Package ‘cbcTools’

October 20, 2025
Title Design and Analyze Choice-Based Conjoint Experiments
Version 0.7.1
Maintainer John Helveston <john.helveston@gmail.com>

Description
Design and evaluate choice-based conjoint survey experiments. Generate a variety of survey de-
signs, including random designs, frequency-based designs, and D-optimal designs, as well as " " la-
beled" designs (also known as " " alternative-specific designs"), designs with * “no choice" op-
tions, and designs with dominant alternatives removed. Conveniently inspect and compare de-
signs using a variety of metrics, including design balance, overlap, and D-error, and simu-
late choice data for a survey design either randomly or according to a utility model de-
fined by user-provided prior parameters. Conduct a power analysis for a given survey de-
sign by estimating the same model on different subsets of the data to simulate different sam-
ple sizes. Bayesian D-efficient designs using the 'cea’ and 'modfed’ methods are obtained us-
ing the 'idefix' package by Traets et al (2020) <doi:10.18637/jss.v096.103>. Choice simula-
tion and model estimation in power analyses are handled using the 'logitr' package by Helve-
ston (2023) <doi:10.18637/jss.v105.i10>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Depends R (>=3.5.0)

Suggests here, knitr, testthat, tibble

Imports fastDummies, ggplot2, idefix (>= 1.1.0), logitr (>=1.0.1),
parallel, randtoolbox, rlang, tools, stats, utils

URL https://github.com/jhelvy/cbcTools,
https://jhelvy.github.io/cbcTools/

BugReports https://github.com/jhelvy/cbcTools/issues
NeedsCompilation no

Author John Helveston [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0002-2657-9191>)

Repository CRAN
Date/Publication 2025-10-20 19:50:02 UTC

https://doi.org/10.18637/jss.v096.i03
https://doi.org/10.18637/jss.v105.i10
https://github.com/jhelvy/cbcTools
https://jhelvy.github.io/cbcTools/
https://github.com/jhelvy/cbcTools/issues
https://orcid.org/0000-0002-2657-9191

2 cbe_choices
Contents
cbe_choices e 2
cbc_compareo e e e e e e 3
cbe_decode e 5
cbe_design L e 5
cbe_encode . . . L. e 9
COC_INSPECt o e e e e e 11
CHC_POWET o o e 12
COC_PIIOTS .« . o o o v o e e e e e e e e e e e e 14
cbhe_profiles 18
CbC_TestriCt e 19
COT_SPEC « v v v e v e e e e e e e e e e e e e e e e e e 20
INE_SPEC .« v v o e e e e e e e e e 20
plot.cbc_power e e e 21
plot_compare_power e e 22
print.cbc_choices L e 22
print.cbc_comparisono e e 23
print.cbc_design oL e e 23
print.cbc_inspection Lo 24
Print.CbC_POWET o o e e e e e e e e 24
print.cbc_priors L e 25
print.cbc_profiles L. e 25
Tand_SPeC e e e e e 26
SUMMAry.ChC_POWET o ottt e e e e 26
Index 28
cbc_choices Simulate choices for a survey design
Description
Simulate choices for a survey design, either randomly or according to a utility model defined by
user-provided prior parameters. When priors are provided, choices are simulated using the same
probability computation framework as used in cbc_design() for consistency.
Usage
cbc_choices(design, priors = NULL)
Arguments
design A cbc_design object created by cbc_design()
priors A cbc_priors object created by cbc_priors(), or NULL (default) for random

choices.

cbc_compare 3

Value

Returns the input design with an additional choice column identifying the simulated choices.

Examples

library(cbcTools)

Create profiles and design
profiles <- cbc_profiles(
price = c(1, 2, 3),
type = c("A", "B", "C"),
quality = c("Low"”, "High")
)

design <- cbc_design(
profiles = profiles,
n_alts = 2,
n_q =4

)

Simulate random choices (default)
choices_random <- cbc_choices(design)

Create priors and simulate utility-based choices
priors <- cbc_priors(
profiles = profiles,

price = -0.1,
type = c(0.5, 0.2), # vs reference level
quality = 0.3

)

choices_utility <- cbc_choices(design, priors = priors)

cbc_compare Compare multiple choice experiment designs

Description

This function compares multiple CBC designs across key quality metrics including D-error, balance,
overlap, and structural characteristics. Useful for evaluating different design methods or parameter
settings.

