
bimets:

Time Series and Econometric Modeling in R

Andrea Luciani
Bank of Italy∗

Abstract

bimets is an R package developed to ease time series analysis and build up a framework
that facilitates the definition, estimation, and simulation of simultaneous equation models.

This package supports daily, weekly, monthly, quarterly, semiannual, and yearly time
series. Time series with frequency of 24 and 36 periods per year are also supported.
Users can access and modify time series data by date, year-period, and observation index.
Advanced time series manipulation and (dis)aggregation capabilities are provided, e.g.
time series extension, merging, projection, lag, cumulative and moving product and sum,
etc.

Econometric modeling capabilities comprehend advanced model definition (e.g. con-
ditional evaluation of equations, per-equation estimation method and time range), es-
timation of equations with instrumental variables, coefficient restrictions and error au-
tocorrelation, structural stability analysis, deterministic and stochastic simulation and
forecasting of simultaneous equations with exogenizations and add-factors, interim and
impact multipliers analysis, endogenous targeting, optimal control and rational expecta-
tions.

bimets does not depend on compilers or third-party software so it can be freely down-
loaded and installed on Linux, MS Windows® and Mac OSX®, without any further re-
quirements.

Keywords: R, system of simultaneous equations, ols, instrumental variables, error autocor-
relation, polynomial distributed lag, linear restrictions, incidence matrix, model simulation,
forecasting, add-factors, exogenization, multipliers, endogenous targeting, model renormal-
ization, stochastic simulation, optimal control, rational expectations.

1. Introduction

bimets is a software framework developed by using R language and designed for time se-

∗Disclaimer: The views and opinions expressed in these pages are those of the author and do not necessarily

reflect the official policy or position of the Bank of Italy. Examples of analysis performed within these pages

are only examples. They should not be utilized in real-world analytic products as they are based only on very

limited and dated open source information. Assumptions made within the analysis are not reflective of the

position of the Bank of Italy.

2 bimets: Time Series and Econometric Modeling in R

ries analysis and econometric modeling, which allows creating and manipulating time series,
specifying simultaneous equation models of any size by using a kind of high-level description
language, and performing model estimation and structural stability analysis, deterministic
and stochastic simulation and forecasting, also on rational expectations model, and optimal
control.

Besides, bimets computational capabilities provide many tools to pre-process data and post-
process results, designed for statisticians and economists. These operations are fully inte-
grated with the R environment.

If you have general questions about using bimets, or for bug reports, please use the git
issue tracker or write to the maintainer.

2. Time Series

bimets supports daily, weekly, monthly, quarterly, semiannual, and yearly time series. Time
series with a frequency of 24 and 36 periods per year are also supported. Time series are
created by the TIMESERIES() function and are fully compatible with the base R class ts().

Example:

R> #yearly time series

R> myTS <- TIMESERIES(1:10, START = as.Date('2000-01-01'), FREQ = 1)

R> #monthly time series

R> myTS <- TIMESERIES(1:10, START = c(2002,3), FREQ = 'M')

R> print(class(myTS))

[1] "ts"

The main bimets time series capabilities are:

– Indexing, par. 2.1;

– Aggregation / Disaggregation, par. 2.2;

– Manipulation, par. 2.3;

– Import/Export, par. 2.4;

More details on bimets time series capabilities are available in the reference manual.

2.1. Time Series Indexing

The bimets package extends R indexing capabilities in order to ease time series analysis and
manipulation. Users can access and modify time series data:

https://github.com/andrea-luciani/bimets/issues
https://github.com/andrea-luciani/bimets/issues
mailto:andrea.luciani@bancaditalia.it
https://CRAN.R-project.org/package=bimets/bimets.pdf

Andrea Luciani 3

– by year-period: users can select and modify observations by providing the requested year
and period as scalars or as bidimensional arrays, i.e. ts[[year,period]], ts[[start]]

and ts[[start,end]], given start <- c(year1,period1); end <- c(year2,period2);

– by date: users can select and modify a single observation by date by using the syntax
ts[’Date’], or multiple observations using ts[’StartDate/EndDate’];

– by observation index: users can select and modify observations by simply providing the
array of requested indices, i.e. ts[indices];

Example:

R> #create a daily time series

R> myTS <- TIMESERIES((1:100), START = c(2000,1), FREQ = 'D')

R> myTS[1:3] #get first three obs.

R> myTS[[2000,14]] #get year 2000 period 14

R> start <- c(2000,20)

R> end <- c(2000,30)

R> myTS[[start]] #get year 2000 period 20

R> myTS[[start,end]] #get from year-period 2000-20 to 2000-30

R> myTS[[2000,42]] <- NA #assign to Feb 11, 2000

R> myTS[[2000,100]] <- c(-1,-2,-3) #extend time series starting from period 100

R> myTS[[start]] <- NA #assign to year-period 2000-20

R> myTS[[start,end]] <- 3.14 #assign from year-period 2000-20 to 2000-30

R> myTS[[start,end]] <- -(1:11) #assign multiple values

R> #from year-period 2000-20 to 2000-30

R> myTS['2000-01-12'] #get Jan 12, 2000 data

R> myTS['2000-02-03/2000-02-14'] #get Feb 3 up to Feb 14

R> myTS['2000-01-15'] <- NA #assign to Jan 15, 2000

2.2. Time Series Aggregation / Disaggregation

The bimets package provides advanced (dis)aggregation capabilities, having linear interpola-
tion capabilities in disaggregation, and several aggregation functions (e.g. STOCK, SUM, AVE,
etc.) while reducing the time series frequency.

Example:

R> #create a monthly time series

R> myMonthlyTS <- TIMESERIES(1:100, START = c(2000,1), FREQ = 'M')

R> #convert to yearly time series using the average as aggregation fun

R> myYearlyTS <- YEARLY(myMonthlyTS, 'AVE')

R> #convert to daily using central interpolation as disaggregation fun

R> myDailyTS <- DAILY(myMonthlyTS, 'INTERP_CENTER')

2.3. Time Series Manipulation

4 bimets: Time Series and Econometric Modeling in R

The bimets package provides, among others, the following time series manipulation capabili-
ties:

– Time series extension TSEXTEND()

– Time series merging TSMERGE()

– Time series projection TSPROJECT()

– Lag TSLAG()

– Lead TSLEAD()

– Lag differences: standard, percentage and logarithmic, i.e. TSDELTA() TSDELTAP()

TSDELTALOG()

– Cumulative product CUMPROD()

– Cumulative sum CUMSUM()

– Moving average MOVAVG()

– Moving sum MOVSUM()

– Time series data presentation TABIT()

Example:

R> #define two time series

R> myTS1 <- TIMESERIES(1:100, START = c(2000,1), FREQ = 'M')

R> myTS2 <- TIMESERIES(-(1:100), START = c(2005,1), FREQ = 'M')

