Package ‘hhmR’

October 20, 2025

Type Package

Title Hierarchical Heatmaps

Version 0.0.1.1

Maintainer Michael Mahony <michael.mahony@cantab.net>

Description Allows users to create high-quality heatmaps from labelled, hierarchical data. Specifi-
cally, for data with a two-level hierarchical structure, it will pro-
duce a heatmap where each row and column represents a cate-
gory at the lower level. These rows and columns are then grouped by the higher-
level group each category belongs to, with the names for each cate-
gory and groups shown in the margins. While other packages (e.g. 'dendextend’) al-
low heatmap rows and columns to be arranged by groups only, 'hhmR' also allows the la-
belling of the data at both the category and group level.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/sgmmahon/hhmR, https://sgmmahon.github.io/hhmR/

BugReports https://github.com/sgmmahon/hhmR/issues
Depends R (>=3.5.0)

Imports dplyr, purrr, tidyr, rlang, grid, ggplot2, patchwork,
grDevices, magrittr, utils

Language en-GB
LazyData true
RoxygenNote 7.3.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no

Author Michael Mahony [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0003-2784-2745>),
Francisco Rowe [aut] (ORCID: <https://orcid.org/0000-0003-4137-0246>),
Carmen Cabrera-Arnau [aut] (ORCID:
<https://orcid.org/0000-0002-2732-6436>)

1

https://github.com/sgmmahon/hhmR
https://sgmmahon.github.io/hhmR/
https://github.com/sgmmahon/hhmR/issues
https://orcid.org/0000-0003-2784-2745
https://orcid.org/0000-0003-4137-0246
https://orcid.org/0000-0002-2732-6436

Repository CRAN
Date/Publication 2025-10-20 17:41:43 UTC

Contents
CE o e e e e 2
decimalplaces L L e 3
example_migration Lo e 3
example_time_SeTieS v v v v v v i e e e e e e e e e e e 4
EXP_SEO « « ¢ e e e e e e e e e e e e e e 5
hhm . . . e e 6
[0g_SEq . . o e 8
Pltttl o e 9
tshhm e 10

Index 13

cg cg
Description

Creates colour gradient between two hexcodes.

Usage

cg(colourl, colour2, n = 15)

Arguments

colourl The first hexcode colour.

colour?2 The second hexcode colour.

n The length of the vector returned by the function.
Value

A vector of hexcodes of length n, containing a colour gradient between colour =1 and colour2.

Examples

cg("white”,"black”,20)

decimalplaces 3

decimalplaces decimalplaces

Description

Tests the number of non-zero decimal places within a number.

Usage

decimalplaces(x)
Arguments

X The number for the number of decimal places is to be measured.
Value

A single number, indicating the number of non-zero decimal places in ‘x°.

Examples

decimalplaces(23.43234525)
decimalplaces(334.3410000000000000)
decimalplaces(2.000)

example_migration example_migration

Description

Fake migration dataset used to demonstrate the functionality of the hhm function in the hhmR
package. It contains the information on the number of people who have moved between a series of
fictional geographies. The geographies themselves have a hierarchical structure, with each county
existing within a smaller subset of regions.

Usage

data(example_migration)

4 example_time_series

Format
A data frame with 324 rows and 5 variables.

Origin County The county (lower-level geography) that each migrant began in.
Destination County The county (lower-level geography) that each migrant ended up in.
Origin Region The region (higher-level geography) that each migrant began in.
Destination Region The region (higher-level geography) that each migrant ended up in.

Migration The number of migrants that moved from each origin county to each destination county.

Examples

library(dplyr)
Code to create dataset

Define names of fake counties

fake_counties = c("Greenridge”,"Windermoor","Bramblewood”,"Silverlake"”,
"Thornbury”, "Maplewood”, "Hawthorne”,"Pinehurst”,
"Riverton”, "Meadowbrook”,"Fairhaven"”, "Oakdale"”,"Stonebridge”,

"Brookfield"”,"Ashford”,"Glenville”, "Sunnyvale”, "Westfield")

Create region county lookup tables
rc_lkp = data.frame(region = c(rep("North"”,3),rep(”"Midlands”,5),
rep("”South West"”,4),rep("South East”,6)),
county = fake_counties)
og_lkp = rc_lkp %>% setNames(c("Origin Region” ,"Origin County”))
dn_lkp = rc_lkp %>% setNames(c("Destination Region”,"Destination County"))

Create dataframe of fake migration data
set.seed(1234)
example_migration = expand.grid(fake_counties,fake_counties) %>%
setNames(paste(c("Origin”, "Destination”), "County”,sep=" ")) %>%
full_join(og_lkp) %>% full_join(dn_lkp) %>%
mutate(Migration = (1/rgamma(18%18, shape = 17, rate = 0.5)) %>%
{. * 1000} %>% round())
example_migration[example_migration$ Origin County™ ==
example_migration$ Destination County™,"Migration"] =
example_migration[example_migration$ Origin County™ ==
example_migration$~Destination County™,"”Migration”] x 10

example_time_series example_time_series

Description

Fake migration dataset used to demonstrate the functionality of the tshm function in the hhmR
package. It contains the information on the number of people who have immigrated a series of
fictional geographies over the years 2011 to 2015. The geographies themselves have a hierarchical
structure, with each county existing within a smaller subset of regions.

exp_seq 5

Usage

data(example_time_series)

Format

A data frame with 90 rows and 4 variables.