Usage

cbc_compare(..., metrics = "all", sort_by = "d_error"”, ascending = NULL)

4 cbc_compare

Arguments
Any number of cbc_design objects to compare, separated by commas. Can be
named for clearer output (e.g., random = design1, stochastic = design2).
metrics Character vector specifying which metrics to compare. Options: "structure",
"efficiency”, "balance", "overlap", or "all" (default). Can specify multiple: c("efficiency”,
"balance")
sort_by Character. Metric to sort designs by. Options: "d_error" (default), "balance",
"overlap", "profiles_used", "generation_time", or "none"
ascending Logical. If TRUE, sort in ascending order (lower is better). If FALSE, sort in
descending order (higher is better). Default depends on metric.
Value

A cbc_comparison object containing comparison results, printed in a formatted table.

Examples

library(cbcTools)

Create profiles

profiles <- cbc_profiles(
price = c(1, 2, 3),
type = C("A”! ”B”' "C")Y
quality = c("Low”, "High")

)

Create different designs

design_random <- cbc_design(
profiles = profiles,
method = "random”,
n_alts = 2, n_q = 4

)

design_stochastic <- cbc_design(
profiles = profiles,
method = "stochastic”,
n_alts = 2, n_q = 4

)

Compare designs
cbc_compare(design_random, design_stochastic)

Named comparison with specific metrics
cbc_compare(
Random = design_random,
Stochastic = design_stochastic,
metrics = c("efficiency"”, "balance"),
sort_by = "d_error”

cbc_decode 5

cbc_decode Convert dummy-coded CBC data back to categorical format

Description

This function is depreciated. Use cbc_encode () instead

Usage
cbc_decode(data)

Arguments

data A cbc_design or cbc_choices object with dummy-coded categorical variables

Value

The input object with categorical variables restored to their original format

cbc_design Generate survey designs for choice experiments (Updated Implemen-
tation)

Description

This function creates experimental designs for choice-based conjoint experiments using multiple
design approaches including optimization and frequency-based methods.

Usage

cbc_design(
profiles,
method = "random”,
priors = NULL,
n_alts,
n_q,
n_resp = 100,
n_blocks = 1,

n_cores = NULL,

no_choice = FALSE,

label = NULL,

balance_by = NULL,

randomize_questions = TRUE,
randomize_alts = TRUE,

remove_dominant = FALSE,

dominance_types = c("total”, "partial”),

6 cbc_design

dominance_threshold = 0.8,
max_dominance_attempts = 50,
max_iter = 50,

n_start = 5,

include_probs = FALSE,
use_idefix = TRUE

)
Arguments

profiles A data frame of class cbc_profiles created using cbc_profiles()

method Choose the design method: "random", "shortcut”, "minoverlap", "balanced",
"stochastic", "modfed", or "cea". Defaults to "random"

priors A cbc_priors object created by cbc_priors(), or NULL for random/shortcut
designs

n_alts Number of alternatives per choice question

n_q Number of questions per respondent (or per block)

n_resp Number of respondents (for random/shortcut designs) or 1 (for optimized de-
signs that get repeated)

n_blocks Number of blocks in the design. Defaults to 1

n_cores Number of cores to use for parallel processing in the design search. Defaults to
NULL, in which case it is set to the number of available cores minus 1.

no_choice Include a "no choice" option? Defaults to FALSE

label The name of the variable to use in a "labeled" design. Defaults to NULL

balance_by Character vector of attribute names to balance sampling across. Ensures bal-

anced representation across levels of specified attributes. Only compatible with

non non

"random", "shortcut", "minoverlap", and "balanced" methods. Cannot be used
with labeled designs or D-optimal methods ("stochastic", "modfed", "cea"). De-
faults to NULL

randomize_questions
Randomize question order for each respondent? Defaults to TRUE (optimized
methods only)

randomize_alts Randomize alternative order within questions? Defaults to TRUE (optimized
methods only)
remove_dominant
Remove choice sets with dominant alternatives? Defaults to FALSE
dominance_types
Types of dominance to check: "total" and/or "partial"
dominance_threshold

Threshold for total dominance detection. Defaults to 0.8
max_dominance_attempts

Maximum attempts to replace dominant choice sets. Defaults to 50.
max_iter Maximum iterations for optimized designs. Defaults to 50

n_start Number of random starts for optimized designs. Defaults to 5

cbc_design 7

include_probs Include predicted probabilities in resulting design? Requires priors. Defaults
to FALSE

use_idefix If TRUE (the default), the idefix package will be used to find optimal designs,
which is faster. Only valid with "cea” and "modfed"” methods.