R> #extend time series up to Apr 2020 with quadratic formula

R> myExtendedTS <- TSEXTEND(myTS1, UPTO = c(2020,4), EXTMODE = 'QUADRATIC')

R> #merge two time series with sum

R> myMergedTS <- TSMERGE(myExtendedTS, myTS2, fun = 'SUM')

R> #project time series on arbitrary time range

R> myProjectedTS <- TSPROJECT(myMergedTS, TSRANGE = c(2004,2,2006,4))

R> #lag and delta% time series

R> myLagTS <- TSLAG(myProjectedTS,2)

R> myDeltaPTS <- TSDELTAP(myLagTS,2)

R> #moving average

R> myMovAveTS <- MOVAVG(myDeltaPTS,5)

R> #print data

R> TABIT(myMovAveTS,

myTS1,

TSRANGE = c(2004,8,2004,12)

)

Andrea Luciani 5

Date, Prd., myMovAveTS , myTS1

ago 2004, 8 , , 56

set 2004, 9 , , 57

ott 2004, 10 , 3.849002 , 58

nov 2004, 11 , 3.776275 , 59

dic 2004, 12 , 3.706247 , 60

2.4. Time Series Import/Export

Users can import/export time series lists, also having different frequency and time range,
from/to CSV (Comma-Separated Values) files, using BIMETS2CSV() and CSV2BIMETS() func-
tions.

Example:

R> #save to CSV

R> csvOut <- list(

mySeries1=myTS1,

mySeries2=myMovAveTS

)

R> BIMETS2CSV(csvOut,

filePath='temp.csv',

mergeList=TRUE,

overWrite=TRUE)

6 bimets: Time Series and Econometric Modeling in R

3. Econometric Modeling

bimets econometric modeling capabilities comprehend:

– Model Description Language, par. 3.1;

– Estimation, par. 3.2

– Structural Stability, par. 3.4

– Simulation, par. 3.5

– Rational Expectations, par. 3.6

– Stochastic Simulation, par. 3.9

– Multipliers Analysis, par. 3.10

– Endogenous Targeting, par. 3.11

– Optimal Control, par. 3.12

We will go through each item of the list with a simple Klein1 model example.

For more realistic scenarios, several advanced econometric exercises on the US Federal Reserve
FRB/US econometric model (e.g., dynamic simulation in a monetary policy shock, rational
expectations, endogenous targeting, stochastic simulation, etc.) are available in the "US Fed-
eral Reserve quarterly model (FRB/US) in R with bimets" vignette.

More details on bimets econometric capabilities are available in the reference manual.

3.1. Model Description Language

bimets provides a language to specify an econometric model unambiguously. This section
describes how to create a model and its general structure. The specification of an econometric
model is translated and identified by keyword statements which are grouped in a model file,
i.e. a plain text file or a character variable with a specific syntax. Collectively, these
keyword statements constitute the Model Description Language (from now on "MDL"). The
model specifications consist of groups of statements. Each statement begins with a keyword.
The keyword classifies the component of the model which is being specified.

Below is an example of Klein’s model, which can either be stored in an R variable of class
character or in a plain text file with an MDL compliant syntax.

1"Economic Fluctuations in the United States 1921-1941" by L. R. Klein, Wiley and Sons Inc., New York,

1950

https://cran.r-project.org/package=bimets/vignettes/frb2bimets.pdf
https://cran.r-project.org/package=bimets/vignettes/frb2bimets.pdf
https://CRAN.R-project.org/package=bimets/bimets.pdf

Andrea Luciani 7

The content of the klein1.txt variable is:

R> klein1.txt <- "

MODEL

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)

COEFF> a1 a2 a3 a4

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1921 1 1941 1

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)

COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1921 1 1941 1

EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time

COEFF> c1 c2 c3 c4

COMMENT> Gross National Product

IDENTITY> y

EQ> y = cn + i + g - t

COMMENT> Profits

IDENTITY> p

EQ> p = y - (w1+w2)

COMMENT> Capital Stock

IDENTITY> k

EQ> k = TSLAG(k,1) + i

END

"

Given:

- cn as Private Consumption Expenditure;
- i as Investment;
- w1 as Wage Bill of the Private Sector (Demand for Labor);
- p as Profits;
- k as Stock of Capital Goods;
- y as Gross National Product;
- w2 as Wage Bill of the Government Sector ;
- time as an index of the passage of time;
- g as Government Expenditure plus Net Exports;

8 bimets: Time Series and Econometric Modeling in R

- t as Business Taxes.

a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4 are coefficients to be estimated.

This system has only six equations, three of which must be fitted to assess the coefficients.
It may not seem challenging to solve this system. However, the objective complexity emerges
if you look at the incidence graph in the following figure, wherein endogenous variables are
plotted in blue and exogenous variables are plotted in pink.

Each edge states a simultaneous dependence from a variable to another, e.g. the w1 equation
depends on the current value of the time time series; complexity arises because in this model
there are several circular dependencies, one of which is plotted in dark blue.

A circular dependency in the incidence graph of a model implies that the model is a si-
multaneous equations model. It must be estimated using ad-hoc procedures; moreover, it can
be simulated, e.g. performing a forecast, only using an iterative algorithm.

Andrea Luciani 9

As shown in the code, the model definition is quite intuitive. The first keyword is MODEL,
while at the end of the model definition we can find the END keyword. Available tags in the
definition of a generic bimets model are:

– EQUATION> or BEHAVIORAL> indicate the beginning of a series of keyword
statements describing a behavioral equation. The behavioral statement general form is:
BEHAVIORAL> name [TSRANGE startYear, startPeriod, endYear, endPeriod]

where name is the name of the behavioral equation, and the optional TSRANGE specifies
that the provided time interval must be used to estimate the coefficients. The optional
TSRANGE is defined as a 4-dimensional numerical array built with starting year, starting
period, ending year, and ending period.

Given Y = β ∗X + ϵ, where Y are the historical values of the dependent variable and X
are the historical values of the regressors, if the requested estimation method is OLS (Or-
dinary Least Squares), in the general case (i.e. no restrictions nor error auto-correlation,
as described later) the coefficients will be calculated as: βOLS = (X ′ ∗X)−1 ∗X ′ ∗ Y .

If the requested estimation method is IV (Instrumental Variables), given Z the matrix
built with instrumental variables as columns Zi, that should not be correlated to the
disturbance terms, i.e. E[ϵ′ ∗ Zi] = 0, the coefficients will be either calculated as
βIV = (Z ′ ∗X)−1 ∗ Z ′ ∗ Y , or more generally as: βIV = (X̂ ′ ∗ Ω−1 ∗ X̂)−1 ∗ X̂ ′ ∗ Ω−1 ∗ Y
where X̂ = Z ∗ (Z ′ ∗ Z)−1 ∗ Z ′ ∗X and Ω = σ2 ∗ I, σ2 = E[ϵ′ ∗ ϵ]

– IDENTITY> indicates the beginning of a series of keyword statements describing an
identity or technical equation. The identity statement general form is:
IDENTITY> name

where name is the identity name.

