Package ‘inverseRegex’

October 28, 2025

Title Reverse Engineers Regular Expression Patterns for R Objects
Version 0.2.0

Description Reverse engineer a regular expression pattern for the characters
contained in an R object. Individual characters can be categorised into
digits, letters, punctuation or spaces and encoded into run-lengths. This
can be used to summarise the structure of a dataset or identify non-standard
entries. Many non-character inputs such as numeric vectors and data frames
are supported.

Depends R (>=3.5.0)

Suggests tibble, testthat, knitr, rmarkdown
License MIT + file LICENSE

Encoding UTF-8

BugReports https://github.com/rntq472/inverseRegex/issues
RoxygenNote 7.3.3

VignetteBuilder knitr

Language en-GB

NeedsCompilation no

Author Jasper Watson [aut, cre]

Maintainer Jasper Watson <jasper.g.watson@gmail.com>
Repository CRAN

Date/Publication 2025-10-28 12:00:02 UTC

Contents
inverseRegex
occurrencesLessThan
Index

https://github.com/rntq472/inverseRegex/issues

inverseRegex

inverseRegex

Reverse Engineers a Regular Expression Pattern to Represent the In-
put Object.

Description

Deconstructs the input into collections of letters, digits, punctuation, and spaces that represent a
regex pattern consistent with that input.

Usage

inverseRegex(
X)

numbersToKeep = c(2, 3, 4, 5, 10),

combineCases

= FALSE,

combineAlphanumeric = FALSE,
combinePunctuation = FALSE,

combineSpace

nn

sep = 7,

= FALSE,

escapePunctuation = FALSE,
enclose = FALSE,
priority = NULL

)
Arguments

X Object to derive a regex pattern for.

numbersToKeep Set of numbers giving the length for which elements repeated that many times
should be counted explicitly (e.g. "[[:digit:]]{5}"). Repeat sequences not in-
cluded in numbersToKeep will be coded with a "+" (e.g. "[[:digit:]]+"). De-
faults to ¢(2, 3, 4, 5, 10). Set to NULL to have all runs coded as "+" and set to
2:maxCharacters to have the length specified for all repeated values. If one is
included then all unique patterns with be counted as "{1}"; if it is not then the
"{1}" is left off.

combineCases Logical indicating whether to treat upper and lower case letters as a single entity.
Defaults to FALSE.

combineAlphanumeric
Logical indicating whether to treat alphabetic characters and digits as a single
entity. Defaults to FALSE.

combinePunctuation
Logical indicating whether to treat all punctuation characters as a single entity.
Defaults to FALSE.

combineSpace Logical indicating whether to treat all space characters as a single entity. De-
faults to FALSE.

sep Value used to separate the regex patterns. Defaults to an empty string.

inverseRegex 3

escapePunctuation

Logical indicating whether to escape any punctuation characters. Defaults to
FALSE. Set to TRUE if you want to use the returned value as an argument to

grep.

enclose Logical indicating whether to surround each returned value with '*' and '$"'.
Defaults to FALSE.

priority Character vector allowing users to specify characters that will take precedence

over regex grouping patterns. Defaults to NULL, meaning it is ignored. See
@details for more information.

Details

The fundamental use of inverseRegex applies only to strings. Inputs of a class other than character
are treated as follows:

* Integer: Converted using as.character().
* Factor: Converted using as.character().
* Logical: Left as is. Converting to character would not provide any simplification.

* Numeric: Converted to character by applying format(. .., nsmall = 1) element by element.
NA values will be returned as NA_character_, whilst NaN, Inf, and -Inf will be returned as
literal strings: "NaN”, "Inf", and "-Inf".

* Date: Converted using as.character().
* POSIXct: Converted using as.character().

e Data frame: Each column is assessed individually and the results combined together so that
the output is a data frame of regex patterns with the same dimensions as the input. The
columns of class other than character will each be converted as described previously, with one
exception: Unlike above where numerics are passed to format(..., nsmall = 1) element
by element, here the entire column is passed to trimws(format(...)). This will lead to a
common number of digits to the right of the decimal point and a variable number of digits
with no padding on the left side.