Details

Design Methods:
The method argument determines the design approach used:

* "random”: Creates designs by randomly sampling profiles for each respondent independently
* "shortcut”: Frequency-based greedy algorithm that balances attribute level usage

* "minoverlap”: Greedy algorithm that minimizes attribute overlap within choice sets

* "balanced"”: Greedy algorithm that maximizes overall attribute balance across the design

* "stochastic"”: Stochastic profile swapping with D-error optimization (first improvement
found)

* "modfed": Modified Fedorov algorithm with exhaustive profile swapping for D-error opti-
mization

n

* "cea": Coordinate Exchange Algorithm with attribute-by-attribute D-error optimization

Method Compatibility:
The table below summarizes method compatibility with design features:

Method No choice? Labeled designs? Restricted profiles? balance_by? Blocking? Interactions?
"random" Yes Yes Yes Yes No Yes
"shortcut" Yes Yes Yes Yes No No
"minoverlap" Yes Yes Yes Yes No No
"balanced" Yes Yes Yes Yes No No
"stochastic" Yes Yes Yes No Yes Yes
"modfed" Yes Yes Yes No Yes Yes
"cea" Yes Yes No No Yes Yes

Design Quality Assurance:
All methods ensure the following criteria are met:

1. No duplicate profiles within any choice set
2. No duplicate choice sets within any respondent

3. If remove_dominant = TRUE, choice sets with dominant alternatives are eliminated (opti-
mization methods only)

Balanced Sampling with balance_by:

The balance_by argument enables balanced sampling across specified attributes, solving the
problem of attribute-specific features that create imbalanced designs. For example, consider an
experiment on alternative vehicle powertrains with a "powertrain" attribute for gas and electric ve-
hicles. If you had an "electric_vehicle_range" attribute, it should be 0 for non-electric powertrains,
but using restrictions can lead to over-representation of electric vehicles. Using balance_by =
"powertrain” ensures that each choice question samples proportionally from gas and electric
powertrains, maintaining balance even when electric vehicles have additional attributes.

Domina
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Value

cbc_design

Multiple attributes can be balanced simultaneously using balance_by = c("attr1”, "attr2"),
which creates groups based on unique combinations of the specified attributes.

Method Details:

Random Method:
Creates designs where each respondent sees completely independent, randomly generated choice
sets.

Greedy Methods (shortcut, minoverlap, balanced):
These methods use frequency-based algorithms that make locally optimal choices:
 Shortcut: Balances attribute level usage within questions and across the overall design

* Minoverlap: Minimizes attribute overlap within choice sets while allowing some overlap
for balance

* Balanced: Maximizes overall attribute balance, prioritizing level distribution over overlap
reduction

These methods provide good level balance without requiring priors or D-error calculations and
offer fast execution suitable for large designs.
D-Error Optimization Methods (stochastic, modfed, cea):
These methods minimize D-error to create statistically efficient designs:
* Stochastic: Random profile sampling with first improvement acceptance
* Modfed: Exhaustive profile testing for best improvement (slower but thorough)

* CEA: Coordinate exchange testing attribute levels individually (requires full factorial pro-
files)

idefix Integration:

When use_idefix = TRUE (the default), the function leverages the highly optimized algorithms
from the idefix package for ’cea’ and modfed’ design generation methods. This can provide
significant speed improvements, especially for larger problems.

Key benefits of idefix integration:
* Faster optimization algorithms with C++ implementation
» Better handling of large candidate sets
* Optimized parallel processing
* Advanced blocking capabilities for multi-block designs

A cbc_design object containing the experimental design

Examples

library(cbcTools)

#

Create profiles for an apple choice experiment

profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3),
type = c("Fuji”, "Gala", "Honeycrisp"),
freshness = c("Poor”, "Average", "Excellent")

cbc_encode

Basic random design
design_random <- cbc_design(

profiles = profiles,
n_alts = 3,

n_q = 6,

n_resp = 100

)
head(design_random)

Inspect design
cbc_inspect(design_random)

Greedy design with balanced frequency
design_balanced <- cbc_design(
profiles = profiles,

method = "balanced”,
n_alts = 3,

n_q = 6,

n_resp = 100

Design with priors using D-optimal method
priors <- cbc_priors(
profiles = profiles,

price = -0.25,
type = c("Gala" = 0.5, "Honeycrisp” = 1.0),
freshness = c("Average” = 0.6, "Excellent” = 1.2)