– EQ> specifies the mathematical expression for a behavioral or an identity equation.

The equation statement general form for a behavioral equation is:
EQ> LHS = coeff1*f1 + coeff2*f2 + coeff3*f3 + ...

where LHS is a function of the behavioral variable,
coeff1, coeff2, coeff3, ... are the names of the coefficients of the equation and
f1, f2, f3, ... are functions of variables.

The equation statement general form for an identity equation is:
EQ> LHS = f1 + f2 + f3 + ...

where LHS is a function of the identity variable and
f1, f2, f3, ... are functions of variables.

The following MDL functions can be used in the LHS left-hand side of the equation, with
name as the name of the behavioral or the identity variable:

- name - i.e. the identity function;

- TSDELTA(name,i) - i-periods difference of the name time series;

- TSDELTAP(name,i) - i-periods percentage difference of the name time series;

10 bimets: Time Series and Econometric Modeling in R

- TSDELTALOG(name,i) - i-periods logarithmic difference of the name time series;

- LOG(name) - log of the name time series;

- EXP(name) - exponential of the name time series.

On the other side, the mathematical expression available for use in the RHS right-hand
side of the EQ> equation and in the IV> expression described later in this page (i.e.
f1, f2, f3, ...) can include the standard arithmetic operators, parentheses and the
following MDL functions:

- TSLAG(ts,i): lag the ts time series by i-periods;

- TSLEAD(ts,i): lead the ts time series by i-periods;

- TSDELTA(ts,i): i-periods difference of the ts time series;

- TSDELTAP(ts,i): i-periods percentage difference of the ts time series;

- TSDELTALOG(ts,i): i-periods logarithmic difference of the ts time series;

- MOVAVG(ts,i): i-periods moving average of the ts time series;

- MOVSUM(ts,i): i-periods moving sum of the ts time series;

- LOG(ts): log of the ts time series;

- EXP(ts): exponential of the ts time series;

- ABS(ts): absolute values of the ts time series;

Note that bimets classifies a model as a forward-looking model if any model equation
contains the TSLEAD time series function. More details about forward-looking models
are available in the Rational Expecations, par. 3.6.

MDL function names are reserved names. They cannot be used as variable or coefficient
names. The coefficient names are specified in a subsequent COEFF> keyword statement
within a behavioral equation. By definition, identities do not have any coefficient that
must be assessed. Any name not specified as a coefficient name nor mentioned on the
list of the available MDL functions is assumed to be a variable.

– COEFF> specifies the coefficient names used in the EQ> keyword statement of a
behavioral equation. The coefficients statement general form is:
COEFF> coeff0 coeff1 coeff2 ... coeffn.
The coefficients order in this statement must be the same as it appears in the behavioral
equation.

Andrea Luciani 11

– ERROR> specifies an autoregressive process of a given order for the regression error.
The error statement general form is:
ERROR> AUTO(n)

where n is the order of the autoregressive process for the error.

During an estimation, users must ensure that the required data are available for the
specified error structure: n periods of data before the time interval specified by TSRANGE

must be defined in any time series involved in the regression.

The solution requires an iterative algorithm. Given Y1 = β1 ∗X1 + ϵ1, where Y1 are
the historical values of the dependent variable and X1 are the historical values of the
regressors, the iterative algorithm is based on the Cochrane-Orcutt procedure:

1) Make an initial estimation by using the original TSRANGE extended backward n

periods (given n as the autocorrelation order).

2) Estimate the error autocorrelation coefficients ρi = ρi,1, ..., ρi,n with i = 1 by regress-
ing the residuals ϵi on their lagged values through the use of the auxiliary model:
ϵi = ρi,1 ∗ TSLAG(ϵi, 1) + ... + ρi,n ∗ TSLAG(ϵi, n)

3) Transform the data for the dependent and the independent variables by using the esti-
mated ρi. The new dependent variable will be: Yi+1 = Pi ∗ Yi, and the new independent
variables will be Xi+1 = Pi ∗Xi with the matrix Pi defined as:

Pi =















1 0 0 0 ... 0 0
−ρi,1 1 0 0 ... 0 0
−ρi,2 −ρi,1 1 0 ... 0 0

...
0 0 ... −ρi,n ... −ρi,1 1















4) Run another estimation on the original model Yi+1 = βi+1 ∗Xi+1 + ϵi+1 by using the
suitable TSRANGE and the transformed data coming out of step 3 and compute the new
time series for the residuals.

5) Estimate the new error autocorrelation coefficients ρi+1 = ρi+1,1, ..., ρi+1,n by regress-
ing the new residuals arising from step 4 (similarly to step 2).

6) Carry out the convergence check through a comparison among the previous ρi and
the new ones arising from steps 5.
If all(abs(ρi+1 − ρi) < δ), where ρi is the ρ vector at the iteration i and δ is a small
convergence factor, then exit otherwise repeat from step 3 with i <- i+1.

– RESTRICT> is a keyword that can be used to specify linear coefficient restrictions.
A deterministic restriction can be applied to any equation coefficient. Any number of
RESTRICT> keywords is allowed for each behavioral equation.

A deterministic (exact) coefficient restriction sets a linear expression containing one or
more coefficients equal to a constant. The restriction only affects the coefficients of the
behavioral equation in which it is specified. The restriction statement general form is:

RESTRICT> linear_combination_of_coefficients_1 = value_1

...

12 bimets: Time Series and Econometric Modeling in R

linear_combination_of_coefficients_n = value_n

where linear_combination_of_coefficients_i, i=1..n is a linear combination of
the coefficient(s) to be restricted and value_i is the in-place scalar value to which the
linear combination of the coefficients is set equal. Each linear combination can be set
equal to a different value.

MDL example:

RESTRICT> coeff1 = 0

coeff2 = 10.5

coeff3-3*coeff4+1.2*coeff5 = 0

In many econometric packages, linear restrictions have to be coded by hand in the
equations. bimets allows users to write down the restriction in a natural way, thus
applying a constrained minimization. This procedure, although it leads to approximate
numerical estimates, allows an easy implementation.

The theory behind this procedure is that of the Lagrange multipliers. Presented here is
an example of its implementation.