* Matrix: Creates a matrix of regex patterns with the same dimensions as the input. If the matrix
has a mode of numeric then it will first be passed to trimws(format(...)).

» Tibble: Same as a data frame except the returned object is a tibble. Requires the tibble package
to be installed.

* Anything else: Not supported; an error will be thrown.

If these conversion methods are not appropriate then you can do the conversion yourself so that the
input is dispatched directly to inverseRegex.character.

The regex patterns are identified using the constructs "[:digit:]", "[:upper:]", "[:lower:]", "[:alpha:]",
"[:alnum:]", "[:punct:]", and "[:space:]" as described in ?regex. This will allow for non-ASCII
characters to be identified, to the extent supported by grep. Any characters not identified by these
search patterns will be left as is. Note that for characters from unicameral alphabets the com-
bineCases argument will need to be set to TRUE otherwise they will not be detected by "lower" and

nuppern.

The priority argument allows users to exclude certain characters from being grouped into the regex
patterns described above. For example when using the string "ABC" if using priority = c("A",

4 occurrencesLessThan

"[[:upper:]]", "B") then the result would be "A[[:upper:]]{2}" since the "A" is a higher priority than
the "[[:upper:]]" grouping. If you leave the regex groups out then they are assumed to take last
priority (meaning in that example using priority = "A" would give the same result). One can also
use .’ to make certain characters be collapsed together.

NA values in the input will remain as NA values in the output.

Value

A set of regex patterns that match the input data. These patterns will either be character vectors or
the same class as the input object if it was a matrix, data frame, or tibble.

Author(s)

Jasper Watson

See Also

occurrencesLessThan, regex

Examples

inverseRegex('Hello World!"')
table(inverseRegex(c(rep('HELLO', 10), 'HELLQ')))
unique(inverseRegex(iris, numbersToKeep = 1:10))
inverseRegex(c(1, NA, 3.45, NaN, Inf, -Inf))

inverseRegex('abc123?!', priority = c('a', '1', "!'', '[[:lower:1]", '[[:digit:1]1', '."))

occurrencesLessThan Identifies Infrequent inverseRegex Patterns in an R Object.

Description

Calls inverseRegex on the input object and identifies values that occur infrequently.

Usage

occurrencesLessThan(x, fraction = 0.05, n = NULL, ...)

occurrencesLessThan 5

Arguments

X Object to analyse for infrequent regex patterns.

fraction Fraction of the R object size; regex patterns that occur less (or equal) often than
this will be identified. For a vector this fraction will be multiplied by the length
of the object; for a matrix it will be multiplied by the total number of entries; and
for a data frame or tibble it will be multiplied by the number of rows. Defaults
to 0.05.

n Alternative to the fraction argument which allows a literal number of occur-
rences to be searched for. Defaults to NULL, in which case fraction will be
used.

Other arguments to be passed to inverseRegex.
Details

This function is essentially a wrapper around calling table() on the return value of inverseRegex.
It can be used to identify the indices of values that consist of a regex pattern different to others in
the R object.

Value

A collection of logical values with TRUE indicating entries with an infrequent regex pattern. The
class of the return value will depend on the input object; matrices, data frames, and tibbles will be
returned in kind; all others are returned as vectors.

Note

NA values are not considered and will need to be identified separately.

Author(s)

Jasper Watson

See Also

inverseRegex, regex

Examples

occurrencesLessThan(c(LETTERS, 1))

X <- iris

x$Species <- as.character(x$Species)
x[27, 'Species'] <- 'set@sa'
apply(occurrencesLessThan(x), 2, which)

Index

inverseRegex, 2

occurrencesLessThan, 4

	inverseRegex
	occurrencesLessThan
	Index