)

design_optimal <- cbc_design(
profiles = profiles,

method = "stochastic”,
priors = priors,
n_alts = 3,

n_q =6,

n_resp = 100,

n_start = 3

Compare designs

cbc_compare(
"Random” = design_random,
"Balanced” = design_balanced,
"D-optimal” = design_optimal

cbc_encode Encode categorical variables in a CBC design

10 cbc_encode

Description

This function converts categorical variables between different coding schemes. Standard coding
keeps categorical variables as-is (factor or character). Dummy coding uses a reference category (all
zeros) with indicator variables for other levels. Effects coding uses -1 for the reference category to
ensure coefficients sum to zero.

Usage

cbc_encode(data, coding = NULL, ref_levels = NULL)

Arguments
data A cbc_design or cbc_choices object
coding Character. Type of encoding: "standard", "dummy", or "effects". If NULL
and ref_levels is NULL, data is returned unchanged. If NULL and ref_levels is
specified, the current encoding is maintained.
ref_levels Named list specifying reference levels for categorical variables. For example:
list(powertrain = "Gasoline", brand ="A"). If NULL (default), uses the
first level of each categorical variable as reference.
Value

The input object with specified encoding applied

Examples

library(cbcTools)

Create profiles with categorical variables
profiles <- cbc_profiles(
price = c(10, 20, 30),
quality = c("Low”, "Medium", "High"),
brand = c("A", "B")
)

Create design (defaults to standard coding)
design <- cbc_design(

profiles = profiles,

n_alts = 2,

n_q =4
)

Convert to dummy coding
design_dummy <- cbc_encode(design, coding = "dummy")
head(design_dummy)

Convert to effects coding
design_effects <- cbc_encode(design, coding = "effects"”)
head(design_effects)

cbc_inspect 11

Convert back to standard
design_standard <- cbc_encode(design_dummy, coding = "standard")
head(design_standard)

Custom reference levels with dummy coding
design_dummy2 <- cbc_encode(

design,
coding = "dummy”,
ref_levels = list(quality = "Medium”, brand = "B")

)
head(design_dummy?2)

Update reference levels without changing encoding
design_updated <- cbc_encode(
design_dummy,
ref_levels = list(quality = "High")
)
head(design_updated)

cbc_inspect Comprehensive design quality inspection

Description

This function provides detailed inspection of choice experiment designs across multiple dimen-
sions including design structure, efficiency metrics, attribute balance, overlap patterns, and variable

encoding.
Usage
cbc_inspect(design, sections = "all"”, verbose = FALSE)
Arguments
design A cbc_design or cbc_choices object created by cbc_design()
sections Character vector specifying which sections to show. Options: "structure", "effi-
ciency", "balance", "overlap”, "encoding”, or "all" (default). Can specify multi-
ple: c("balance”, "overlap")
verbose Logical. If TRUE, shows additional technical details. If FALSE (default), shows
simplified output.
Value

A cbc_inspection object containing the inspection results

12

Examples

library(cbcTools)

Create profiles and design
profiles <- cbc_profiles(
price = c(1, 2, 3),
type = c("A", "B", "C"),
quality = c("Low”, "High")
)

design <- cbc_design(
profiles = profiles,
n_alts = 2,
n_q =4

)

Inspect all sections (default) - prints automatically
cbc_inspect(design)

Store results for later use
inspection <- cbc_inspect(design, sections = "balance")
inspection # prints the same output

Verbose output with technical details
cbc_inspect(design, verbose = TRUE)

cbc_power

cbc_power Estimate power analysis for choice experiment designs

Description

This function estimates the same model multiple times using different sample sizes to assess statis-
tical power. It returns both the estimated models and a summary of coefficient estimates, standard

errors, and power statistics.

Usage

cbc_power(
data,
outcome = "choice”,
obsID = "obsID",
pars = NULL,
randPars = NULL,
n_breaks = 10,
n_qg = NULL,
panelID = NULL,
alpha = 0.05,
return_models = FALSE,

cbc_power

13

n_cores = NULL,

Arguments

data

outcome

obsID

pars

randPars

n_breaks

n_q
panellD

alpha
return_models

n_cores

Value

A data frame containing choice data. Can be a cbc_choices object or any data
frame with the required columns.

Name of the outcome variable column (1 for chosen, O for not). Defaults to
"choice".

Name of the observation ID column. Defaults to "obsID".

Names of the parameters to estimate. If NULL (default), will auto-detect from
column names for cbc_choices objects.

