The U.S. Federal Reserve quarterly model in R
with bimets

Andrea Luciani
Bank of Italy*

Abstract

The US Federal Reserve’s econometric model for the US economy (i.e., FRB/US) is
publicly available at federalreserve.gov. The website states, "FRB/US is a large-scale
estimated general equilibrium model of the US economy that was developed at the Federal
Reserve Board, where it has been in use since 1996 for forecasting, analysis of policy
options, and research projects.”

FRB/US is a quarterly model with hundreds of equations and variables. The model
definition and time series data are available for download on the Federal Reserve website,
as is the source code, which allows users to perform several econometric exercises.

However, the Federal Reserve publicly distributes source codes only for EViews® and
python.

bimets is a software framework developed by using R language and designed for time
series analysis and econometric modeling. In these pages, we will show how to use bimets
capabilities to load the FRB/US model and perform in R the same econometric exercises
provided by the Federal Reserve. For each exercise, we will compare the numerical results
in R and python.

Keywords: R, bimets, system of simultaneous equations, Federal Reserve quarterly model,
FRB/US, model simulation, forecasting, endogenous targeting, stochastic simulation, rational
expectations.

1. The FRB/US model

The Federal Reserve website states, "FRB/US is a large-scale estimated general equilibrium
model of the US economy that was developed at the Federal Reserve Board, where it has been
in use since 1996 for forecasting, analysis of policy options, and research projects. ... Com-
pared with DSGE models, however, FRB/US applies optimization theory more flexibly, which
permits its equations to better capture patterns in historical data and facilitates modeling the
economy in greater detail. ... A distinctive feature of FRB/US is its ability to switch between

*Disclaimer: The views and opinions expressed in these pages are those of the author and do not necessarily
reflect the official policy or position of the Bank of Italy. Examples of analysis performed within these pages
are only examples. They should not be utilized in real-world analytic products as they are based only on very
limited and dated open source information. Assumptions made within the analysis are not reflective of the
position of the Bank of Italy.

https://www.federalreserve.gov/econres/us-models-about.htm

2 The U.S. Federal Reserve quarterly model in R with bimets

alternative assumptions about how economic agents form expectations. Under the VAR-based
option, expectations are derived from the average historical dynamics of the economy as man-
ifested in the predictions of estimated VAR models. Under model-consistent (MC), agents
are assumed to form accurate expectations of future outcomes as generated by simulations of

FRB/US itself."

FRB/US is a quarterly model, and counts 284 equations and 365 variables (Feb. 2024 version).
The XML model definition is available for download on the Federal Reserve website, and
contains, for each endogenous variable, the following information: the variable name, the
variable definition with a short description, the economic sector the variable belongs to, the
related equation in both EViews® and python format, coefficients and exogenous variables
involved in the equation.

64 endogenous variables are marked as stochastic and, during the stochastic simulation exer-
cise (see section 4.5), will be transformed by applying sequences of shocks as drawn randomly
from their historical residuals.

14 endogenous variables belong to the MCE group (i.e., Model-Consistent Expectations) and
have an alternative equation that contains forward-looking references (see section 4.2).

Finally, at the end of the XML model definition, users can find additional information on
economic sectors and exogenous variables involved in the model definition.

2. The pyfrbus python package

pyfrbus is a python-based simulation platform for the Federal Reserve Board’s FRB/US model,
which depends on the SuiteSparse code, a widely used set of sparse-matrix-related optimized
algorithms.

As stated in the reference manual, to load the model in python, create a new Frbus object
using the constructor, pointing it at the provided model XML:

from pyfrbus.frbus import Frbus

frbus = Frbus("model.xml")

The equations of the model are loaded from the XML file’s python_equation tags, and each
equation is modified by adding a tracking residual named with the suffix _trac.

By default, the backward-looking VAR expectations version of FRB/US is loaded. The con-
structor takes an optional argument mce which allows users to select which version of the
forward-looking rational expectations model to load. Valid MCE types are all, mcap, wp,
and mcap+wp.

The CSV FRB/US dataset LONGBASE. TXT can be loaded from the data-only-package with the
load_data function:

from pyfrbus.load_data import load_data
data = load_data("LONGBASE.TXT")

Andrea Luciani

The model requires that series exist in the input pandas Datakrame for all endogenous and
exogenous variables. From here, we can initialize the tracking residuals for the model using
the init_trac function:

start = "2019Q4"
end = "2030Q4"

baseline_with_adds = frbus.init_trac(start, end, data)

init_trac returns a new DataFrame where the _trac variables have shocks filled in such
that the model will solve to the specified baseline values.

Model simulations are run by calling the solve function (see section 4.1):
sim = frbus.solve(start, end, baseline_with_adds)

This gives a new DataFrame where the series for endogenous variables take on values consis-
tent with the exogenous series, lags, and model equations over the specified period.

The solver will automatically detect whether the model is forward-looking and will switch to
an algorithm suited for solving such models (see section 4.2):

MCE alert!

frbus = Frbus("model.xml", mce="mcap+wp")

Returns a solution with forward-looking expectations

sim = frbus.solve(start, end, baseline_with_adds)

The mcontrol algorithm is a trajectory-matching control procedure (i.e., endogenous target-
ing) which adjusts the value of instrument variables such that target variables are forced to
specified trajectories, as mediated by the model’s dynamics.

mcontrol takes three lists of model variables as input: targ is the list of endogenous model
variables to be forced; traj is the list of trajectories to force targ variables to; and inst is
the list of exogenous model variables that will be moved freely to control the targ variables
(see section 4.4).

The stochsim procedure performs a stochastic simulation by applying sequences of shocks
to the model, drawn randomly from historical residuals. The procedure begins by randomly
drawing sequences of quarters from the residual period. In each quarter of a single replication,
all stochastic variables (specified with a stochastic_type tag in the model) have a shock
applied from a particular quarter in the residual period (see section 4.5).

3. Moving to R

bimets is a software framework developed by using R language and designed for time series
analysis and econometric modeling. More details about the package are available at the
"Getting started with bimets" vignette. FRB/US model definition has been translated into
a bimets compliant syntax and is available to R users as the FRB__MODEL dataset, which
contains the textual definition of the model, using bimets MDL compliant syntax, i.e., Model
Description Language:

https://cran.r-project.org/package=bimets/vignettes/bimets.pdf

4 The U.S. Federal Reserve quarterly model in R with bimets

R> #load bimets
R> library(bimets)

R> #load FRB/US MDL definition
R> data(FRB__MODEL)

R> #print first equations in model definition
R> cat(substring(FRB__MODEL,1,1615))

MODEL
$DOWNLOADED FROM federalreserve.gov AND CONVERTED TO BIMETS MDL IN Feb, 2024
$FRB/US is a large-scale estimated general equilibrium model of the U.S. economy

$that was developed at the Federal Reserve Board, where it has been in use since 1996
$for forecasting, analysis of policy options, and research projects.

