each element of .x. The function is permitted, but
not required, to return a promise.

... Optional arguments to .f.

Details

promise_map processes elements of .x serially; that is, if .f(.x[[1]]) returns a promise, then
.f(.x[[2]]) will not be invoked until that promise is resolved. If any such promise rejects (errors),
then the promise returned by promise_map immediately rejects with that err.

Value

A promise that resolves to a list (of values, not promises).

Examples

Waits x seconds, then returns x*10
wait_this_long <- function(x) {

promise(\(resolve, reject) {
later::later(\() resolve(x*10), delay = x)

})
}

promise_map(
list(A=1, B=2, C=3),
wait_this_long

) |>
then(print)

promise_reduce 13

promise_reduce Promise-aware version of Reduce

Description

Similar to purrr::reduce (left fold), but the function .f is permitted to return a promise. promise_reduce
will wait for any returned promise to resolve before invoking .f with the next element; in other
words, execution is serial. .f can return a promise as output but should never encounter a promise
as input (unless .x itself is a list of promises to begin with, in which case the second parameter
would be a promise).

Usage

promise_reduce(.x, .f, ..., .init)

Arguments

.x A vector or list to reduce. (Not a promise.)

.f A function that takes two parameters. The first parameter will be the "result"
(initially .init, and then set to the result of the most recent call to func), and
the second parameter will be an element of .x.

... Other arguments to pass to .f

.init The initial result value of the fold, passed into .f when it is first executed.

Value

A promise that will resolve to the result of calling .f on the last element (or .init if .x had
no elements). If any invocation of .f results in an error or a rejected promise, then the overall
promise_reduce promise will immediately reject with that error.

Examples

Returns a promise for the sum of e1 + e2, with a 0.5 sec delay
slowly_add <- function(e1, e2) {

promise(\(resolve, reject) {
later::later(\() resolve(e1 + e2), delay = 0.5)

})
}

Prints 55 after a little over 5 seconds
promise_reduce(1:10, slowly_add, .init = 0) |>

then(print)

14 then

promise_resolve Create a resolved or rejected promise

Description

Helper functions to conveniently create a promise that is resolved to the given value (or rejected
with the given reason).

Usage

promise_resolve(value)

promise_reject(reason)

Arguments

value A value, or promise, that the new promise should be resolved to. This expression
will be lazily evaluated, and if evaluating the expression raises an error, then the
new promise will be rejected with that error as the reason.

reason An error message string, or error object.

Examples

promise_resolve(mtcars) |>
then(head) |>
then(print)

promise_reject("Something went wrong") |>
catch(tee = TRUE, \(e) message(conditionMessage(e)))

then Access the results of a promise

Description

Use the then function to access the eventual result of a promise (or, if the operation fails, the reason
for that failure). Regardless of the state of the promise, the call to then is non-blocking, that is, it
returns immediately; so what it does not do is immediately return the result value of the promise.
Instead, you pass logic you want to execute to then, in the form of function callbacks. If you
provide an onFulfilled callback, it will be called upon the promise’s successful resolution, with a
single argument value: the result value. If you provide an onRejected callback, it will be called if
the operation fails, with a single argument reason: the error that caused the failure.

then 15

Usage

then(promise, onFulfilled = NULL, onRejected = NULL, ..., tee = FALSE)

catch(promise, onRejected, ..., tee = FALSE)

finally(promise, onFinally)

Arguments

promise A promise object. The object can be in any state.

onFulfilled A function that will be invoked if the promise value successfully resolves. When
invoked, the function will be called with a single argument: the resolved value.
Optionally, the function can take a second parameter .visible if you care
whether the promise was resolved with a visible or invisible value. The function
can return a value or a promise object, or can throw an error; these will affect
the resolution of the promise object that is returned by then().

onRejected A function taking the argument error. The function can return a value or a
promise object, or can throw an error. If onRejected is provided and doesn’t
throw an error (or return a promise that fails) then this is the async equivalent of
catching an error.

... Ignored.

tee If TRUE, ignore the return value of the callback, and use the original value in-
stead. This is useful for performing operations with side-effects, particularly
logging to the console or a file. If the callback itself throws an error, and tee
is TRUE, that error will still be used to fulfill the the returned promise (in other
words, tee only has an effect if the callback does not throw).

onFinally A function with no arguments, to be called when the async operation either
succeeds or fails. Usually used for freeing resources that were used during async
operations.