Named vector of random parameters and their distributions ('n’ for normal, ’In’
for log-normal). Defaults to NULL.

Number of sample size groups to test. Defaults to 10.

Number of questions per respondent. Auto-detected for cbc_choices objects if
not specified.

Name of the panel ID column for panel data. Auto-detected as "respID" for
multi-respondent cbc_choices objects.

Significance level for power calculations. Defaults to 0.05.
If TRUE, includes full model objects in returned list. Defaults to FALSE.

Number of cores for parallel processing. Defaults to parallel: :detectCores()
- 1.

Additional arguments passed to logitr::logitr().

A cbc_power object containing:

* power_summary: Data frame with sample sizes, coefficients, estimates, standard errors, t-

statistics, and

power

e models: List of estimated models (if return_models = TRUE)

* sample_sizes: Vector of sample sizes tested

¢ n_breaks: Number of breaks used

* alpha: Significance level used

Examples

library(cbcTools)

Create profiles and design
profiles <- cbc_profiles(

price = c(1, 2,

3)’

type = c("A", "B", "C"),

14 cbc_priors

quality = c("Low”, "High")
)

design <- cbc_design(profiles, n_alts = 2, n_q = 6)

Simulate choices
priors <- cbc_priors(profiles, price = -0.1, type = c(0.5, 0.2), quality = 0.3)
choices <- cbc_choices(design, priors)

Run power analysis
power_results <- cbc_power(choices, n_breaks = 8)

View results
print(power_results)
plot(power_results)

cbc_priors Create prior specifications for CBC models

Description

Creates a standardized prior specification object for use in CBC analysis functions like cbc_choices()
and cbc_design(). Supports both fixed and random parameters, with flexible specification of cat-
egorical variable levels and interaction terms between fixed parameters.

Usage

cbc_priors(
profiles,
no_choice = NULL,
n_draws = 100,
draw_type = "halton”,
interactions = NULL,

)
Arguments
profiles A data frame of profiles created by cbc_profiles()
no_choice Prior specification for no-choice alternative. Can be:
* A single numeric value for fixed no-choice utility
* A rand_spec() object for random no-choice utility
* NULL if no no-choice option (default)
n_draws Number of draws for DB-error calculation if using Bayesian priors. Defaults to
100
draw_type Specify the draw type as a character: "halton” (the default) or "sobol” (rec-

ommended for models with more than 5 random parameters).

cbce_priors 15

interactions A list of interaction specifications created by int_spec(). Only interactions
between fixed (non-random) parameters are supported. Each interaction must
specify the appropriate level(s) for categorical variables. Defaults to NULL (no
interactions).

Named arguments specifying priors for each attribute:
* For fixed parameters:
— Continuous variables: provide a single numeric value
— Categorical variables: provide either:

% An unnamed vector of values one less than the number of levels
(dummy coding)

* A named vector mapping levels to coefficients (remaining level be-
comes reference)

* For random parameters: use rand_spec() to specify distribution, parame-
ters, and correlations

Details

Fixed vs Random Parameters:

Fixed parameters assume all respondents have the same preference coefficients. Specify these
as simple numeric values.

Random parameters assume preference coefficients vary across respondents according to a spec-
ified distribution. Use rand_spec() to define the distribution type, mean, and standard deviation.

Categorical Variable Specification:
For categorical variables, you can specify priors in two ways:
1. Unnamed vector: Provide coefficients for all levels except the first (which becomes the
reference level). Order matters and should match the natural order of levels.

2. Named vector: Explicitly map coefficient values to specific levels. Any level not specified
becomes the reference level.

Interaction Terms:

Use the interactions parameter with int_spec() to include interaction effects between at-
tributes. Only interactions between fixed parameters are supported. For categorical variables
involved in interactions, you must specify the relevant levels.

No-Choice Options:

When including a no-choice alternative, provide a no_choice parameter. This can be either a
fixed numeric value or a rand_spec() for random no-choice utility.