$Financial Sector

$Monetary policy indicator for both thresholds
$DMPTMAX equals one when either the unemployment threshold or
$the inflation threshold is breached.
IDENTITY> dmptmax

IF> dmptlur>=dmptpi

EQ> dmptmax=

dmptlur

IDENTITY> dmptmax

IF> dmptlur<dmptpi

EQ> dmptmax=

dmptpi

$Federal funds rate, first diff
IDENTITY> delrff

EQ> delrff=

TSDELTA (rff)

$Financial Sector

$Monetary policy indicator for unemployment threshold

$DMPTLUR equals zero when the unemployment rate is above its
$threshold (LURTRSH) one when it is below. A logistic function
$smoothes the transition, improving solution convergence properties.
IDENTITY> dmptlur

EQ> dmptlur=

1/ (1+EXP (25% (lur-lurtrsh)))

$ ____________ _ _ _——

$Financial Sector

$Monetary policy indicator for inflation threshold

$DMPTPI equals zero when expected inflation is below its threshold
$and one when it is above. A logistic function smoothes the
$transition, improving solution convergence properties.

IDENTITY> dmptpi

EQ> dmptpi=
1/ (1+EXP (-25% (zpic58-pitrsh)))

bimets users can save the model definition into a text file, then inspect and modify it in
RStudio or in any other text editor, by using the following commands:

R>
R>
R>
R>
R>
R>

The bimets dataset FRB__MCAP__WP__MODEL contains the MCE version of the FRB/US model,
wherein, as said before, 14 equations have been modified accounting for rational expectations

#define file path
modelDefinitionFile <- file('FRB__MODEL.txt')
#save FRB definition in the text file
writeLines (FRB__MODEL,modelDefinitionFile)
#close connection

close(modelDefinitionFile)

(see section 4.2).

Original FRB/US time series are provided in a CSV text file containing quarterly data from
1962 up to 2173. These data are available to R users in the LONGBASE dataset, which includes

Andrea Luciani

the list of all endogenous and exogenous time series.

R> #load FRB/US model data

R> data(LONGBASE)

R> #print GDP in 2022-2024
R> TABIT(LONGBASE$xgdp,TSRANGE = c(2022,1,2024,1))

FRB/US MDL definition can be translated into a bimets model by using the LOAD_MODEL

Date, Prd.

2022
2022
2022
2022
2023
2023
2023
2023
2024

Q1,
Q2,
Q3,
Q4,
Q1,
Q2,
Q3,
Q4,
Q1,

D WP D WN e

>

LONGBASE$xgdp

21738.
21708.
21851.
21989.
22112.
22225.
22490.
22561.
22655.

function, as usual:

87
16
13
98
33
35
69
72
04

R> #create the bimets model
R> model <- LOAD_MODEL (modelText = FRB__MODEL)

Analyzing behaviorals...
Analyzing identities...
Optimizing...
Loaded model "FRB__MODEL":

0 behaviorals
284 identities

0 coefficients
...LOAD MODEL OK

6 The U.S. Federal Reserve quarterly model in R with bimets

R> #print a sample of endogenous variables
R> model$vendog(1:10]

[1] "dmptmax" "delrff" "dmptlur" "dmptpi" lldmptrll "dpadj n lldpgapll
[8] llebfill "ebfin" "eC"

R> #print a sample of exogenous variables
R> model$vexog[1:10]

[1] "lurtrsh" "pitrsh" "d483" "pkir" "ddockm" "uemot" "emptrt"
[8] "ddockx" ‘"ufcbr" "rfnict"

R> #print GDP equation
R> model$identities$xgdp$eqFull

[1] "TSDELTALOG(xgdp)=(0.9985)*TSDELTALOG (xfs)+(0.6264)*TSDELTALOG (ki)+(-0.6249)*TSDELTALOG (TSLAG(ki)) ;"

4. The econometric excercises

4.1. Dynamic simulation in a monetary policy shock

The first econometric exercise proposed by the Federal Reserve is a dynamic simulation of the
FRB/US model under a monetary policy shock. The simulation is operated from 2040-Q1 to
2045-Q4, after the rffintay time series, defined as "Value of eff. federal funds rate given by
the inertial Taylor rule’, is shocked by 100 base points in 2040-Q1.

python code follows:
import pandas

from pyfrbus.frbus import Frbus
from pyfrbus.sim_lib import sim_plot

from pyfrbus.load_data import load_data

Load data
data = load_data("LONGBASE.TXT")

Load model
frbus = Frbus("model.xml")

Specify dates
start = pandas.Period("2040Q1")
end = start + 23

Standard configuration, use surplus ratio targeting
data.loc[start:end, "dfpdbt"] = 0
1

data.loc[start:end, "dfpsrp"]

#

Andrea Luciani

Solve to baseline with adds

with_adds = frbus.init_trac(start, end, data)

#

100 bp monetary policy shock

with_adds.loc[start, "rffintay_aerr"] += 1

#

Solve

sim = frbus.solve(start, end, with_adds)

View results

sim_plot(with_adds, sim, start, end)

R

R>

R>
R>

R>
R>
R>

An
An

version of the same exercise follows:

library(bimets)

Load data
data (LONGBASE)

Load model
data (FRB__MODEL)
model <- LOAD_MODEL (modelText = FRB__MODEL)

alyzing behaviorals...
alyzing identities...

Optimizing...
Loaded model "FRB__MODEL":

R>
R>

R>
R>
R>

R>
R>
R>

R>
R>

R>
R>
R>

0 behaviorals
284 identities

0 coefficients
.LOAD MODEL OK

Load data into model
model <- LOAD_MODEL_DATA (model, LONGBASE, quietly=TRUE)

Specify dates
start <- c¢(2040,1)
end <- normalizeYP(start+c(0,23),4)

Standard configuration, use surplus ratio targeting
model$modelData$dfpdbt [[start,end]] <- 0
model$modelData$dfpsrp[[start,end]] <- 1

Solve to baseline with adds

model <- SIMULATE (model,
simType='RESCHECK',
TSRANGE=c (start,end),
ZeroErrorAC = TRUE,
quietly=TRUE)

100 bp monetary policy shock
trac <- model$ConstantAdjustmentRESCHECK
trac$rffintay[[start]] <- trac$rffintay[[start]]+1

8 The U.S. Federal Reserve quarterly model in R with bimets

R> # Solve

R> model <- SIMULATE(model,
simAlgo = 'NEWTON',
TSRANGE = c(start,end),
ConstantAdjustment = trac,

BackFill = 12,
quietly=TRUE)

R> # View results

R> sim_plot(model,c(start,end),1)

python code produces the following charts:

Real GDP Growth, Quarterly Annualized

Unemployment Rate

g
19 J . 4.35
L
I
184 — ,’J 4.30
i
1 f
£ 1.7 A \ ! £ 4.25 A
g] g g
b2 V] b2
1.6 N 3 4.20 -
\ I
1 !
15 \ H 4.15
kf —— Baseline
4 I .
Lé y -=- Sim 4.10 1

20380Q3 204003 2042Q3 2044Q3

——

I
I
!
I
h \
[
!