Formulas

[Superseded]

With {promises} depending on R >= 4.1, the shorthand of a formula, ~ fn(.) is no longer recom-
mended by the {promises} package or tidyverse (for example, {purrr}) as we now have access
to the function shorthand, \(x) fn(x). Please update your code to use the new function shorthand
syntax \(x) fn(x, arg1, args2) instead of ~ fn(., arg1, arg2). The . can be confusing when
chained with other methods.

Chaining promises

The first parameter of then is a promise; given the stated purpose of the function, this should be
no surprise. However, what may be surprising is that the return value of then is also a (newly cre-
ated) promise. This new promise waits for the original promise to be fulfilled or rejected, and for
onFulfilled or onRejected to be called. The result of (or error raised by) calling onFulfilled/onRejected
will be used to fulfill (reject) the new promise.

https://github.com/tidyverse/purrr/commit/670c3ed9920f15da0d4175068ecddc41f0f1f335#diff-c4dcc43795da5c7f6bf5a94d957b5507ce795fedd6d3eb092ccad03678c4f76dR15

16 then

promise_a <- get_data_frame_async()
promise_b <- then(promise_a, onFulfilled = head)

In this example, assuming get_data_frame_async returns a promise that eventually resolves to a
data frame, promise_b will eventually resolve to the first 10 or fewer rows of that data frame.

Note that the new promise is considered fulfilled or rejected based on whether onFulfilled/onRejected
returns a value or throws an error, not on whether the original promise was fulfilled or rejected. In
other words, it’s possible to turn failure to success and success to failure. Consider this example,
where we expect some_async_operation to fail, and want to consider it an error if it doesn’t:

promise_c <- some_async_operation()
promise_d <- then(promise_c,
onFulfilled = function(value) {
stop("That's strange, the operation didn't fail!")

},
onRejected = function(reason) {
Great, the operation failed as expected
NULL

}
)

Now, promise_d will be rejected if promise_c is fulfilled, and vice versa.

Warning: Be very careful not to accidentally turn failure into success, if your error handling code
is not the last item in a chain!

some_async_operation() |>
catch(function(reason) {
warning("An error occurred: ", reason)

}) |>
then(function() {
message("I guess we succeeded...?") # No!

})

In this example, the catch callback does not itself throw an error, so the subsequent then call will
consider its promise fulfilled!

Convenience functions

For readability and convenience, we provide catch and finally functions.

The catch function is equivalent to then, but without the onFulfilled argument. It is typically
used at the end of a promise chain to perform error handling/logging.

The finally function is similar to then, but takes a single no-argument function that will be ex-
ecuted upon completion of the promise, regardless of whether the result is success or failure. It is
typically used at the end of a promise chain to perform cleanup tasks, like closing file handles or
database connections. Unlike then and catch, the return value of finally is ignored; however, if
an error is thrown in finally, that error will be propagated forward into the returned promise.

with_ospan_async 17

Visibility

onFulfilled functions can optionally have a second parameter visible, which will be FALSE if
the result value is invisible.

with_ospan_async [Experimental] OpenTelemetry integration

Description

otel provides tools for integrating with OpenTelemetry, a framework for observability and tracing
in distributed systems.

These methods are intended to enhance the framework to be used with the promises package, not
as a generic replacement.

Developer note - Barret 2025/09: This ospan handoff promise domain topic is complex and has been
discussed over many hours. Many advanced Shiny/R developers are not even aware of promise do-
mains (very reasonable!), therefore this topic requires more in-depth documentation and examples.

Usage

with_ospan_async(name, expr, ..., tracer, attributes = NULL)

with_ospan_promise_domain(expr)

local_ospan_promise_domain(envir = parent.frame())

Arguments

name Character string. The name of the ospan.

expr An expression to evaluate within the ospan context.

... Additional arguments passed to otel::start_span().

tracer (Required) An {otel} tracer. It is required to provide your own tracer from
your own package. See otel::get_tracer() for more details.

attributes Attributes passed through otel::as_attributes() (when not NULL)

envir The "local" environment in which to add the promise domain. When the envi-
ronment is exited, the promise domain is removed.

Functions

• with_ospan_async(): [Experimental]
Creates an OpenTelemetry span, executes the given expression within it, and ends the span.
This method requires the use of with_ospan_promise_domain() to be within the execution
stack.
This function is designed to handle both synchronous and asynchronous (promise-based) op-
erations. For promises, the span is automatically ended when the promise resolves or rejects.