Suppose that we have an equation defined as:

EQUATION> Y TSRANGE 2010 1 2015 4

EQ> Y = C1*X1 + C2*X2 + C3*X3

COEFF> C1 C2 C3

RESTRICT> 1.1*C1 + 1.3*C3 = 2.1

1.2*C2 = 0.8

Coefficients C1, C2, C3 are to be estimated. They are subject to the linear constraints
specified by the RESTRICT> keyword statement. In the case of OLS estimation, this is
carried out in the following steps:

1) Compute the cross-product matrices X ′X and X ′Y where X is a matrix with [NOBS

x NREG] size containing the values of the independent variables (regressors) historical
observations (and a vector of ones for the constant term, if any), and where Y is a NOBS

elements vector of the dependent variable (regressand) historical observations; NOBS is
the number of observations available on the TSRANGE specified in the behavioral equa-
tion, and NREG is the number of regressors or coefficients;

2) Build the restriction matrices. In the example:

R =

(

1.1 0 1.3
0 1.2 0

)

and

r =

(

2.1
0.8

)

Andrea Luciani 13

R is a matrix of [NRES x NREG] size, and r is a vector of [NRES] length, where NRES is
the number of restrictions;

3) Compute the scaling factors for the augmentation to be performed in the next step:

Rscale[i] = mean(X′X)
max(abs(R[i,]))

where R[i,] is the i-th row of the matrix R.

Assuming mean(X ′X) = 5000, in the example above we will have:
Rscale[1] = 5000/1.3
Rscale[2] = 5000/1.2

The augmented matrices will then be defined as:

Raug =

(

1.1 ∗Rscale[1] 0 1.3 ∗Rscale[1]
0 1.2 ∗Rscale[2] 0

)

and

raug =

(

2.1 ∗Rscale[1]
0.8 ∗Rscale[2]

)

4) Compute the so-called "augmented" cross-product matrix (X ′X)aug by adding to
the cross-product matrix (X ′X) a total of NRES rows and NRES columns:

(X ′X)aug =

(

X ′X R′
aug

Raug 0

)

5) Similarly, compute the so-called "augmented" cross-product matrix (X ′Y)aug by
adding a total of NRES elements to the cross-product matrix (X ′Y):

(X ′Y)aug =

(

X ′Y
raug

)

6) Calculate the β̂aug augmented coefficients by regressing the (X ′Y)aug on the (X ′X)aug.

The first NREG values of the augmented coefficients β̂aug array are the estimated co-
efficients with requested restrictions. The last NRES values are the errors we have on the
deterministic restrictions.

In the case of IV estimation, the procedure is the same as in the OLS case, but the ma-
trix X has to be replaced with the matrix X̂ as previously defined in the BEHAVIORAL>

keyword.

– PDL> is a keyword that defines an Almon polynomial distributed lag to be used
in estimation. Almon polynomial distributed lags are a specific kind of deterministic
restrictions imposed on the coefficients of the distributed lags of a specific regressor.
Multiple PDLs on a single behavioral equation can be defined.

14 bimets: Time Series and Econometric Modeling in R

The PDL> statement general form is:
PDL> coeffname degree laglength [N] [F],
where coeffname is the name of a coefficient, degree is an integer scalar specifying the
degree of the polynomial, laglength is an integer scalar specifying the length of the
polynomial (in number of time periods), the optional N (i.e. "nearest") means that the
nearest lagged term of the expansion, i.e. the first term, is restricted to zero, and the
optional F (i.e. "farthest") means that the farthest lagged term of the expansion, i.e.
the last term, is restricted to zero; the PDL> keyword statement thusly defined applies
an Almon polynomial distributed lag to the regressor associated with the coeffname

coefficient, of laglength length and degree degree, by providing the appropriate ex-
pansion and the deterministic restrictions for the degree and length specified. These
expansions are not explicitly shown to the user, i.e. the original model is not changed.

laglength must be greater than degree (see example below).

A PDL term can be further referenced in a RESTRICT> keyword statement by using
the following syntax: LAG(coefname, pdllag).

Example: RESTRICT> LAG(coeff2,3) = 0 means that, during the estimation, the re-
gressor related to the coefficient coeff2 and lagged by 3 periods in the PDL expansion
must have a coefficient equal to zero. This example also implies that a PDL> coeff2 x

y with y > 3 has been declared in the same behavioral equation.

The implementing rules are the following:

1) Read off the laglength of the PDL keyword and expand the column of the re-
gressor related to coeffname in the matrix X (i.e. the original regressors matrix) with
the lagged values of the regressor, from left to right, starting form the lag 1 to the lag
laglength-1. The matrix X will now have a [NOBS x (NREG+laglength-1)] size, with
NOBS as the number of observations in the specified TSRANGE and NREG as the number
of regressors, or coefficients.

2) Build the restriction matrix R with the following [Nrow x Ncol] dimensions:
Nrow = laglength - (degree + 1)

Ncol = NREG + laglength - 1

This matrix’s elements will be zero except for the (laglength)-columns related to the
section of the expanded columns in the X matrix. For every row we will have to insert
degree+2 numbers different from zero.

The degree+2 numbers are taken from the Tartaglia’s-like triangle:

1 −2 1
1 −3 3 −1
1 −4 6 −4 1
1 −5 10 −10 5 1
...

Andrea Luciani 15

where in the i-th row we will find the numbers for a PDL of degree=i.

The r vector giving the knows terms for the restrictions is a vector of NRES = laglength

- (degree + 1) elements equal to zero.

An example will clarify:

EQUATION> Y TSRANGE 2010 1 2015 4

EQ> Y = C1*X1 + C2*X2 + C3*X3

COEFF> C1 C2 C3

PDL> C2 2 5

then

R =

(

0 1 −3 3 1 0 0
0 0 1 −3 3 1 0

)

and

r =

(

0
0

)

The expanded regressors are:
X1, X2, TSLAG(X2,1), TSLAG(X2,2), TSLAG(X2,3), TSLAG(X2,4), X3.

The scaling factor is given, as in the standard restriction case, by: mean(X ′X)/max(abs(R[i,]))

– IF> keyword is used to conditionally evaluate an identity during a simulation, depend-
ing on a logical expression’s value. Thus, it is possible to have a model alternating
between two or more identity specifications for each simulation period, depending upon
results from other equations.

The IF> statement general form is:
IF> logical_expression

The IF> keyword must be specified within an identity group; this keyword causes the
equation specified in the identity group to be evaluated during the current simulation
period only when the logical_expression is TRUE.

Only one IF> keyword is allowed in an identity group. Further occurrences produce
an error message, and processing stops.

The logical_expression can be composed of constants, endogenous variables, exoge-
nous variables, an expression among variables, combinations of the logical operators;
mathematical operators and the MDL functions listed in the EQ> section are allowed.

16 bimets: Time Series and Econometric Modeling in R

In the following MDL example, the value of the endogenous myIdentity variable is speci-
fied with two complementary conditional identities, depending on the TSDELTA() result:

IDENTITY> myIdentity

IF> TSDELTA(myEndog*(1-myExog)) > 0

EQ> myIdentity = TSLAG(myIdentity)+1

IDENTITY> myIdentity

IF> TSDELTA(myEndog*(1-myExog)) <= 0

EQ> myIdentity = TSLAG(myIdentity)

– IV> specifies the mathematical expression for an instrumental variable used in a be-
havioral equation.