I
I
I
]
] \
]
I
I
I

Core PCE Inflation, Quarterly Annualized

203803 204003 204203 2044Q3

Federal Funds Rate

2.000 + .
‘l 3.4
1.995 A \
1
\ Fo et
1.990 - 1 %2
i
\
4 3.0 A
= 1.985 i‘ o
g 1 g
e i [=
g 1.980 'I. g 2.8 A
\ .
1.975 \ ,’, 2
] ”~
1.970 ". b
\\ I 2.4 A
1.965 - I o
T T T T 2.24 T
2038Q3 204003 204203 2044Q3 203803

204003 2042Q3 204403

Andrea Luciani 9

On the other hand, bimets code produces very similar results:

Real GDP Growth, Quarterly Annualized Unemployment Rate
2.0
1.9 4.35
18 -+ \ 430 ,
g 1.7 @ 4.25 !
IS | < '
£ 16 & 420
1.5 \ I/, 4.15 -
1.4 4 4.10 -
TTTTT T T I T IT T T T T T T T T I 71T TTTTT T T I T IT T T T T T T T T I 71T
2038 Q3 2040 Q4 2043Q1 2045 Q2 2038 Q3 2040 Q4 2043Q1 2045 Q2
Core PCE Inflation, Quarterly Annualized Federal Funds Rate
3.6
2.00 |
3.4 !
1.99 32 1
g | £ 3.0 o '
@ \] h
o \ o '
3 1.98 ' s 2.8 .
o “ o '
2.6
197 7 2.4
2.2 B
TTTTT T T I T IT T T T T T T T T I 71T TTTTT T T I T IT T T T T T T T T I 71T
2038 Q3 2040 Q4 2043Q1l 2045Q2 2038 Q3 2040 Q4 2043Q1l 2045Q2

4.2. Rational expectations

The second econometric exercise proposed by the Federal Reserve is the simulation of a ratio-
nal expectations variation of the FRB/US model (i.e, MCE, Model-Consistent Expectations)
under a monetary policy shock. Again, the rffintay time series, is shocked by 100 base
points.

14 equations of the original model (i.e. zdivgr, zgap05, zgapl0, zgap30, zpil0, zpilOf,
zpibb, zpic30, zpich8, zpicxfe, zpieci, zrff10, zrf£30, zrff5), have been modified and
present a forward-looking definition.

For example, in the MCE version of the model, the zdivgr equation presents a forward-
looking reference to its future values:
zdivgr=(0.009757264257434617) *TSLEAD (hgynid)+(0.9902427357425654) *TSLEAD (zdivgr)

Original simulation time range has been lowered from 60 years to 2 years in order to reduce
calculation time in examples (see "Computational details” on section 5).

10 The U.S. Federal Reserve quarterly model in R with bimets

python code follows:
import pandas

from pyfrbus.frbus import Frbus
from pyfrbus.sim_1lib import sim_plot

from pyfrbus.load_data import load_data

Load data
data = load_data("./LONGBASE.TXT")

Load model

frbus = Frbus("./model.xml", mce="mcap+wp")

Specify dates
start = pandas.Period("2040ql1")

end = start + 8

Standard MCE configuration, use surplus ratio targeting, rstar endogenous in long run
data.loc[start:end, "dfpdbt"] 0

1

data.loc[start:end, "drstar"] = 0

data.loc[(start+4):end, "drstar"] =1

data.loc[start:end, "dfpsrp"]

Solve to baseline with adds

with_adds = frbus.init_trac(start, end, data)

100 bp monetary policy shock and solve

with_adds.loc[start, "rffintay_aerr"] += 1

Solve

sim = frbus.solve(start, end, with_adds)

View results

sim_plot(with_adds, sim, start, end)

R version of the same exercise follows:

R> library(bimets)

R> # Load data
R> data (LONGBASE)

R> # Load model
R> data(FRB__MCAP__WP__MODEL)
R> model <- LOAD_MODEL (modelText = FRB__MCAP__WP__MODEL)

Andrea Luciani

Analyzing behaviorals...

Analyzing identities...

This is a forward looking model...

Loaded model "FRB__MCAP__WP__MODEL":
0 behaviorals

284 identities

0 coefficients

...LOAD MODEL OK

R> # Load data into model
R> model <- LOAD_MODEL_DATA (model, LONGBASE, quietly=TRUE)

R> # Specify dates
R> start <- c(2040,1)
R> end <- normalizeYP(start+c(0,8),4)

R> # Standard MCE configuration, use surplus ratio targeting, rstar endogenous in long run
R> model$modelData$dfpdbt [[start,end]] <- O

R> model$modelData$dfpsrp[[start,end]] <- 1

R> model$modelData$drstar[[start,end]] <- 0

R> model$modelData$drstar[[normalizeYP(start+c(0,4),4),end]] <- 1

R> # Solve to baseline with adds

R> model <- SIMULATE (model,
simType = 'RESCHECK',
TSRANGE = c(start,end),
ZeroErrorAC = TRUE,
quietly=TRUE)

R> # 100 bp monetary policy shock
R> shock <- model$ConstantAdjustmentRESCHECK
R> shock$rffintay[[start]] <- shock$rffintay[[start]]+1

R> # Solve

R> model <- SIMULATE(model,
simAlgo = 'NEWTON',
TSRANGE = c(start,end),
ConstantAdjustment = shock,
BackFill = 12,
quietly=TRUE)

R> # View results
R> sim_plot(model,c(start,end),2)

11

12 The U.S. Federal Reserve quarterly model in R with bimets

python code produces the following charts:

Unemployment Rate

Real GDP Growth, Quarterly Annualized
4.22 -
4 e
,l ol ""\\
1.80 - | !,' 4.20 - ’;’ *
\‘ .‘J' ;t
) / 4.18 /
1.75 1 \ d /
15 ' / € !
o "‘] o 4.16 A !
b " ! [!
& \ £ & '
1.70 \ ; o)
3] I
\) I
\))
\ ! 4.12 A !
1657 — Baseline % 1]
- ~ I I
= Bim G | 4.10 1 _____‘..-r-"_-___—
T T T T
203903 2040Q2 2041Q1 2041Q4