Value

A structured prior specification object including parameter draws for random coefficients and inter-
action terms. This object contains:

* pars: Vector of mean parameter values

* par_draws: Matrix of parameter draws (if random parameters specified)

* correlation: Correlation matrix for random parameters (if applicable)

16 cbc_priors

* interactions: List of interaction specifications
e attrs: Detailed attribute information

* Additional metadata for validation and compatibility checking

Examples

library(cbcTools)

Create profiles for examples

profiles <- cbc_profiles(
price = c(1, 1.5, 2, 2.5, 3),
type = c('Fuji', 'Gala', 'Honeycrisp'),
freshness = c('Poor', 'Average', 'Excellent')

)

Example 1: Simple fixed priors

priors_fixed <- cbc_priors(
profiles = profiles,
price = -0.25, # Negative = prefer lower prices
type = ¢c(0.5, 1.0), # "Fuji" is reference level
freshness = c(0.6, 1.2) # "Poor"” reference level

)

Example 2: Named categorical priors (more explicit)
priors_named <- cbc_priors(
profiles = profiles,
price = -0.25,
type = c("Gala" = 0.5, "Honeycrisp” = 1.0), # "Fuji" is reference
freshness = c("Average" = 0.6, "Excellent” = 1.2) # "Poor"” is reference

)

Example 3: Random parameters - normal distributions for "price” and "freshness”
priors_random <- cbc_priors(

profiles = profiles,

price = rand_spec(

dist = "n",
mean = -0.25,
sd = 0.1

),

type = ¢c(0.5, 1.0),
freshness = rand_spec(
dist = "n",
mean = c(0.6, 1.2),
sd = c(0.1, 0.1)
)
)

Example 4: Correlated random parameters
priors_correlated <- cbc_priors(
profiles = profiles,
price = rand_spec(
dist = "n",

cbce_priors

mean = -0.1,
sd = 0.05,
correlations = list(
cor_spec(
with = "type”,
with_level = "Honeycrisp”,
value = 0.3
)
)
),
type = rand_spec(
dist = "n",
mean = c("Gala” = @.1, "Honeycrisp” = 0.2),
sd = c("Gala" = 0.05, "Honeycrisp” = 0.1)
),
freshness = c(0.1, 0.2)

Example 5: With interaction terms
priors_interactions <- cbc_priors(
profiles = profiles,
price = -0.25,
type = c("Fuji" = 0.5, "Honeycrisp” = 1.0),
freshness = c("Average” = 0.6, "Excellent” = 1.2),
interactions = list(
Price sensitivity varies by apple type
int_spec(
between = c("price”, "type"),
with_level = "Fuji”,
value = 0.1

),
int_spec(
between = c("price”, "type"),
with_level = "Honeycrisp”,
value = 0.2
),
Type preferences vary by freshness
int_spec(
between = c("type", "freshness"),

level = "Honeycrisp”,
with_level = "Excellent”,
value = 0.3

Example 6: Including no-choice option
priors_nochoice_fixed <- cbc_priors(
profiles = profiles,
price = -0.25,
type = c(0.5, 1.0),
freshness = c(0.6, 1.2),
no_choice = -0.5 # Negative values make no-choice less attractive

18 cbc_profiles

)

Example 7: Random no-choice
priors_nochoice_random <- cbc_priors(
profiles = profiles,
price = -0.25,
type = c(0.5, 1.0),
freshness = c(0.6, 1.2),
no_choice = rand_spec(dist = "n", mean = -0.5, sd = 0.2)

View the priors
priors_fixed
priors_random

cbc_profiles Make a data frame of all combinations of attribute levels

Description

This function creates a data frame of of all possible combinations of attribute levels.

Usage

cbc_profiles(...)

Arguments

Any number of named vectors defining each attribute and their levels, e.g. price
=c(1, 2, 3). Separate each vector by a comma.
Value

A data frame of all possible combinations of attribute levels with class cbc_profiles.

Examples

library(cbcTools)

Generate all profiles for a simple conjoint experiment about apples
profiles <- cbc_profiles(

price =c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c¢("Fuji"”, "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

cbc_restrict 19

cbc_restrict Obtain a restricted set of profiles

Description

This function returns a restricted set of profiles as a data frame.

Usage
cbc_restrict(profiles, ...)
Arguments
profiles A data frame of class cbc_profiles created using the cbc_profiles() func-
tion.
Any number of restricted pairs of attribute levels, defined as pairs of logical
expressions separated by commas. For example, the restriction type == 'Fuji’
& freshness == 'Poor' will eliminate profiles such that "Fuji"” type apples
will never be shown with "Poor” freshness.
Value

A restricted set of profiles as a data frame with class cbc_profiles.
Examples
library(cbcTools)

Generate all profiles for a simple conjoint experiment about apples
profiles <- cbc_profiles(

price =c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c¢("Fuji"”, "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Obtain a restricted subset of profiles based on pairs of logical
expressions. The example below contains the following restrictions:

H+

- “"Gala"" apples will not be shown with the prices “1.57, “2.57, & “3.57.
- “"Honeycrisp”~ apples will not be shown with prices less than ~2°.
- “"Honeycrisp”™~ apples will not be shown with the ~"Poor"™ freshness.