18 with_ospan_async

Returns the result of evaluating expr. If expr returns a promise, the span will be automatically
ended when the promise completes.
This function differs from synchronous otel span operations in that it installs a promise do-
main and properly handles asynchronous operations. In addition, the internal span will be
ended either when the function exits (for synchronous operations) or when a returned promise
completes (for asynchronous operations).
If OpenTelemetry is not enabled, the expression will be evaluated without any tracing context.

• with_ospan_promise_domain(): [Experimental]
Adds an idempotent handoff Active OpenTelemetry span promise domain.
Package authors are required to use this function to have otel span context persist across asyn-
chronous boundaries. This method is only needed once per promise domain stack. If you are
unsure, feel free to call with_ospan_promise_domain() as the underlying promise domain
will only be added if not found within the current promise domain stack. If your package
only works within Shiny apps, Shiny will have already added the domain so no need to add it
yourself. If your package works outside of Shiny and you use {promises} (i.e. {chromote}),
then you’ll need to use this wrapper method.
This method adds a handoff Active OpenTelemetry span promise domain to the expression
evaluation. This handoff promise domain will only run once on reactivation. This is critical
if there are many layered with_ospan_async() calls, such as within Shiny reactivity. For
example, if we nested many with_ospan_async() of which each added a promise domain
that reactivated each ospan on restore, we’d reactivate k ospan objects (O(k)) when we only
need to activate the last span (O(1)).
Returns the result of evaluating expr within the ospan promise domain.

• local_ospan_promise_domain(): [Experimental]
Local OpenTelemetry span promise domain
Adds an OpenTelemetry span promise domain to the local scope. This is useful for {coro}
operations where encapsulating the coro operations inside a with_*() methods is not allowed.
When not using {coro}, please prefer to use with_ospan_async() or with_ospan_promise_domain().

Definitions

• Promise domain: An environment in which has setup/teardown methods. These environments
can be composed together to facilitate execution context for promises. In normal R execution,
this can be achieved with scope / stack. But for complex situations, such as the currently
open graphics device, async operations require promise domains to setup/teardown these con-
texts to function properly. Otherwise a multi-stage promise that adds to the graphics device at
each stage will only ever print to the most recently created graphics device, not the associated
graphics device. These promise domains are not automatically created, they must be manu-
ally added to the execution stack, for example with_ospan_promise_domain() does this for
OpenTelemetry spans ("ospan").

• Promise domain restoration: When switching from one promise chain to another, the execu-
tion context is torn down and then re-established. This re-establishment is called "promise
domain restoration". During this process, the promise domains are restored in their previously
established combination order.

• Promise chain: A set of promise objects to execute over multiple async ticks.

with_ospan_async 19

• Async tick: the number of times an event loop must run to move computation forward. (Sim-
ilar to a JavaScript event loop tick.)

• then() promise domain capture: When then() is called, it will capture the current promise
domain. This promise domain is restored (only if needed) when evaluating the given onFulfilled
and onRejected callbacks. This captured promise domain does not go into any downstream
promise chain objects. The only way the promise domain is captured is exactly when the
then() method is called.

with_ospan_promise_domain() creates a promise domain that restores the currently active Open-
Telemetry span from when a call to promises::then() is executed. Given the special circumstance
where only the current ospan is needed to continue recording (not a full ancestry tree of ospans),
we can capture just the current ospan and reactivate that ospan during promise domain restoration.

When promise domains are captured

Asynchronous operation

• Creates async_op ospan

• Automatically ends the ospan (async_op) when the promise (p) resolves or rejects

The code below illustrates an example of when the promise domain are created/captured/restored
and when ospan objects are created/activated/reactivated/ended.

t0.0
p2 <- with_ospan_promise_domain({
t0.1
p <- with_ospan_async("async_op", {
... return a promise ...
init_async_work() |> # t0.2
then(# t0.3
some_async_work # t1.0

)
}) # t0.4, t1.0, t2.0
p |>
then(# t0.5
more_async_work # t3.0

)
}) # t0.6

p_final <-
p2 |> then(# t0.7
final_work # t4.0

)

An in-depth explanation of the execution timeline is below.

• At the first initial tick, t0.*:

– t0.0: The code is wrapped in with_ospan_promise_domain()

– t0.1: The async_op ospan is created and activated

20 with_ospan_async

– t0.2: Some async work is initiated
– t0.3: then() is called, capturing the active async_op ospan (as it is called within
with_ospan_promise_domain())

– t0.4: The with_ospan_async() call exits, but the async_op ospan is not ended as the
promise is still pending. The returned promise has a finally() step added to it that will
end the ospan async_op when p is resolved.