T T T T
20390Q3 204002 204101 204104

Core PCE Inflation, Quarterly Annual Federal Funds Rate

ized

I,
AY

0.00100 3
3.4 A

0.00075 A X
0.00050 \
\

0.00025 ’ =
; 8 3.0 4
&

Percent
-

0.00000 - \
\ ’.r

—0.00025 4 \
\)
A
!
~0.00050 - % Iy 2.6 1
+1.999 Mopa?
—0.00075 1

2039Q3 2040Q2 2041Q1 204104

]
I
!
1
]
]
]
I
1
! \
I
I
I

I

I

I

I

I

I

I

I

i

203903 204002 2041Q1 204104

Andrea Luciani

On the other hand, bimets code produces very similar results:

Real GDP Growth, Quarterly Annualized

Unemployment Rate

13

) 422 -
1.80 5 T 4.20 S o
418 K
2 1.75 3 g £ J
S R ; S 4.16 1 !
o) N , > '
a 1.70 .) a 4.14 -)
1.65 N 4.12
S s04 —+—""
T T T T T T T T T T T T T T T T
2039 Q3 2040 Q2 2041 Q1 2041 Q4

T T T T T T
2039 Q3 2040 Q2 2041 Q1 2041 Q4

Core PCE Inflation, Quarterly Annualized Federal Funds Rate

T T T T T T
2039 Q3 2040 Q2 2041Q1 2041 Q4

2.0000 ——
N 3.4 - R
1.9995 32 A
' K © 3.0 !
1.9990 | | K & !
\\\ //, 28 - ,v ‘\\\\
1.9985 264 |
T T T T T T T T T T T T T T T T
2039Q3 2040Q2 2041Q1 2041 Q4

4.3. Auto-correlation on tracking residuals

The 3rd econometric exercise proposed by the Federal Reserve is a dynamic simulation of the
FRB/US model (backward-looking version) wherein historical tracking residuals have been
forward extended by using an auto-correlation (i.e., persistence) factor of 0.5.

python code follows:

import pandas

from pyfrbus.frbus import Frbus
from pyfrbus.sim_1lib import sim_plot

from pyfrbus.load_data import load_data

from pyfrbus.time_series_data import TimeSeriesData

Load data

data = load_data("./LONGBASE.TXT")

14 The U.S. Federal Reserve quarterly model in R with bimets

Load model
frbus = Frbus("./model.xml")

Specify dates
start = pandas.Period("2040Q1")
end = start + 24

Standard configuration, use surplus ratio targeting

data.loc[start:end, "dfpdbt"] =

data.loc[start:end, "dfpsrp"]

Use non-inertial Taylor rule
data.loc[start:end, "dmptay"] =
data.loc[start:end, "dmpintay"]

Enable thresholds
data.loc[start:end, "dmptrsh"]

Arbitrary threshold values
data.loc[start:end, "lurtrsh"]

data.loc[start:end, "pitrsh"] =

Solve to baseline with adds

0
1

]
-

6.0
3.0

with_adds = frbus.init_trac(start, end, data)

Zero tracking residuals for f

unds rate and thresholds

with_adds.loc[start:end, "rfftay_trac"] = 0

with_adds.loc[start:end, "rffrule_trac"] = 0

with_adds.loc[start:end, "rff_t
with_adds.loc[start:end, "dmptp
with_adds.loc[start:end, "dmptl

with_adds.loc[start:end, "dmptmax_trac"]

with_adds.loc[start:end, "dmptr

rac"] =0

i_trac"] =0

ur_trac"]

_trac"] =0

Shocks vaguely derived from historical residuals

with_adds.loc[start:start + 3,
with_adds.loc[start:start + 3,
with_adds.loc[start:start + 3,
with_adds.loc[start:start + 3,
with_adds.loc[start:start + 8,
-0.0074,-0.0061,-0.0077,-0.0033

Set up time-series object

d = TimeSeriesData(with_adds)

Roll off residuals with 0.5 p
rho = 0.5

Set range

[-0.002, -0.0016, -0.0070, -0.0045]
"ecd_aerr"] [-0.0319, -0.0154, -0.0412, -0.0838]
"eh_aerr"] = [-0.0512, -0.0501, -0.0124, -0.0723]
"rbbbp_aerr"] = [0.3999, 2.7032, 0.3391, -0.7759]
"lhp_aerr"] = [-0.0029,-0.0048,-0.0119,-0.0085,
,—0.0042,]

"eco_aerr"]

ersistence

Andrea Luciani

.range = pandas.period_range(start + 4, end)
.eco_aerr = rho * d.eco_aerr(-1)

.ecd_aerr = rho * d.ecd_aerr(-1)

.eh_aerr = rho * d.eh_aerr(-1)

.rbbbp_aerr = rho * d.rbbbp_aerr(-1)

.range = pandas.period_range(start + 9, end)

Qa QA Qo

.lhp_aerr = rho * d.lhp_aerr(-1)

Adds so that thresholds do not trigger before shocks are felt

with_adds.loc[start, "dmptr_aerr"] = -1
with_adds.loc[start : start + 2, "dmptlur_aerr"] = -1
Solve

sim = frbus.solve(start, end, with_adds)

View results, unemployment threshold binds

sim_plot(with_adds, sim, start, end)

R version of the same exercise follows:
R> library(bimets)

R> # Load data
R> data(LONGBASE)

R> # Load model
R> data (FRB__MODEL)
R> model <- LOAD_MODEL (modelText = FRB__MODEL)

Analyzing behaviorals...
Analyzing identities...
Optimizing...
Loaded model "FRB__MODEL":
0 behaviorals
284 identities
0 coefficients
...LOAD MODEL OK

R> # Load data into model
R> model <- LOAD_MODEL_DATA(model, LONGBASE, quietly=TRUE)

R> # Specify dates
R> start <- c(2040,1)
R> end <- normalizeYP(start+c(0,24),4)

R> # Standard configuration, use surplus ratio targeting
R> model$modelData$dfpdbt[[start,end]] <- 0
R> model$modelData$dfpsrp[[start,end]] <- 1

R> # Use non-inertial Taylor rule
R> model$modelData$dmptay[[start,end]] <- 1
R> model$modelData$dmpintay/[[start,end]] <- 0