PTRS

- “"Fuji"" apples will not be shown with the ~"Excellent”~ freshness.

ETgE ST

profiles_restricted <- chc_restrict(

profiles,

type == "Gala" & price %in% c(1.5, 2.5, 3.5),
type == "Honeycrisp” & price > 2,

type == "Honeycrisp” & freshness == "Poor"”,
type == "Fuji" & freshness == "Excellent”

20

int_spec

cor_spec Create a correlation specification for random parameters

Description

Create a correlation specification for random parameters

Usage

cor_spec(with, value, level = NULL, with_level = NULL)

Arguments
with Character. Name of attribute to correlate with
value Numeric. Correlation value between -1 and 1
level Character. For categorical variables, specific level to correlate from
with_level Character. For categorical variables, specific level to correlate with
Value

A correlation specification list

int_spec Create an interaction specification for fixed parameters

Description

Create an interaction specification for fixed parameters

Usage

int_spec(between, value, level = NULL, with_level = NULL)

Arguments
between Character vector of length 2 specifying the two attributes to interact
value Numeric. Interaction coefficient value
level Character. For categorical variables, specific level of first attribute
with_level Character. For categorical variables, specific level of second attribute
Value

An interaction specification list

plot.cbc_power 21

Examples

Continuous * continuous interaction
int_spec(between = c("price”, "weight"), value = 0.1)

Continuous * categorical interactions (must specify categorical level)
int_spec(between = c("price”, "type"), with_level = "Fuji"”, value = 0.15)
int_spec(between = c("price”, "type"), with_level = "Gala"”, value = 0.05)

Categorical * categorical interactions (must specify both levels)
int_spec(between = c("type"”, "freshness"),
level = "Fuji”, with_level = "Poor"”, value = -0.2)

plot.cbc_power Plot method for cbc_power objects

Description

Plot method for cbc_power objects

Usage
S3 method for class 'cbc_power'
plot(x, type = "power", power_threshold = 0.8, ...)
Arguments
X A cbc_power object
type Type of plot: "power" for power curves or "se" for standard error curves

power_threshold
Power threshold for horizontal reference line (only for power plots). Defaults to
0.8

Additional arguments passed to ggplot

Value

Returns a ggplot2 object (class: "gg", "ggplot") that can be further customized, saved, or displayed.
The plot visualizes either statistical power curves or standard error curves across different sample
sizes for each parameter in the power analysis, with appropriate axis labels, legends, and reference
lines.

22 print.cbc_choices

plot_compare_power Compare power across multiple designs

Description

Compare power across multiple designs

Usage
plot_compare_power(..., type = "power"”, power_threshold = 0.8)
Arguments
Named cbc_power objects to compare
type Type of plot: "power" for power curves or "se" for standard error curves

power_threshold

Power threshold for horizontal reference line (only for power plots). Defaults to
0.8

Value

A ggplot object comparing power curves

print.cbc_choices Print method for cbc_choices objects

Description

Print method for cbc_choices objects

Usage
S3 method for class 'cbc_choices'
print(x, ...)
Arguments
X A cbc_choices object
Additional arguments passed to print
Value

Returns the input cbc_choices object invisibly (class: c¢("cbc_choices", "data.frame")). This func-
tion is called for its side effect of printing a formatted summary of the CBC choice data to the
console, including choice task structure, simulation details, choice rates by alternative, and a pre-
view of the choice data.

print.cbc_comparison 23

print.cbc_comparison Print method for cbc_comparison objects

Description

Print method for cbc_comparison objects

Usage
S3 method for class 'cbc_comparison'
print(x, ...)
Arguments
X A cbc_comparison object
Additional arguments passed to print
Value

Returns the input cbc_comparison object invisibly (class: c¢("cbc_comparison”, "list")). This func-
tion is called for its side effect of printing a formatted comparison table of multiple CBC designs to
the console, including design metrics, performance rankings, and interpretation guidelines.

print.cbc_design Concise print method for cbc_design objects

Description

Concise print method for cbc_design objects

Usage
S3 method for class 'cbc_design'
print(x, ...)
Arguments
X A cbc_design object
Additional arguments passed to print
Value

Returns the input cbc_design object invisibly (class: c("cbc_design", "data.frame")). This function
is called for its side effect of printing a concise summary of the CBC design to the console, including
design method, structure, D-error metrics, profile usage, and a preview of the design data.

