## ----knitr-opts, include=FALSE------------------------------------------------ knitr::opts_chunk$set(comment = "#",collapse = TRUE,results = "hold", fig.align = "center",dpi = 120) ## ----load-pkgs, message=FALSE, warning=FALSE---------------------------------- library(Matrix) library(fastTopics) library(ggplot2) library(cowplot) set.seed(1) ## ----load-data---------------------------------------------------------------- data(pbmc_facs) counts <- pbmc_facs$counts dim(counts) ## ----nonzeros----------------------------------------------------------------- mean(counts > 0) ## ----fit-topic-model, eval=FALSE---------------------------------------------- # fit <- fit_topic_model(counts,k = 6) ## ----load-fit----------------------------------------------------------------- fit <- pbmc_facs$fit ## ----loadings-1--------------------------------------------------------------- dim(fit$L) ## ----loadings-2--------------------------------------------------------------- rows <- "GATATATGTCAGTG-1-b_cells" round(fit$L[rows,],digits = 3) ## ----loadings-3--------------------------------------------------------------- rows <- c("GACAGTACCTGTGA-1-memory_t", "TGAAGCACACAGCT-1-b_cells") round(fit$L[rows,],digits = 3) ## ----summary-subpop----------------------------------------------------------- samples <- pbmc_facs$samples summary(samples$subpop) ## ----structure-plot-with-celltype-labels, fig.width=7.5, fig.height=1.75, results="hide", message=FALSE---- topic_colors <- c("skyblue","forestgreen","darkmagenta","dodgerblue", "gold","darkorange") structure_plot(fit,colors = topic_colors,topics = 1:6,gap = 25, grouping = samples$subpop) ## ----test-data---------------------------------------------------------------- counts_test <- pbmc_facs$counts_test dim(counts_test) ## ----predict, results="hide", message=FALSE----------------------------------- Ltest <- predict(fit,counts_test) ## ----structure-plot-test, fig.width=7.5, fig.height=1.75, results="hide", message=FALSE---- fit_test <- list(F = fit$F,L = Ltest) class(fit_test) <- c("multinom_topic_model_fit","list") structure_plot(fit_test,topics = 1:6,colors = topic_colors,gap = 2, grouping = pbmc_facs$samples_test$subpop) ## ----factors-1---------------------------------------------------------------- dim(fit$F) ## ----factors-2---------------------------------------------------------------- genes <- pbmc_facs$genes rbind(fit$F[genes$symbol == "CD79B",], fit$F[genes$symbol == "CD79A",]) ## ----de-analysis-1, eval=FALSE------------------------------------------------ # set.seed(1) # de <- de_analysis(fit,counts,pseudocount = 0.1, # control = list(ns = 1e4,nc = 4)) ## ----de-analysis-2------------------------------------------------------------ pbmc_facs_file <- tempfile(fileext = ".RData") pbmc_facs_url <- "https://stephenslab.github.io/fastTopics/pbmc_facs.RData" download.file(pbmc_facs_url,pbmc_facs_file) load(pbmc_facs_file) de <- pbmc_facs$de ## ----diff-count-analysis-3---------------------------------------------------- rbind(de$postmean[genes$symbol == "CD79A",], de$postmean[genes$symbol == "CD79B",]) ## ----volcano-plot-bcells, fig.height=4, fig.width=4.5------------------------- volcano_plot(de,k = 4,labels = genes$symbol) ## ----volcano-plot-nk, fig.height=4, fig.width=4.5----------------------------- volcano_plot(de,k = 1,labels = genes$symbol,ymax = 100) ## ----volcano-plot-tcells, fig.height=4, fig.width=4.5------------------------- volcano_plot(de,k = 6,labels = genes$symbol,ymax = 100) ## ----session-info------------------------------------------------------------- sessionInfo()