16

R>
R>

R>
R>
R>

R>
R>

R>
R>

R>
R>
R>
R>
R>
R>
R>
R>

R>
R>
R>
R>
R>
R>
R>

R>
R>
R>
R>
R>
R>
R>

R>
R>
R>

R>
R>

R>
R>

R>
R>

The U.S. Federal Reserve quarterly model in R with bimets

Enable thresholds
model$modelData$dmptrsh[[start,end]] <- 1

Arbitrary threshold values
model$modelData$lurtrsh[[start,end]] <- 6
model$modelData$pitrsh[[start,end]] <- 3

Solve to baseline with adds

model <- SIMULATE (model,
simType = 'RESCHECK',
TSRANGE = c(start,end),
ZeroErrorAC = TRUE,
quietly=TRUE)

Get tracking residuals
trac <- model$ConstantAdjustmentRESCHECK

Zero tracking residuals for funds rate and thresholds
trac$rfftay[[start,end]] <- 0

trac$rffrulel[[start,end]] <- 0

trac$rff[[start,end]] <- 0

trac$dmptpi[[start,end]] <- 0

trac$dmptlur[[start,end]] <- 0
trac$dmptmax[[start,end]] <- 0

trac$dmptr[[start,end]] <- 0

Shocks vaguely derived from historical residuals
aerr <- list()

aerr$eco <- TSERIES(c(-0.002, -0.0016, -0.0070, -0.0045),START=start,FREQ=4)
aerr$ecd <- TSERIES(c(-0.0319, -0.0154, -0.0412, -0.0838),START=start,FREQ=4)
aerr$eh <- TSERIES(c(-0.0512, -0.0501, -0.0124, -0.0723),START=start,FREQ=4)
aerr$rbbbp <- TSERIES(c(0.3999, 2.7032, 0.3391, -0.7759),START=start,FREQ=4)
aerr$lhp <- TSERIES(c(-0.0029,-0.0048,-0.0119,-0.0085,-0.0074,-0.0061,-0.0077,-0.0033,-0.0042),

START=start,FREQ=4)

Roll off residuals with 0.5 persistence
rho <- 0.5

aerr$eco <- TSEXTEND (aerr$eco,UPTO=end, EXTMODE="'MYRATE',FACTOR=rho)
aerr$ecd <- TSEXTEND(aerr$ecd,UPTO=end, EXTMODE='MYRATE',FACTOR=rho)
aerr$eh <- TSEXTEND (aerr$eh,UPTO=end, EXTMODE='MYRATE',FACTOR=rho)
aerr$rbbbp <- TSEXTEND (aerr$rbbbp,UPTO=end, EXTMODE='MYRATE',FACTOR=rho)
aerr$lhp <- TSEXTEND(aerr$lhp,UPTU=end,EXTMDDE=’MYRATE’,FACTUR=rho)

Adds so that thresholds do not trigger before shocks are felt

aerr$dmptr <- TSERIES(c(-1),START=start,FREQ=4)
aerr$dmptlur <- TSERIES(c(-1,-1,-1),START=start,FREQ=4)

Create Constant Adjustments for SIMULATE op.

for (idx in names(aerr)) trac[[idx]] <- trac[[idx]]+aerr[[idx]]

Solve

model <- SIMULATE (model,
simAlgo = 'NEWTON',
TSRANGE = c(start,end),
ConstantAdjustment = trac,
BackFill = 12,
quietly=TRUE)

View results, unemployment threshold binds
sim_plot(model,c(start,end),3)

Andrea Luciani

python code produces the following charts:

Percent

3.0 e P
7 \\\ TS N
2.5 1 s " FA
! e 7.0 A ! \
\
2.04 ;! j' l‘I
1 T i I
1 6.5 A
1.5 ' ; ! \
; { € 6.0 1 i A
1.0 x H g o b \
\ ! @ I \
0.5 - U 5.5 ; \
] I [LY
0.0 1ot] ! M
* | I 5.0 [] “
1 ;] e
4 2 I
—0.5 ". ,’ —— Baseline 4.5 - ’;
1 2
1.0 4 [=== 5im !
4.0 -

Real GDP Growth, Quarterly Annualized

T T T T
2038Q3 2040Q3 2042Q3 2044Q3

Core PCE Inflation, Quarterly Annualized

2.00 A
N\

1.95 \
\

1.75 4

Percent

T T T T
2038Q3 20400Q3 2042Q3 2044Q3

Unemployment Rate

203'303 204'003 204'2(13 204'403
Federal Funds Rate

2.5

2.0 A

1.0 i
1

1

1

]

0.5 A i
1

T T T T
2038Q3 204003 20420Q3 2044Q3

17

18 The U.S. Federal Reserve quarterly model in R with bimets

On the other hand, bimets code produces very similar results:

Real GDP Growth, Quarterly Annualized Unemployment Rate
3 7 P Se
24 ! ["
= | / = /
g 14 Y / g 61 / :
o ! / @ !
a i : o /
0 Vo 5 .
-1 L 4 /
INERRRRRRRERRRRRRRRRR RN RR N INERRRRRRRERRRRRRRRRR RN RR N
2038 Q3 2040 Q4 2043 Q1 2045 Q2 2038 Q3 2040 Q4 2043 Q1 2045Q2
Core PCE Inflation, Quarterly Annualized Federal Funds Rate
2.00 2.5 ;
1.95 2.0
g 1.90 g 15 - ' -
s o |
P 185 2 1o : ,
1.80 ! /
R 0.5 ' !
1.75 . /
0.0
INERRRRRRRERRRRRRRRRR RN RR N INERRRRRRRERRRRRRRRRR RN RR N
2038 Q3 2040 Q4 2043 Q1 2045 Q2 2038 Q3 2040 Q4 2043 Q1 2045Q2

4.4. Endogenous targeting

The 4th econometric exercise proposed by the Federal Reserve is an endogenous targeting
exercise. The mcontrol procedure in the pyfrbus package calculates the constant adjustments
values to be applied to 5 instruments variables (i.e., eco, 1hp, picxfe, rff, rgiOp, all in the
inst list) such that the simulated values for the endogenous variables in the target list targ
(i.e., xgdp, lur, picxfe, rff, rgi0) are equal to the values of the arbitrary trajectories in the
traj list.