County The county (lower-level geography) that immigrants move to.
Region The region (higher-level geography) that immigrants move to.
Year The year during which each wave of immigration occured.

Immigration The number of immigrants that moved each county in each year.

Examples

library(dplyr)
library(tidyr)

Define names of fake counties

fake_counties = c("Greenridge"”,"Windermoor","Bramblewood”,"Silverlake”,
"Thornbury”, "Maplewood”, "Hawthorne”,"Pinehurst”,
"Riverton”, "Meadowbrook”,"Fairhaven”, "Oakdale","Stonebridge”,

"Brookfield”,"Ashford”,"Glenville"”,"Sunnyvale", "Westfield")

Create dataframe of fake migration data
set.seed(1234)
example_time_series = data.frame(region = c(rep(”"North",3),rep(”"Midlands”,5),
rep("South West”,4),rep("South East”,6)),
county = fake_counties,
year_2011 = sample(1:10000,length(fake_counties)),
year_2012 = sample(1:10000,length(fake_counties)),
year_2013 = sample(1:10000,length(fake_counties)),
year_2014 = sample(1:10000,length(fake_counties)),
year_2015 = sample(1:10000,length(fake_counties))) %>%
setNames(c("Region”,"County”,2011:2015)) %>%
pivot_longer(cols = ~2011°:720157,
names_to = "Year",
values_to = "Immigration”) %>%
mutate(Year = as.numeric(Year))
example_time_series[sample(1: (length(fake_counties)*5),5),"Immigration”] = NA

exp_seq exp_seq

Description

Creates a vector of exponentially increasing values between 0 and a specified value ‘n‘. If ‘n‘ is
specified as 1, the vector will be scaled to between 0 and 1.

6 hhm

Usage

exp_seq(n, 1n = 15, exponent = 2, round_values = TRUE, rmv_extremes = TRUE)

Arguments
n The maximum value that the values in the sequence are scaled to.
1n How long the vector should be (defaults to 15).
exponent The exponential power with which to multiply the sequence by (defaults to 2).

round_values Option to round values to whole numbers (defaults to “TRUE®). If ‘n‘ equals 1,
round_values will automatically be set to FALSE.

rmv_extremes Option to remove zero and the maximum value (i.e. ‘n‘) from the beginning and
the end of the returned vector (defaults to ‘FALSE®). Note that this will mean
the length of the returned vector will be ‘n‘ - 2.

Value

A vector containing exponentially increasing values between 0 and a specified value ‘n‘.

Examples

Create sequence of length 8, scaled between @ and 10000

exp_seq(10000,8)

Set rmv_extremes = FALSE to get full sequence

exp_seq(10000,8,rmv_extremes = FALSE)

The exponent defaults to 2. Setting it to between 1 and 2 causes it to converge on

a linear sequence. When exponent is set to 1 the sequence increases linearly
exp_seq(10000,8,exponent=1)

Setting it to greater than 2 will cause it the values in the sequence to shift towards zero
exp_seq(10000,8,exponent=4)

Create sequence of length 12, scaled between @ and 1
exp_seq(1,12)

exp_seq(1,12,rmv_extremes = FALSE)
exp_seq(1,12,exponent=1)

exp_seq(1,12,exponent=4)

hhm Hierarchical Heatmap

Description

Creates a labelled heatmap from heirarchical data. This function is useful if you wish to create a
heatmap where the categories shown on both the x and y axis can be grouped in some way. This
heatmap will order the categories by their assigned group and present both the categories and group
labels along the axes. An example might be a series of smaller geographies (lower categories) which
aggregate into larger geographical regions (upper groups).

hhm 7

Usage

hhm(
df,
ylower,
yupper,
xlower,
xupper,
values,
rm_diag = FALSE,
lgttl = NULL,
bins = NULL,
cbrks = NULL,
cclrs = NULL,
norm_lgd = FALSE,
lgdps = 0,
xttl_height = 0.15,
yttl_width = 0.15