24 print.cbc_power

print.cbc_inspection Print method for cbc_inspection objects

Description

Print method for cbc_inspection objects

Usage
S3 method for class 'cbc_inspection'’
print(x, ...)
Arguments
X A cbc_inspection object
Additional arguments passed to print
Value

Returns the input cbc_inspection object invisibly (class: c("cbc_inspection”, "list")). This func-
tion is called for its side effect of printing a comprehensive inspection report of the CBC design
to the console, including sections on design structure, efficiency metrics, attribute balance, overlap
analysis, and variable encoding.

print.cbc_power Print method for cbc_power objects

Description

Print method for cbc_power objects

Usage
S3 method for class 'cbc_power'
print(x, ...)
Arguments
X A cbc_power object
Additional arguments passed to print
Value

Returns the input cbc_power object invisibly (class: c¢("cbc_power", "list")). This function is called
for its side effect of printing a formatted summary of the CBC power analysis results to the console,
including sample size ranges, significance levels, parameter summaries, and power estimates across
different sample sizes.

print.cbc_priors 25

print.cbc_priors Print method for cbc_priors objects

Description

Print method for cbc_priors objects

Usage
S3 method for class 'cbc_priors'
print(x, ...)
Arguments
X A cbc_priors object
Additional arguments passed to print
Value

Returns the input cbc_priors object invisibly (class: c("cbc_priors"”, "list")). This function is
called for its side effect of printing a formatted summary of the CBC priors specifications to the
console, including parameter types, distributions, means, standard deviations, and any correlation
structures.

print.cbc_profiles Print method for cbc_profiles objects

Description

Print method for cbc_profiles objects

Usage
S3 method for class 'chc_profiles'
print(x, ...)
Arguments
X A cbc_profiles object
Additional arguments passed to print
Value

Returns the input cbc_profiles object invisibly (class: c("cbc_profiles", "data.frame")). This
function is called for its side effect of printing a formatted summary of the CBC profiles object to
the console, including attribute information, profile counts, any applied restrictions, and a preview
of the data.

26 summary.cbc_power

rand_spec Create a random parameter specification

Description

Create a random parameter specification

Usage
rand_spec(dist = "n", mean, sd, correlations = NULL)
Arguments
dist Character. Distribution type: "n" for normal, "In" for log-normal, or "cn" for
censored normal
mean Numeric. Mean parameter value(s)
sd Numeric. Standard deviation parameter value(s)

correlations List of correlation specifications created by cor_spec()

Value

A random parameter specification list

summary . cbc_power Summary method for cbc_power objects

Description

Summary method for cbc_power objects

Usage

S3 method for class 'cbc_power'
summary(object, power_threshold = 0.8, ...)

Arguments

object A cbc_power object
power_threshold
Minimum power threshold to report sample size requirements

Additional arguments

summary.cbc_power 27

Value

Returns the input cbc_power object invisibly (class: c("cbc_power", "list")). This function is called
for its side effect of printing a detailed summary to the console showing sample size requirements
for achieving specified power thresholds for each parameter, including exact power levels and stan-
dard errors at the required sample sizes.

Index

cbc_choices, 2
cbc_compare, 3
cbc_decode, 5
cbc_design, 5
cbc_encode, 9
cbc_inspect, 11
cbc_power, 12
cbc_priors, 14
cbc_profiles, 18
cbc_restrict, 19
cor_spec, 20

int_spec, 20

plot.cbc_power, 21
plot_compare_power, 22
print.cbc_choices, 22
print.cbc_comparison, 23
print.cbc_design, 23
print.cbc_inspection, 24
print.cbc_power, 24
print.cbc_priors, 25
print.cbc_profiles, 25

rand_spec, 26

summary . cbc_power, 26

28

	cbc_choices
	cbc_compare
	cbc_decode
	cbc_design
	cbc_encode
	cbc_inspect
	cbc_power
	cbc_priors
	cbc_profiles
	cbc_restrict
	cor_spec
	int_spec
	plot.cbc_power
	plot_compare_power
	print.cbc_choices
	print.cbc_comparison
	print.cbc_design
	print.cbc_inspection
	print.cbc_power
	print.cbc_priors
	print.cbc_profiles
	rand_spec
	summary.cbc_power
	Index