In a similar way in R, the bimets RENORM procedure determines the values for the INSTRUMENT
exogenous variables (i.e., the constant adjustments in the inst list in this exercise) that allow
the objective TARGET endogenous values to be achieved, with respect to the constraints given
by the model equations.

python code follows:

import pandas

from numpy import array, cumprod

Andrea Luciani

from pyfrbus.frbus import Frbus
from pyfrbus.sim_lib import sim_plot

from pyfrbus.load_data import load_data

Load data
data = load_data("./LONGBASE.TXT")

Load model
frbus = Frbus("./model.xml")

Specify dates
start = pandas.Period("2021Q3")
end = "2022Q3"

Standard configuration, use surplus ratio targeting
data.loc[start:end, "dfpdbt"] = 0
data.loc[start:end, "dfpsrp"] = 1

Solve to baseline with adds

with_adds = frbus.init_trac(start, end, data)

Scenario based on 2021Q3 Survey of Professional Forecasters

with_adds.loc[start:end, "lurnat"] = 3.78

Set up trajectories for mcontrol

with_adds.loc[start:end, "lur_t"] = [5.3, 4.9, 4.6, 4.4, 4.2]
with_adds.loc[start:end, "picxfe_t"] = [3.7, 2.2, 2.1, 2.1, 2.2]
with_adds.loc[start:end, "rff_t"] = [0.1, 0.1, 0.1, 0.1, 0.1]
with_adds.loc[start:end, "rglO_t"] = [1.4, 1.6, 1.6, 1.7, 1.9]

Get GDP level as accumulated growth from initial period
gdp_growth = cumprod((array([6.8, 5.2, 4.5, 3.4, 2.7]) / 100 + 1) *x 0.25)
with_adds.loc[start:end, "xgdp_t"] = with_adds.loc[start - 1, "xgdp"] * gdp_growth

targ - ["ngp" s lllurll , llpicxfell . |lrffll s llrgloll]
["xgdp_t", "lur_t", "picxfe_t", "rff_t", "rglO_t"]

traj

inst = ["eco_aerr", "lhp_aerr", "picxfe_aerr", "rff_aerr", "rglOp_aerr"]

Run mcontrol

sim = frbus.mcontrol(start, end, with_adds, targ, traj, inst)

View results

sim_plot(with_adds, sim, start, end)

R version of the same exercise follows:

20 The U.S. Federal Reserve quarterly model in R with bimets

R> library(bimets)

R> # Load data
R> data (LONGBASE)

R> # Load model
R> data (FRB__MODEL)
R> model <- LOAD_MODEL (modelText = FRB__MODEL)

Analyzing behaviorals...
Analyzing identities...
Optimizing. ..
Loaded model "FRB__MODEL":
0 behaviorals
284 identities
0 coefficients
...LOAD MODEL OK

R> # Load data into model
R> model <- LOAD_MODEL_DATA (model, LONGBASE, quietly=TRUE)

R> # Specify dates
R> start <- ¢(2021,3)
R> end <- ¢(2022,3)

R> # Standard configuration, use surplus ratio targeting
R> model$modelData$dfpdbt [[start,end]] <- O
R> model$modelData$dfpsrp[[start,end]] <- 1

R> # Solve to baseline with adds

R> model <- SIMULATE(model,
simType = 'RESCHECK',
TSRANGE = c(start,end),
ZeroErrorAC = TRUE
,quietly=TRUE)

R> # Scenario based on 2021Q3 Survey of Professional Forecasters
R> model$modelData$lurnat/[[start,end]] <- 3.78

R> # Set up trajectories for mcontrol

R> targ <- list()

R> targ$lur <- TSERIES(c(5.3, 4.9, 4.6, 4.4, 4.2),START=start,FREQ=4)
R> targ$picxfe <- TSERIES(c(3.7, 2.2, 2.1, 2.1, 2.2),START=start,FREQ=4)
R> targ$rff <- TSERIES(c(0.1, 0.1, 0.1, 0.1, 0.1),START=start,FREQ=4)
R> targ$rgl0 <- TSERIES(c(1.4, 1.6, 1.6, 1.7, 1.9),START=start,FREQ=4)

R> # Get GDP level as accumulated growth from initial period
R> gdp_growth <- model$modelData$xgdp[[2021,2]]*CUMPROD((c(6.8,5.2,4.5,3.4,2.7) / 100 + 1) ** 0.25)
R> targ$xgdp <- TSERIES(gdp_growth,START=start,FREQ=4)

R> # define INSTRUMENT
R> inst <- c("eco", "lhp", "picxfe", "rff", ”rglOp”)

R> # Run RENORM
R> model <- RENORM(model,
simAlgo = 'NEWTON',
TSRANGE=c (start,end),
ConstantAdjustment = model$ConstantAdjustmentRESCHECK,
TARGET=targ,

Andrea Luciani 21

INSTRUMENT=inst,
BackFill = 8,
quietly=TRUE)

R> # View results
R> sim_plot(model,c(start,end),4)

python code produces the following charts:

Real GDP Growth, Quarterly Annualized Unemployment Rate
12 1 —— Baseline
——- Sim 6.0 4
5.5 4
- e
= £ 5.0
& &
4.5 -
4.0 -
T T T T 3.5 E T T T T
2021Q1 2021Q3 2022Q1 202203 2021Q1 2021Q3 2022Q1 2022Q3
Core PCE Inflation, Quarterly Annualized Federal Funds Rate
5.5 -
2.0 A
5.0 -
4.5 -
1.5
o 4.0 A A
o g
8 35 g 1.0+
3.0 -
0.5 -
2.5
2.0
: 0.0 4

202101 2021Q3 2022Q1 2022Q3 2021Q1 2021Q3 2022Q1 2022Q3

22 The U.S. Federal Reserve quarterly model in R with bimets

On the other hand, bimets code produces very similar results:

Real GDP Growth, Quarterly Annualized Unemployment Rate

6.0

5.5

5.0 1

Percent
Percent

4.5

4.0 1

35
T T T T T T T T T T T T T T

2021 Q1 2021Q3 2022Q1 2022 Q3 2021 Q1 2021Q3 2022Q1 2022 Q3

Core PCE Inflation, Quarterly Annualized Federal Funds Rate

2.0

1.5

1.0

Percent
Percent

0.5

0.0 +
1_I T T T T T T T T T T T T T

2021 Q1 2021Q3 2022Q1 2022 Q3 2021 Q1 2021Q3 2022Q1 2022 Q3

4.5. Stochastic simulation

The 5th econometric exercise proposed by the Federal Reserve is a stochastic simulation of
the FRB/US model (backward-looking version). The stochsim procedure in the pyfrbus
package performs a stochastic simulation by applying sequences of shocks to the model, as
drawn randomly from historical residuals.

The stochsim procedure begins by drawing nrepl sequences of quarters over the periods
residstart to residend, where the length of that sequence goes from simstart to simend.
That is, for a particular replication, each quarter in the simulation period is randomly assigned
a quarter from residual period. In that quarter of the simulation, all the 64 stochastic variables
(specified with a stochastic_type tag in the XML model file) have a shock applied from a
particular quarter in the residual period.