The general form for an instrumental variable expression is:
IV> f1 + f2 + f3 + ...

f1, f2, f3, ... are functions of variables.

The mathematical expression available for use in the IV> definition are those already
described in the EQ> section.

– COMMENT> can be used to insert comments into a model. The general form of this
keyword is:
COMMENT> text

The text following the COMMENT> keyword is ignored during all processing and must
lie in the same line. Comments cannot be inserted within another keyword statement.
A dollar sign in the first position of a line is equivalent to using the COMMENT>
keyword, as in the following example:
$This is a comment

No other keywords are currently allowed in the MDL syntax.

Back to Klein’s model example, the bimets LOAD_MODEL() function reads the klein1.txt model
as previously defined:

R> kleinModel <- LOAD_MODEL(modelText = klein1.txt)

Analyzing behaviorals...

Analyzing identities...

Optimizing...

Loaded model "klein1.txt":

3 behaviorals

Andrea Luciani 17

3 identities

12 coefficients

...LOAD MODEL OK

As shown in the output, bimets counted 3 behavioral equations, 3 identities and 12 coefficients.
Now in the R session there is a variable named kleinModel that contains the model structure
defined in the klein1.txt variable. From now on, users can ask bimets about any details of
this model.

For example, to gather information on the "cn" Consumption behavioral equation:

R> kleinModel$behaviorals$cn$eq

[1] "cn=a1+a2*p+a3*TSLAG(p,1)+a4*(w1+w2)"

R> kleinModel$behaviorals$cn$tsrange

[1] 1921 1 1941 1

R> kleinModel$behaviorals$cn$eqCoefficientsNames

[1] "a1" "a2" "a3" "a4"

R> kleinModel$behaviorals$cn$eqRegressorsNames

[1] "1" "p" "TSLAG(p,1)" "(w1+w2)"

R> kleinModel$behaviorals$cn$eqSimExp

expression(cn[2,] = cn__ADDFACTOR[2,] + cn__COEFF__a1 * 1 +

cn__COEFF__a2 * p[2,] + cn__COEFF__a3 * (p[1,]) + cn__COEFF__a4 *

(w1[2,] + w2[2,]))

Users can always read (or carefully change) any model parameters. The LOAD_MODEL() func-
tion parses behavioral and identity expressions of the MDL definition, but it also does a signif-
icant optimization. Properly reordering the model equations is a key preparatory step in the
later phase of simulation, in order to guarantee performance and convergence, if any, with
the aim of minimizing the number of feedback endogenous variables (see the The Optimal
Reordering, par. 3.7).

The LOAD_MODEL() function builds the model’s incidence matrix, and uses this matrix to
calculate the proper evaluation order of the model equations during the simulation.

Back to the Klein’s model example, the incidence matrix and the reordering of the equa-
tions are stored in the following variables:

R> kleinModel$incidence_matrix

cn i w1 y p k

cn 0 0 1 0 1 0

i 0 0 0 0 1 0

w1 0 0 0 1 0 0

18 bimets: Time Series and Econometric Modeling in R

y 1 1 0 0 0 0

p 0 0 1 1 0 0

k 0 1 0 0 0 0

R> kleinModel$vpre

NULL

R> kleinModel$vblocks[[1]]$vsim

[1] "w1" "p" "i" "cn" "y"

R> kleinModel$vblocks[[1]]$vfeed

[1] "y"

R> kleinModel$vblocks[[1]]$vpost

[1] "k"

While simulating the Klein’s model, bimets will iterate on the computation of, in order, w1

-> p -> i -> cn -> y (the vsim variables in the single block of equations vblocks[[1]]),
by looking for convergence on y (the vfeed variable, only one in this example) that is the
feedback variable for the block. If the convergence in the block is achieved, it will calculate
k (the vpost variable). The vpre array in this example is empty; therefore, no equation has
to be evaluated before the iterative algorithm is applied to each block of equations.

Once the model has been parsed, users need to load the data of all the time series involved
in the model, by using the LOAD_MODEL_DATA() function. In the following example, the code
defines a list of time series and loads this list into the Klein’s model previously defined:

R> kleinModelData <- list(

cn = TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,

55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,

START = c(1920,1), FREQ = 1),

g = TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,

10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3,

START = c(1920,1), FREQ = 1),

i = TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,

-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9,

START = c(1920,1), FREQ = 1),

k = TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,

210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,

201.8,199.9,201.2,204.5,209.4,

START = c(1920,1), FREQ = 1),

p = TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,

15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,

START = c(1920,1), FREQ = 1),

w1 = TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,

37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,

Andrea Luciani 19

START = c(1920,1), FREQ = 1),

y = TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,

50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,

START = c(1920,1), FREQ = 1),

t = TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,

6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6,

START = c(1920,1), FREQ = 1),

time = TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,

1,2,3,4,5,6,7,8,9,10,

START = c(1920,1), FREQ = 1),

w2 = TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,

5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5,

START = c(1920,1), FREQ = 1)

)

R> kleinModel <- LOAD_MODEL_DATA(kleinModel, kleinModelData)

Load model data "kleinModelData" into model "klein1.txt"...

LOAD_MODEL_DATA(): warning, there are non-finite values in time series "time".

...LOAD MODEL DATA OK

Since time series and other data (e.g. regressor coefficients, error coefficients, constant adjust-
ments, targets, instruments, etc...) are stored in the model object, users can define multiple
model objects - each with its own arbitrary data - in the same R session. bimets makes it
possible to estimate, simulate and compare results from different models with different data
sets. Furthermore, users can easily save an estimated or a simulated model as a standard R

variable, thus reloading it later, having all available data and time series stored in it, i.e. en-
dogenous and exogenous time series, estimated coefficients, constant adjustments, simulation
options, simulated time series, calculated instruments, targets, etc.

An advanced MDL model example follows (original time series are manually adjusted in
order to fit the example):

R> lhsKlein1.txt <- "

MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,

COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> LHS functions on EQ

COMMENT> Exp Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> EXP(cn) = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)

COEFF> a1 a2 a3 a4

ERROR> AUTO(2)

COMMENT> Log Investment

BEHAVIORAL> i

TSRANGE 1925 1 1941 1

20 bimets: Time Series and Econometric Modeling in R

EQ> LOG(i) = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)

COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> w1 = c1 + c2*(TSDELTA(y)+t-w2) + c3*TSLAG(TSDELTA(y)+t-w2,1)+c4*time

COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Delta Gross National Product

IDENTITY> y

EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - t

COMMENT> Profits

IDENTITY> p

EQ> p = TSDELTA(y) - (w1+w2)

COMMENT> Capital Stock with switches

IDENTITY> k

EQ> k = TSLAG(k,1) + LOG(i)

IF> LOG(i) > 0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> LOG(i) <= 0

END"