– t0.5: Another then() is called, but there is no active ospan to capture
– t0.6: The ospan promise domain call exits
– t0.7: Another then() is called. No ospan will be captured as there is no active ospan /

promise domain

• At the first followup tick, t1.0:

– The active async_op ospan is reactivated during promise domain restoration for the du-
ration of the then callback

– The some_async_work function is called

• At tick, t2.0:

– some_async_work has resolved
– A hidden finally() step closes the ospan, async_op
– p is now resolved

• At tick, t3.0:

– There is no active ospan at t0.5, so no ospan is reactivated during promise domain
restoration

– The more_async_work function is executed

• At tick, t4.0:

– more_async_work has resolved, therefore p2 is now resolved
– There was no ospan promise domain at t0.7, so no attempt is made to reactivate any

ospan
– The final_work function is executed

• At tick, t5.0:

– p_final has resolved

Complexity

When reactivating the kth step in a promise chain, the currently active ospan (during the call
to then()) will be reactivated during promise domain restoration (O(1)). To restore a chain of
promises, the active ospan will be restored at each step (O(n)) due to the n calls to wrapping each
onFulfilled and onRejected callbacks inside then().

If we did NOT have a handoff promise domain for ospan restoration, a regular promise domain ap-
proach would be needed at each step to restore the active ospan. Each step would call with_active_span()
k times (O(k), where as handoff domain computes in O(1)). Taking a step back, to restore each
ospan at for every step in a promise chain would then take O(n^2) time, not O(n). The standard,
naive promise domain approach does not scale for multiple similar promise domain restorations.

with_ospan_async 21

Execution model for with_ospan_promise_domain()

1. with_ospan_promise_domain(expr) is called.

• The following steps all occur within expr.

2. Create an ospan object using otel::start_span().

• We need the ospan to be active during the a followup async operation. Therefore, otel::start_local_active_span()
is not appropriate as the ospan would be ended when the function exits, not when the
promise chain resolves.

3. Be sure your ospan is activated before calling promises::then().

• Activate it using with_ospan_async(name, expr) (which also creates/ends the ospan)
or otel::with_active_span(span, expr).

4. Call promises::then()

• When promises::then() is called, the two methods (onFulfilled and onRejected) capture
the currently active spans. (Performed by the initial with_ospan_promise_domain())

1. During reactivation of the promise chain step, the previously captured ospan is reactivated via
with_active_span(). (Performed by the initial with_ospan_promise_domain())

OpenTelemetry span compatibility

For ospan objects to exist over may async ticks, the ospan must be created using otel::start_span()
and later ended using otel::end_span(). Ending the ospan must occur after any promise chain
work has completed.

If we were to instead use otel::start_local_active_span(), the ospan would be ended when
the function exits, not when the promise chain completes. Even though the local ospan is created,
activated, and eventually ended, the ospan will not exist during reactivation of the ospan promise
domain.

with_ospan_async() is a convenience method that creates, activates, and ends the ospan only after
the returned promise (if any) resolves. It also properly handles both synchronous (ending the ospan
within on.exit()) and asynchronous operations (ending the ospan within promises::finally()).

See Also

otel::start_span(), otel::with_active_span(), otel::end_span()

Examples

Not run:
Common usage:
with_ospan_promise_domain({

... deep inside some code execution ...

Many calls to `with_ospan_async()` within `with_ospan_promise_domain()`
with_ospan_async("my_operation", {

... do some work ...
})

})

22 with_promise_domain

End(Not run)
Not run:
with_ospan_promise_domain({

... deep inside some code execution ...

Synchronous operation
* Creates `my_operation` span
result <- with_ospan_async("my_operation", {
... do some work ...
print(otel::get_active_span()$name) # "my_operation"

Nest (many) more spans
prom_nested <- with_ospan_async("my_nested_operation", {

... do some more work ...
promise_resolve(42) |>

then(\(value) {
print(otel::get_active_span()$name) # "my_nested_operation"
print(value) # 42

})
})

Since `then()` is called during the active `my_operation` span,
the `my_operation` span will be reactivated in the `then()` callback.
prom_nested |> then(\(value) {

print(otel::get_active_span()$name) # "my_operation"
value

})
})

Since `then()` is called where there is no active span,
there is no _active_ span in the `then()` callback.
result |> then(\(value) {

stopifnot(inherits(otel::get_active_span(), "otel_span_noop"))
print(value) # 42

})
})