)
Arguments

df A data.frame with containing values with which to populate the heatmap. The
data.frame must include columns specifying the lower categories (‘ylower*, ‘xlower ‘)
and upper groups (‘yupper*, ‘xupper) that each value corresponds to. These cat-
egories and groups will be used to arrange and label the rows and columns of
the heatmap. It must also contain a ‘values® variable containing the values used
to populate the heatmap. Note that the groups will by default be arranged al-
phabetically (top to bottom / left to right). The ordering of the groups can be
manually specified by converting yupper and/or xupper to factors. In this case,
the groups will be ordered based on the ordering of the factor levels.

ylower A column in ‘df* containing the categories that will be presented as rows along
the y-axis of the heatmap.

yupper A column in ‘df* containing the groupings that will be used to arrange the
heatmap rows.

xlower A column in ‘df* containing the categories that will be presented as columns
along the x-axis of the heatmap.

xupper A column in ‘df* containing the groupings that will be used to arrange the
heatmap columns.

values A column in ‘df* containing the values used to populate the heatmap.

rm_diag Do not show values for categories along the x and y axes that are identical (de-
faults to ‘FALSE®). This is particularly useful for origin-destination heatmaps,
where the user may want to hide the diagonal values.

lgttl Option to manually define legend title.

bins Option to break the data into a specified number of groups (defaults to ‘NULL").

The thresholds between these groups will be equally spaced between zero and
the maximum value observed in ‘values®.

8 log_seq
cbrks Vector of custom breaks, if users wish to use a discrete legend colour scheme
(defaults to ‘NULL). For example, a supplied vector of ‘c(5,10, 20)° would
break he values up into 5 ordered groups of ranges 0, 0-5, 5-10, 10-20 and 20+.
cclrs Vector of hexcodes, which to create a custom legend colour scheme (defaults
to ‘NULL). If ‘cbrks® is supplied, ‘cclrs® must have a length two longer than
‘cbrks®. If ‘bins‘ is supplied, ‘cclrs® must have a length equal to the values
provided to ‘bins°.
norm_lgd Normalised to between 0 and 1 in legend (defaults to ‘FALSE®). Allows for
consistency when comparing heatmaps across different datasets. At present,
this only works if all heatmap values are positive.
lgdps If using custom breaks, define the number of decimal points to round the legend
scale to (defaults to 0). If ‘norm_lgd* is ‘“TRUE, it will default to 3.
xttl_height The space allocated to the group titles on the x-axis as a proportion of the
heatmap’s height (defaults to 0.15).
yttl_width The space allocated to the group titles on the y-axis as a proportion of the
heatmap’s width (defaults to 0.15).
Value
A ggplot object containing the final heatmap.
Examples
Import toy demonstration dataset (see ~?example_migration™ for see details)
data(example_migration)
Intial heatmap
hierarchical_heatmap = hhm(df = example_migration,
ylower = "Origin County”,
xlower = "Destination County”,
yupper = "Origin Region”,
xupper = "Destination Region”,
values = "Migration”,
yttl_width = 0.22,
xttl_height = 0.4)
For more details, see the package vignette at
https://sgmmahon.github.io/hhmR/articles/hhmR_overview.html
log_seq log_seq
Description

Creates a vector of logarithmicly increasing values between O and a specified value ‘n‘. If ‘n‘ is
specified as 1, the vector will be scaled to between 0 and 1.

plt_ttl 9

Usage

log_seq(n, 1n = 15, round_values = TRUE, rmv_extremes = FALSE)

Arguments
n The maximum value that the values in the sequence are scaled to.
1n How long the vector should be (defaults to 15).

round_values Option to round values to whole numbers (defaults to “TRUE®).

rmv_extremes Option to remove zero and the maximum value (i.e. ‘n) from the beginning and
the end of the returned vector (defaults to ‘FALSE®). Note that this will mean
the length of the returned vector will be ‘n* - 2.

Value

A vector containing logarithmicly increasing values between 0 and a specified value ‘n°.

Examples

Create sequence of length 20, scaled between @ and 500
log_seq(500,20)

Create sequence of length 15, scaled between @ and 1
log_seq(1,12)

plt_ttl plt_ttl

Description
Creates plot containing the name of a given upper group. Used in combination with the patchwork
package to plot the names of the upper groups within the hhm function.

Usage

plt_ttl(ttl, axs = "x", rotate_title = TRUE)

Arguments
ttl The name of the upper group.
axs The axis on which the name will appear (defaults to "x"). If x‘, the text will

be written at the top-centre of the plot. If ‘y*, the text will be written at the
middle-right of the plot.

rotate_title Whether the title should be rotate to be perpendicular to the axis (defaults to
TRUE). If TRUE, the title text on the x and y axes will be printed horizontally
and vertically respectively, with the reverse orientation if set to FALSE.

10 tshhm

Value

A ggplot object containing the title of a given upper group, for use in the hhm function.