R> #adjust the original data in order to estimate and to simulate the model

R> lhsKleinModelData <- within(kleinModelData,{

i = exp(i); #we have LOG(i) in the model MDL definition

cn = log(cn); #we have EXP(cn) in the model MDL definition

y = CUMSUM(y) #we have TSDELTA(y) in the model MDL definition

})

R> lhsKleinModel <- LOAD_MODEL(modelText = lhsKlein1.txt)

R> lhsKleinModel <- LOAD_MODEL_DATA(lhsKleinModel, lhsKleinModelData)

R> #ESTIMATE and SIMULATE functions are described later

R> lhsKleinModel <- ESTIMATE(lhsKleinModel)

R> lhsKleinModel <- SIMULATE(lhsKleinModel, TSRANGE = c(1925,1,1930,1))

Andrea Luciani 21

3.2. Estimation

The bimets ESTIMATE() function estimates equations that are linear in the coefficients, as
specified in the behavioral equations of the model object. Coefficients can be estimated for
single equations or blocks of simultaneous equations. The estimation function supports:

– Ordinary Least Squares;

– Instrumental Variables;

– Deterministic linear restrictions on the coefficients;

– Almon Polynomial Distributed Lags;

– Autocorrelation of the errors;

– Structural stability analysis;

Restrictions procedure derives from Lagrange Multipliers’ theory, while the Cochrane-Orcutt
method allows accounting for residuals autocorrelation.

The estimation of the previously defined Klein’s model is shown in the following example
(R output omitted):

R> kleinModel <- ESTIMATE(kleinModel, quietly = TRUE)

Users can also estimate a selection of behavioral equations:

R> kleinModel <- ESTIMATE(kleinModel, eqList = c('cn'))

ESTIMATE(): warning, there are non-finite values in time series "time".

Estimate the Model klein1.txt:

the number of behavioral equations to be estimated is 1.

The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn

Estimation Technique: OLS

cn = 16.2366

T-stat. 12.46382 ***

+ 0.1929344 p

T-stat. 2.115273 *

+ 0.0898849 TSLAG(p,1)

T-stat. 0.9915824

+ 0.7962187 (w1+w2)

T-stat. 19.93342 ***

22 bimets: Time Series and Econometric Modeling in R

STATs:

R-Squared : 0.9810082

Adjusted R-Squared : 0.9776567

Durbin-Watson Statistic : 1.367474

Sum of squares of residuals : 17.87945

Standard Error of Regression : 1.02554

Log of the Likelihood Function : -28.10857

F-statistic : 292.7076

F-probability : 7.993606e-15

Akaike's IC : 66.21714

Schwarz's IC : 71.43975

Mean of Dependent Variable : 53.99524

Number of Observations : 21

Number of Degrees of Freedom : 17

Current Sample (year-period) : 1921-1 / 1941-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

...ESTIMATE OK

A similar output is shown for each estimated regression. Once the estimation is completed,
coefficient values, residuals, statistics, etc. are stored in the model object.

R> #print estimated coefficients

R> kleinModel$behaviorals$cn$coefficients

[,1]

a1 16.2366003

a2 0.1929344

a3 0.0898849

a4 0.7962187

R> #print residuals

R> kleinModel$behaviorals$cn$residuals

Time Series:

Start = 1921

End = 1941

Frequency = 1

[1] -0.323893544 -1.250007790 -1.565741401 -0.493503129 0.007607907

[6] 0.869096295 1.338476868 1.054978943 -0.588557053 0.282311734

[11] -0.229653489 -0.322131892 0.322281007 -0.058010257 -0.034662717

[16] 1.616497310 -0.435973632 0.210054350 0.989201310 0.785077489

[21] -2.173448309

R> #print a selection of estimate statistics

R> kleinModel$behaviorals$cn$statistics$DegreesOfFreedom

Andrea Luciani 23

[1] 17

R> kleinModel$behaviorals$cn$statistics$StandardErrorRegression

[1] 1.02554

R> kleinModel$behaviorals$cn$statistics$CoeffCovariance

a1 a2 a3 a4

a1 1.6970227814 0.0005013886 -0.0177068887 -0.0329172192

a2 0.0005013886 0.0083192948 -0.0052704304 -0.0013188865

a3 -0.0177068887 -0.0052704304 0.0082170486 -0.0006710788

a4 -0.0329172192 -0.0013188865 -0.0006710788 0.0015955167

R> kleinModel$behaviorals$cn$statistics$AdjustedRSquared

[1] 0.9776567

R> kleinModel$behaviorals$cn$statistics$LogLikelihood

[1] -28.10857

3.3. Advanced Estimation

Below is an example of a model estimation that presents coefficient restrictions, PDL, error
autocorrelation, and conditional equation evaluations:

R> #define model

R> advancedKlein1.txt <-

"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,

COMMENT> autocorrelation on errors, restrictions and

COMMENT> conditional equation evaluations

COMMENT> Consumption with autocorrelation on errors

BEHAVIORAL> cn

TSRANGE 1923 1 1940 1

EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)

COEFF> a1 a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment with restrictions

BEHAVIORAL> i

TSRANGE 1923 1 1940 1

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)

COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor with PDL

24 bimets: Time Series and Econometric Modeling in R

BEHAVIORAL> w1

TSRANGE 1923 1 1940 1

EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time

COEFF> c1 c2 c3 c4

PDL> c3 1 2

COMMENT> Gross National Product

IDENTITY> y

EQ> y = cn + i + g - t

COMMENT> Profits

IDENTITY> p

EQ> p = y - (w1+w2)

COMMENT> Capital Stock with IF switches

IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF> i > 0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <= 0

END"

R> #load model and data

R> advancedKleinModel <- LOAD_MODEL(modelText = advancedKlein1.txt)

Analyzing behaviorals...

Analyzing identities...

Optimizing...

Loaded model "advancedKlein1.txt":

3 behaviorals

3 identities

12 coefficients

...LOAD MODEL OK

R> advancedKleinModel <- LOAD_MODEL_DATA(advancedKleinModel, kleinModelData)

Load model data "kleinModelData" into model "advancedKlein1.txt"...

LOAD_MODEL_DATA(): warning, there are non-finite values in time series "time".

...LOAD MODEL DATA OK

R> #estimate model

R> advancedKleinModel <- ESTIMATE(advancedKleinModel)

ESTIMATE(): warning, there are non-finite values in time series "time".

Estimate the Model advancedKlein1.txt:

the number of behavioral equations to be estimated is 3.

The total number of coefficients is 13.

Andrea Luciani 25

BEHAVIORAL EQUATION: cn

Estimation Technique: OLS

Autoregression of Order 2 (Cochrane-Orcutt procedure)

Convergence reached in 6 iterations.

cn = 14.82685

T-stat. 7.608453 ***

+ 0.2589094 p

T-stat. 2.959808 *

+ 0.01423821 TSLAG(p,1)

T-stat. 0.1735191

+ 0.8390274 (w1+w2)

T-stat. 14.67959 ***

ERROR STRUCTURE: AUTO(2)

AUTOREGRESSIVE PARAMETERS:

Rho Std. Error T-stat.