End(Not run)

with_promise_domain Promise domains

Description

Promise domains are used to temporarily set up custom environments that intercept and influence
the registration of callbacks. Create new promise domain objects using new_promise_domain, and
temporarily activate a promise domain object (for the duration of evaluating a given expression)
using with_promise_domain.

with_promise_domain 23

Usage

with_promise_domain(domain, expr, replace = FALSE)

new_promise_domain(
wrapOnFulfilled = identity,
wrapOnRejected = identity,
wrapSync = force,
onError = force,
...,
wrapOnFinally = NULL

)

Arguments

domain A promise domain object to install while expr is evaluated.

expr Any R expression, to be evaluated under the influence of domain.

replace If FALSE, then the effect of the domain will be added to the effect of any currently
active promise domain(s). If TRUE, then the current promise domain(s) will be
ignored for the duration of the with_promise_domain call.

wrapOnFulfilled

A function that takes a single argument: a function that was passed as an onFulfilled
argument to then(). The wrapOnFulfilled function should return a function
that is suitable for onFulfilled duty.

wrapOnRejected A function that takes a single argument: a function that was passed as an onRejected
argument to then(). The wrapOnRejected function should return a function
that is suitable for onRejected duty.

wrapSync A function that takes a single argument: a (lazily evaluated) expression that the
function should force(). This expression represents the expr argument passed
to with_promise_domain(); wrapSync allows the domain to manipulate the
environment before/after expr is evaluated.

onError A function that takes a single argument: an error. onError will be called when-
ever an exception occurs in a domain (that isn’t caught by a tryCatch). Provid-
ing an onError callback doesn’t cause errors to be caught, necessarily; instead,
onError callbacks behave like calling handlers.

... Arbitrary named values that will become elements of the promise domain object,
and can be accessed as items in an environment (i.e. using [[or $).

wrapOnFinally A function that takes a single argument: a function that was passed as an onFinally
argument to then(). The wrapOnFinally function should return a function that
is suitable for onFinally duty. If wrapOnFinally is NULL (the default), then
the domain will use both wrapOnFulfilled and wrapOnRejected to wrap the
onFinally. If it’s important to distinguish between normal fulfillment/rejection
handlers and finally handlers, then be sure to provide wrapOnFinally, even if
it’s just base::identity().

24 with_promise_domain

Details

While with_promise_domain is on the call stack, any calls to then() (or higher level functions or
operators, like catch()) will belong to the promise domain. In addition, when a then callback that
belongs to a promise domain is invoked, then any new calls to then will also belong to that promise
domain. In other words, a promise domain "infects" not only the immediate calls to then, but also
to "nested" calls to then.

For more background, read the original design doc.

For examples, see the source code of the Shiny package, which uses promise domains extensively
to manage graphics devices and reactivity.

https://gist.github.com/jcheng5/b1c87bb416f6153643cd0470ac756231

Index

%...!% (pipes), 8
%...>% (pipes), 8
%...T!% (pipes), 8
%...T>% (pipes), 8

as.promise (is.promise), 7

base::identity(), 23
base::lapply(), 12

catch, 8
catch (then), 14
catch(), 24

environment, 3

finally, 8
finally (then), 14
force(), 23
future::Future, 7
future::future(), 3
future_promise (future_promise_queue), 2
future_promise_queue, 2
future_promise_queue(), 3

hybrid_then, 5

invisible, 17
is.promise, 7
is.promising (is.promise), 7
is.promising(), 6

local_ospan_promise_domain
(with_ospan_async), 17

mirai::mirai, 7

new_promise_domain
(with_promise_domain), 22

otel::as_attributes(), 17
otel::end_span(), 21

otel::get_tracer(), 17
otel::start_span(), 17, 21
otel::with_active_span(), 21

pipes, 8
promise, 9
promise(), 3
promise_all, 11
promise_map, 12
promise_race (promise_all), 11
promise_reduce, 13
promise_reject (promise_resolve), 14
promise_resolve, 14
promise_resolve(), 6
purrr::map, 12
purrr::reduce, 13

substitute, 3

then, 8, 10, 14
then(), 6, 23, 24

with_ospan_async, 17
with_ospan_promise_domain

(with_ospan_async), 17
with_promise_domain, 22
with_promise_domain(), 23
WorkQueue, 3

25

	future_promise_queue
	hybrid_then
	is.promise
	pipes
	promise
	promise_all
	promise_map
	promise_reduce
	promise_resolve
	then
	with_ospan_async
	with_promise_domain
	Index