Examples

plt_ttl("Group 1", axs = "y")
plt_ttl("Group 2")
plt_ttl("Group 1", axs = "y",rotate_title = FALSE)

plt_ttl("Group 2" ,rotate_title = FALSE)
tshhm Time-series Hierarchical Heatmap
Description

Creates a labelled time-series heatmap from heirarchical data. This function is useful if you wish to
create a time-series heatmap where the categories shown on the y axis can be grouped in some way.
This heatmap will order the categories by their assigned group and present both the categories and
group labels along the y-axis. An example might be series of smaller geographies (lower categories)
which aggregate into larger geographical regions (upper groups).

Usage
tshhm(

df,
lower,
upper,
times,
values,
sort_lower = "alphabetical”,
lgttl = NULL,
bins = NULL,
cbrks = NULL,
cclrs = NULL,
norm_lgd = FALSE,
lgdps = 0,

na_colour = NULL,
xttl_height = 0.05,
yttl_width = 0.15

Arguments

df A data.frame with containing values with which to populate the heatmap. The
data.frame must include columns specifying the lower categories (‘lower‘) and
upper groups (‘upper‘) that each value corresponds to. These categories and

tshhm

lower

upper

times

values

sort_lower

lgttl

bins

cbrks

cclrs

norm_lgd

lgdps

na_colour

xttl_height

yttl_width

11

groups will be used to arrange and label the rows of the heatmap. ‘df* must also
contain a ‘values‘ variable, containing the values used to populate the heatmap,
and a ‘times* variable, containing the time period during which each value was
observed. Note that the groups in ‘upper* will by default be arranged alphabet-
ically (top to bottom). The ordering of the groups can be manually specified by
converting ‘upper* to a factor. In this case, the groups will be ordered based on
the ordering of the factor levels. The ordering of rows within each group can
also be specified using the ‘sort_lower* variable.

A column in ‘df* containing the categories that will be presented as rows along
the y-axis of the heatmap.

A column in ‘df* containing the groupings that will be used to arrange the
heatmap rows.

A column in ‘df* containing the time-period during which each each value in
‘values‘ was observed.

A column in ‘df* containing the values used to populate the heatmap.

Option to define how rows (lower) within each group (upper) are ordered. The
default option is ‘alphabetical‘, which orders rows in alphabetical order from
top to bottom. Other options include ‘sum_ascend‘ and ‘mean_ascend‘, which
order rows in ascending order (top to bottom) based on the row totals and row
means respectively. This order can be reversed with the options ‘sum_descend’
and ‘mean_descend".

Option to manually define legend title.

Option to break the data into a specified number of groups (defaults to ‘NULL").
The thresholds between these groups will be equally spaced between the mini-
mum and maximum values observed in ‘values‘.

Vector of custom breaks, if users wish to use a discrete legend colour scheme
(defaults to ‘NULL®). For example, a supplied vector of ‘c(5,10, 20) would
break he values up into 5 ordered groups of ranges 0, 0-5, 5-10, 10-20 and 20+.

Vector of hexcodes, which to create a custom legend colour scheme (defaults
to ‘NULL). If ‘cbrks® is supplied, ‘cclrs® must have a length two longer than
‘cbrks‘. If ‘bins‘ is supplied, ‘cclrs‘ must have a length equal to the values
provided to ‘bins°.

Normalised to between 0 and 1 in legend (defaults to ‘FALSE®). Allows for
consistency when comparing heatmaps across different datasets. At present,
this only works if all heatmap values are positive.

If using custom breaks, define the number of decimal points to round the legend
scale to (defaults to 0). If ‘norm_lgd* is ‘“TRUE, it will default to 3.

Option to define the colour of NA values in the legend (defaults to ‘NULL,
meaning NA values will be assigned no colour).

The space allocated to the title on the x-axis as a proportion of the heatmap’s
height (defaults to 0.05).

The space allocated to the group titles on the y-axis as a proportion of the
heatmap’s width (defaults to 0.15).

12 tshhm

Value

A ggplot object containing the final heatmap.
Examples
library(dplyr)

Import toy demonstration dataset (see ~?example_time_series™ for see details)
data(example_time_series)

Intial heatmap
time_series_heatmap = tshhm(df = example_time_series,

lower = "County”,
upper = "Region”,
times = "Year”,

values = "Immigration”,

yttl_width = 0.25)

View result
time_series_heatmap

For more details, see the package vignette at
https://sgmmahon.github.io/hhmR/articles/hhmR_overview.html

Index

+ datasets
example_migration, 3
example_time_series, 4

cg, 2

decimalplaces, 3

example_migration, 3
example_time_series, 4
exp_seq, 5

hhm, 6
log_seq, 8
plt_ttl, 9

tshhm, 10

13

	cg
	decimalplaces
	example_migration
	example_time_series
	exp_seq
	hhm
	log_seq
	plt_ttl
	tshhm
	Index