0.2542111 0.2589487 0.9817045

-0.05250591 0.2593578 -0.2024458

STATs:

R-Squared : 0.9826778

Adjusted R-Squared : 0.9754602

Durbin-Watson Statistic : 2.256004

Sum of squares of residuals : 8.071633

Standard Error of Regression : 0.8201439

Log of the Likelihood Function : -18.32275

F-statistic : 136.1502

F-probability : 3.873514e-10

Akaike's IC : 50.6455

Schwarz's IC : 56.8781

Mean of Dependent Variable : 54.29444

Number of Observations : 18

Number of Degrees of Freedom : 12

Current Sample (year-period) : 1923-1 / 1940-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

26 bimets: Time Series and Econometric Modeling in R

BEHAVIORAL EQUATION: i

Estimation Technique: OLS

i = 0.5348561

T-stat. 0.06197295

+ 0.6267204 p

T-stat. 4.835884 ***

+ 0.3732796 TSLAG(p,1)

T-stat. 2.88029 *

- 0.0796483 TSLAG(k,1)

T-stat. -1.871304

RESTRICTIONS:

b2+b3=1

RESTRICTIONS F-TEST:

F-value : 5.542962

F-prob(1,14) : 0.03368297

STATs:

R-Squared : 0.9009016

Adjusted R-Squared : 0.8876885

Durbin-Watson Statistic : 1.284709

Sum of squares of residuals : 23.40087

Standard Error of Regression : 1.249023

Log of the Likelihood Function : -27.90251

F-statistic : 68.18238

F-probability : 2.954599e-08

Akaike's IC : 63.80501

Schwarz's IC : 67.3665

Mean of Dependent Variable : 1.111111

Number of Observations : 18

Number of Degrees of Freedom : 15

Current Sample (year-period) : 1923-1 / 1940-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

Andrea Luciani 27

BEHAVIORAL EQUATION: w1

Estimation Technique: OLS

w1 = 2.916775

T-stat. 1.808594

+ 0.4229623 (y+t-w2)

T-stat. 10.32315 ***

+ c3 TSLAG(y+t-w2,1)

PDL

+ 0.1020647 time

T-stat. 3.048413 **

PDL:

c3 1 2

Distributed Lag Coefficient: c3

Lag Coeff. Std. Error T-stat.

0 0.1292072 0.06348684 2.035181

1 0.01035948 0.04266269 0.2428229

SUM 0.1395667 0.03801893

STATs:

R-Squared : 0.9806112

Adjusted R-Squared : 0.9746454

Durbin-Watson Statistic : 2.038182

Sum of squares of residuals : 6.59422

Standard Error of Regression : 0.7122132

Log of the Likelihood Function : -16.50329

F-statistic : 164.3727

F-probability : 5.454803e-11

Akaike's IC : 45.00658

Schwarz's IC : 50.34881

Mean of Dependent Variable : 36.41667

Number of Observations : 18

Number of Degrees of Freedom : 13

Current Sample (year-period) : 1923-1 / 1940-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

28 bimets: Time Series and Econometric Modeling in R

...ESTIMATE OK

3.4. Structural Stability

One of the main purposes of econometric modeling is its use for forecast and policy evalua-
tion and, to this end, the stability of any behavioral equation parameters over time should
be verified. In order to check for structural stability two different procedures, which can be
derived from the so-called Chow-tests2, are applied.

Given a sample of T0 = tk, ..., tn observations (i.e. the base TSRANGE) and selecting an ar-
bitrary forward extension in T1 = tk, ..., tn, ..., tm observations (i.e. the extended TSRANGE) we
have the following two regressions:

1. Y0 = β0 ∗X0 + ϵ0, ϵ0 ∼ N (0, σ2
0), having time series projected on the base TSRANGE

2. Y1 = β1 ∗X1 + ϵ1, ϵ1 ∼ N (0, σ2
1), having time series projected on the extended TSRANGE

In general, a stability analysis is carried on in the following ways:

– comparing the parameter estimates arising from the two regressions: this is known as
the covariance analysis;

– checking the accuracy of the forecast for the dependent variable in the extended TSRANGE,
using the estimates produced in the base TSRANGE: this is known as the predictive power
test.

The first Chow test (i.e. predictive failure) is calculated as:

τ = SSR1−SSR0

SSR0

DoF1

DoF1−DoF0
,

with SSRi as the sum of squared residuals and DoFi as the number of degrees of freedom in
the regression i = 0, 1.

The test is completed by calculating the following time series on the extended TSRANGE:

– the forecast error;

– the standard error of forecast;

– the t-statistic for the error;

The standard error of the forecast for the tj observation in the extended TSRANGE is computed
according to:

SEj = σ0

√

1 + x⊤
j ∗ (X⊤

0 ∗X0)−1 ∗ xj

2G. C. Chow, Tests of equality between sets of coefficients in two linear regressions. Econometrica, Vol 28,

4. July 1960

Andrea Luciani 29

having xj as the independent values (i.e. regressors) on the tj observation in the T1 ex-
tended TSRANGE, with n < j ≤ m.

The null hypothesis for τ is:

H∗ : β1 = β0, given σ2
1 = σ2

0

The test statistic τ follows the F distribution with (DoF1 −DoF0) and DoF1 degrees of free-
dom, and can be performed during the ESTIMATE() function execution by using the CHOWTEST

argument set to TRUE, and optionally by providing the argument CHOWPAR as an integer array,
i.e. c(year,period), built of the requested year and period in the extended TSRANGE.

Example:

R> #chow test for the consumption equation

R> #base TSRANGE set to 1921/1935

R> kleinModelChow <- ESTIMATE(kleinModel

,eqList = 'cn'

,TSRANGE = c(1921,1,1935,1)

,forceTSRANGE = TRUE

,CHOWTEST = TRUE)

ESTIMATE(): warning, there are non-finite values in time series "time".

Estimate the Model klein1.txt:

the number of behavioral equations to be estimated is 1.