In a similar way in R, the bimets STOCHSIMULATE procedure allows users to shock, with arbi-
trary values, all the StochReplica replicas of variables that appear in the StochStructure
list; the shocks, in this exercise, are the randomly sampled historical residuals in the time
range from residstart to residend, and are added up to the 64 constant adjustment of the

Andrea Luciani 23

related endogenous variable listed as stochastic, thus replicating the python code. The initial
mapping per period, between historical residuals and stochastic realizations, is stored in the
sampleHistoricalResidual variable.

python code follows:

from pyfrbus.frbus import Frbus
from pyfrbus.sim_lib import stochsim_plot

from pyfrbus.load_data import load_data

Load data
data = load_data("./LONGBASE.TXT")

Load model
frbus = Frbus("./model.xml")

Specify dates and other params

residstart = "1975q1"

residend = "2018q4"

simstart = "2040ql"

simend = "2045q94"

Number of replications

nrepl = 1000

Run up to 5 extra replications, in case of failures

nextra = 5

Policy settings
data.loc[simstart:simend, "dfpdbt"] =

] |
= O

data.loc[simstart:simend, "dfpsrp"]

Compute add factors
Both for baseline tracking and over history, to be used as shocks

with_adds = frbus.init_trac(residstart, simend, data)

Call FRBUS stochsim procedure

solutions = frbus.stochsim(nrepl, with_adds, simstart, simend, residstart, residend, nextra=nextra)

View results

stochsim_plot(with_adds, solutions, simstart, simend)

24 The U.S. Federal Reserve quarterly model in R with bimets

R version of the same exercise follows:

R> library(bimets)

R> # Load data
R> data (LONGBASE)

R> # Load model
R> data(FRB__MODEL)
R> model <- LOAD_MODEL (modelText = FRB__MODEL)

Analyzing behaviorals...
Analyzing identities...
Optimizing...
Loaded model "FRB__MODEL":
0 behaviorals
284 identities
0 coefficients
..LOAD MODEL OK

R> # Load data into model
R> model <- LOAD_MODEL_DATA(model, LONGBASE, quietly=TRUE)

R> # Specify dates and other params
R> residstart <- c(1975,1)

R> residend <- ¢(2018,4)

R> simstart <- c¢(2040,1)

R> simend <- c(2045,4)

R> # Number of replications
R> nrepl <- 1000

R> # Policy settings
R> model$modelData$dfpdbt[[simstart,simend]] <- O
R> model$modelData$dfpsrp[[simstart,simend]] <- 1

R> # Compute add factors
R> # Both for baseline tracking and over history, to be used as shocks
R> model <- SIMULATE (model,

simType = 'RESCHECK',

TSRANGE = c(residstart,simend),

ZeroErrorAC = TRUE,

quietly=TRUE)

R> # Get tracking residuals
R> trac <- model$ConstantAdjustmentRESCHECK

R> # Set seed
R> set.seed(9)

R> # 64 Stochastic vars as listed in XML FRB/US model file

R> stochasticVars <- c("ebfi","ecd","ech","eco", "egfe", "egfen", "egfet", "egfl", "egse",
Hegsen " "egset” Hegsl " Heh " Hemoll Hempll ”eX" "prI‘I‘” IlegapH
Nugfsrpﬂ’ llgtn ”, Hgtrﬂ, Hgtrd H, ”Ilm.fpt H, thlfprll’ thlwwﬂ’ llki II’ "legﬂ,
Hleo ll’ HlferJ thpll’ Hlurnat H, lewll’ ”mfpt H, Hpbfirll, Hpcerll’
Hpcfrll, Hpegfrll, Hpegsrll’ thouse II, ”Phr”, I!picxfe H’ !Ipiec1 Il’ ”pmo H’
Npoilrﬂ, ”pXI‘", Hrbbbpﬂ’ llrcarll’ Hrcgainﬂ, Hreqpll’ Hrfynicﬂ,
Hrfynilll’ llrglopll’ llrg3opll’ Ilrg5pll, ”I‘gfint", Hrmell’ "tCin Il, Htpn H’
Htrci H’ Htrp ”, Ntrpt H’ Huynicpnrll’ ”ynldn H, "yIllrIl H)

Andrea Luciani 25

R> # Pseudo random array that maps residuals range to simulation range for each replica
R> residualsLength <- NUMPERIOD(residstart,residend,4)+1

R> stochSimLength <- NUMPERIOD (simstart,simend,4)+1

R> sampleHistoricalResidual <- sample(1:residualsLength,stochSimLength#*nrepl,replace=T)

R> # Create BIMETS stochastic structure
R> modelStochStructure <- 1list()
R> for (tmpStochVar in stochasticVars)
{
#see BIMETS reference manual for details on STOCHSIMULATE and StochStructure
modelStochStructure[[tmpStochVar]] <- list()
modelStochStructure[[tmpStochVar]]$TSRANGE <- TRUE
modelStochStructure[[tmpStochVar]]$TYPE <- 'MATRIX'
shockMatrix <- matrix(trac[[tmpStochVar]] [sampleHistoricalResiduall,
nrow=stochSimLength,ncol=nrepl)
shockMatrix <- shockMatrix - ave(shockMatrix)
modelStochStructure [[tmpStochVar]]$PARS <- shockMatrix
}

R> # Call BIMETS stoch sim procedure

R> model <- STOCHSIMULATE (model,
simAlgo = 'NEWTON',
TSRANGE = c(simstart,simend),
StochStructure = modelStochStructure,
StochReplica = nrepl,
ConstantAdjustment = trac,
quietly=TRUE)

R> # View results
R> stochsim_plot (model, c(simstart,simend))

26 The U.S. Federal Reserve quarterly model in R with bimets

python code produces the following charts:

Real GDP Growth, Quarterly Annualized Unemployment Rate
:.l' q
5 |
4
3 -
2 .
1 -
0 .
_1 o
_2 & T T T T T T T T
203803 2040Q3 2042Q3 2044Q3 203803 2040Q3 2042Q3 2044Q3
Core PCE Inflation, Quarterly Annualized Federal Funds Rate
3.5 4 mm 90% Confidence interval
* o 70% Confidence Interval
Lo Baseline
3.0 4
5 -
2.5
4 -
2.0 4
3 -
1.5
2 _
1.0 15
0.5 A 04

T T T T T T T T
2038Q3 2040Q3 204203 2044Q3 2038Q3 2040Q3 204203 2044Q3

Andrea Luciani 27

On the other hand, bimets code produces similar results, despite the random numbers gen-
erator being different between R and python:

Real GDP Growth, Quarterly Annualized Unemployment Rate

5 —

4_
3 -

2 —

M
N\

2— l
TTTTTTTTTTTTITITTITITTITTIT T T T T TTTTTTTTTTTTITITTITITTITTIT T T T T
2038 Q3 2040 Q4 2043Q1 2045 Q2 2038 Q3 2040 Q4 2043Q1 2045 Q2

Core PCE Inflation, Quarterly Annualized Federal Funds Rate

35 6

3.0 1 5 -
2.5 4 -

2.0

3_

15 2

1.0 1

I\

fl

0.5 0 -
TTTTTTTTTTTITTITTITIT I T TTI ITT I T ITTT TTTTTTTTTTTITTITTITIT I T TTI ITT I T ITTT

2038 Q3 2040 Q4 2043Q1 2045 Q2 2038 Q3 2040 Q4 2043Q1 2045 Q2

5. Computational details and capabilities: pyfrbus vs bimets

Both R (R-4.2.0 optimized with Intel® MKL libraries) and python (Intel® python 3.7.9) code
have been tested on Red Hat Enterprise Linux 8.8 with Intel® Xeon® Gold 6248 CPU @
2.50GHz 40 cores and 1.2TB RAM; all econometric exercises on the backward-looking version
of the FRB/US model are fast in both bimets and pyfrbus, having just a few seconds of
computation time for the simulation in both scenarios. Endogenous targeting (see 4.4) is faster
in pyfrbus, while stochastic simulation (see 4.5) is faster in bimets, but generally speaking the
pyfrbus package relies on compiled code and, in scenarios that require heavy computational
resources, e.g., rational expectation models, is faster than bimets, that is pure R code.

Indeed, pyfrbus is way faster than bimets in forward-looking large models with an extensive
simulation time range. pyfrbus can simulate 60 years in FRB/US rational expectations ex-
ercise (see 4.2), with just a few minutes of execution time; in bimets, exclusively for that
exercise, a FRB/US simulation with a time range greater than 10 years is not feasible. The
python package relies on the SuiteSparse libraries, a suite of compiled C code that provides

28 The U.S. Federal Reserve quarterly model in R with bimets

optimized algorithms for sparse matrices. Moreover, in pyfrbus, the model Jacobian is com-
puted symbolically using SymPy and SymEngine, thus the computation time is very fast also
in Netwon algorithms; on the other hand, there is no option for a numerically-approximated
Jacobian. As a result, the platform supports a limited number of functions; thus, in pyfrbus
only the following functions are supported in model equations: log, exp, abs, min, and max.

On the other hand, the pyfrbus package has been developed with a focus on the FRB/US
model and presents the following limitations with respect to bimets, which is a general frame-
work for econometric modeling;:

— pyfrbus only supports quarterly models, while bimets supports models of any frequency
listed in the time series constructor TIMESERIES (e.g., annual, semiannual, quarterly,
monthly, daily, weekly, etc.);

— in pyfrbus, no estimation nor structural stability procedures are available, while in
bimets users can insert coefficients in model equations, then perform estimation and
structural stability analysis accounting for linear restrictions on coefficients, polynomial
distributed lags, and residuals auto-correlation;

— pyfrbus does not support conditional evaluation in equations, while in bimets users can
use the IF> statements in model equations;

— as said, in pyfrbus, due to the symbolic Jacobian implementation, only log, exp, abs,
min, and max functions are allowed in model equations, while bimets allows for more
complex time series transformations to be inserted directly into the model definition,
e.g., TSDELTA, TSDELTALOG, MOVAVG, etc.; on the other hand, at the moment bimets does
not support MIN and MAX functions in model equations, but users can use IF> statements
in MDL model definitions in order to create an equivalent syntax, as in the FRB/US MDL
version in these exercises; MIN, MAX, and other MDL functions will be available in the
upcoming bimets versions.

— in bimets, detailed messages in error and in verbose operations can help users in iden-
tifying and solving grammatical and numerical issues;

— in time series operations, pyfrbus relies on numpy and pandas capabilities, while bimets
allows for more complex time series transformations, e.g., (dis)aggregations, extension,
merge, projection, etc.;

— optimal control for econometric models is a missing capability in pyfrbus;

— stochastic simulation in pyfrbus only allows for shocks randomly selected from past
residuals tracking, while in bimets users have more flexibility, i.e., uniform and normal
stochastic shocks, and arbitrary matrices of shocks, in arbitrary periods; moreover in
pyfrbus the list of stochastic variables is hard-coded into the model definition, while
in bimets users can change stochastic variables interactively in code by changing the
StochStructure variable in the procedure’s call;

— in bimets, constant adjustments are function’s arguments, therefore users can disable or
change, in arbitrary periods, the add-factor impact in model equilibrium, interactively
in code with no need to modify the model data set, as required in pyfrbus;

Andrea Luciani 29

— in bimets, users can exogenize an endogenous variable in arbitrary periods, while in
pyfrbus exogenization is forced on the whole simulation time range;

— in pyfrbus, multiplier analysis is not available;

— pyfrbus is distributed only for Linux operating system, with instructions on how to run
Linux code on a Microsoft® Windows machine. Moreover, the package has a complex
list of dependencies (e.g., UMFPACK, SuiteSparse, scipy, sympy, symengine, scikit,
numpy, pandas, etc.) and its installation could be difficult; bimets, which depends only
on base R and xts, does not require any compilation, and is easy to install in Linux,
Microsoft® Windows, and Apple® OS-X.

More details about bimets are available at the "Getting started with bimets" vignette.

References

[1] Andrea Luciani, Bank of Italy - bimets: Time Series and Econometric Modeling. R
package version 4.0.1, https://CRAN.R-project.org/package=bimets/,
GIT: https://github.com/andrea-luciani/bimets

[2] Board of governors of The Federal Reserve System - pyfrbus: a Python-based plat-
form to run simulations with the FRB/US model.. python package version 1.0.0,
https://www.federalreserve.gov/econres/us-models-about.htm

Affiliation:

Andrea Luciani

Bank of Italy

Directorate General for Economics, Statistics and Research
Via Nazionale, 91

00184, Rome - Italy

E-mail: andrea.luciani@bancaditalia.it

https://cran.r-project.org/package=bimets/vignettes/bimets.pdf
https://CRAN.R-project.org/package=bimets/
https://github.com/andrea-luciani/bimets
https://www.federalreserve.gov/econres/us-models-about.htm
mailto:andrea.luciani@bancaditalia.it

	The FRB/US model
	The pyfrbus python package
	Moving to R
	The econometric excercises
	Dynamic simulation in a monetary policy shock
	Rational expectations
	Auto-correlation on tracking residuals
	Endogenous targeting
	Stochastic simulation

	Computational details and capabilities: pyfrbus vs bimets