The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn

Estimation Technique: OLS

cn = 13.12755

T-stat. 6.504605 ***

+ 0.1669801 p

T-stat. 2.183045

+ 0.08856838 TSLAG(p,1)

T-stat. 0.9750418

+ 0.887964 (w1+w2)

T-stat. 12.61002 ***

STATs:

R-Squared : 0.9787275

Adjusted R-Squared : 0.972926

30 bimets: Time Series and Econometric Modeling in R

Durbin-Watson Statistic : 1.379996

Sum of squares of residuals : 6.918601

Standard Error of Regression : 0.7930723

Log of the Likelihood Function : -15.4803

F-statistic : 168.7001

F-probability : 1.776731e-09

Akaike's IC : 40.96061

Schwarz's IC : 44.50086

Mean of Dependent Variable : 50.91333

Number of Observations : 15

Number of Degrees of Freedom : 11

Current Sample (year-period) : 1921-1 / 1935-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

STABILITY ANALYSIS:

Behavioral equation: cn

Chow test:

Sample (auto) : 1936-1 / 1941-1

F-value : 4.488731

F-prob(6,17) : 0.006687229

Predictive Power:

Date, Prd., Actual , Predict , Error , Std. Error , T-stat

1936, 1 , 57.7 , 56.55436 , 1.145638 , 1.01181 , 1.132265

1937, 1 , 58.7 , 59.93099 , -1.230988 , 1.020099 , -1.206734

1938, 1 , 57.5 , 57.97212 , -0.4721225 , 0.9686377 , -0.4874087

1939, 1 , 61.6 , 61.52069 , 0.0793139 , 1.200479 , 0.06606853

1940, 1 , 65 , 65.39572 , -0.3957177 , 1.242267 , -0.3185448

1941, 1 , 69.7 , 73.79655 , -4.096547 , 1.669299 , -2.454053

...ESTIMATE OK

Andrea Luciani 31

3.5. Simulation

The simulation of an econometric model basically consists in solving the system of the equa-
tions describing the model for each time period in the specified time interval. Since the
equations may not be linear in the variables, and since the graph derived from the incidence
matrix may be cyclic, the usual methods based on linear algebra are not applicable. The
simulation must be solved by using an iterative algorithm.

bimets simulation capabilities support:

– Static simulations: in which the historical values for the lagged endogenous variables
are used in the solutions of subsequent periods;

– Dynamic simulations: in which the simulated values for the lagged endogenous variables
are used in the solutions of subsequent periods;

– Forecast simulations: similar to dynamic simulation, but during the initialization of the
iterative algorithm the starting values of endogenous variables in a period are set equal
to the simulated values of the previous period. This allows the simulation of future
endogenous observations, i.e. the forecast;

– Stochastic Simulation: see par. 3.9;

– Residuals check: a single period, single equation simulation; output simulated time
series are just the RHS (right-hand-side) computation of their equation, by using the
historical values of the involved time series and by accounting for error autocorrelation
and PDLs, if any;

– Partial or total exogenization of endogenous variables: in the provided time interval
(i.e. partial exog.) or in whole simulation time range (i.e. total exog.), the values of
the selected endogenous variables can be definitely set equal to their historical values,
by excluding their equations from the iterative algorithm of simulation;

– Constant adjustment of endogenous variables (add-factors): adds up a new exogenous
time series - the "constant adjustment" - in the equation of the selected endogenous
variables;

– Gauss-Seidel and Newton-Raphson simulation algorithms: the Gauss-Seidel algorithm
is simple, robust, and works well for many backward-looking macro-econometric models.
Equations are evaluated as-is in a proper order until the convergence, if any, is verified
on feedback variables. It is slower than Newton-Raphson algorithms for a very low con-
vergence criterion, and fails to find a convergence for a small set of econometric models,
even when a convergence exists. The Newton-Raphson algorithm allows users to solve
a broader set of macro-econometric models than the Gauss-Seidel algorithm. Moreover,
it is usually faster than the Gauss-Seidel algorithm (on modern computers, users must
simulate an extensive econometric model with a low convergence criterion to appreciate
the speedup). This type of algorithm requires the construction and the inversion of the
Jacobian matrix for the feedback variables; thus, in some scenarios, numerical issues
can arise, and users are required to manually exclude some feedback variables from the
Jacobian matrix by using the JacobianDrop argument of the SIMULATE procedure.

32 bimets: Time Series and Econometric Modeling in R

In details, the generic model suitable for simulation in bimets can be written as:

y1 = f1(x̄, ȳ)
...
yn = fn(x̄, ȳ)

being:
n the number of equations in the model;
ȳ = [y1, ..., yn] the n-dimensional vector of the endogenous variables;
x̄ = [x1, ..., xm] the m-dimensional vector of the exogenous variables;
fi(...), i = 1..n any kind of functional expression able to be written by using the MDL syntax;

As described later on, a modified Gauss-Seidel iterative algorithm, or a Newton-Raphson
algorithm, can solve the system of equations. The convergence properties may vary depend-
ing on the model specifications. In some conditions, the algorithm may not converge for a
specific model or a specific set of data.

A convergence criterion and a maximum number of iterations to be performed are provided
by default. Users can change these criteria by using the simConvergence and simIterLimit

arguments of the SIMULATE() function.

The general conceptual scheme of the simulation process (for each time period) is the fol-
lowing:

1. initialize the solution for the current simulation period;

2. iteratively solve the system of equations;

3. save the solution, if any;

Step 2 means that for each iteration, the operations are:

2.1 update the values of the current endogenous variables;

2.2 verify that the convergence criterion is satisfied or that the maximum number of allowed
iterations has been reached;

The initial solution for the iterative process (step 1) can be given alternatively by:

– the historical value of the endogenous variables for the current simulation period (the
default);

– the simulated value of the endogenous variables from the previous simulation period
(this alternative is driven by the simType=’FORECAST’ argument of the SIMULATE()

function);

In the "dynamic" simulations (i.e. simulations performed by using either the default
simType = ’DYNAMIC’ or the simType = ’FORECAST’), whenever lagged endogenous vari-
ables are needed in the computation, the simulated values of the endogenous variables ȳ

Andrea Luciani 33

assessed in the previous time periods are used. In this case, the simulation results in a given
time period depend on the simulation results in the previous time periods. This kind of sim-
ulation is defined as "multiple equation, multiple period".

As an alternative, the actual historical values can be used in the "static" simulations (i.e.
simulations performed by using simType = ’STATIC’) rather than simulated values when-
ever lagged endogenous variables are needed in the computations. In this case, the simulation
results in a given time period do not depend on the simulation results in the previous time
periods. This kind of simulation is defined as "multiple equation, single period".

The last simulation type available is the residual check (simType = ’RESCHECK’). With this
option, a "single equation, single period" simulation is performed. In this case, no iteration
must be carried out. The endogenous variables are assessed for each time period by using
historical values for each variable on the right-hand side of their equation, for both lagged
and current periods. This kind of simulation helps debug and check of the logical coherence
of the equations and the data, and can be used as a simple tool to compute the add-factors.

The debugging of the logical coherence of equations and data is carried out through a Residual
Check procedure.

It consists of the following steps:

1. add another exogenous variable - the constant adjustment - to every equation of the
model, both behavioral and technical identity: that can be done in bimets by using the
ConstantAdjustment argument of the SIMULATE function, as in step 3;

2. fill in with the estimated residuals all the constant adjustments for the behavioral equa-
tions, and fill in with zeroes the constant adjustments for the technical identities: that can be
done in bimets by using the SIMULATE procedure with the option simType=’RESCHECK’, then
by analyzing and using the ConstantAdjustmentRESCHECK attribute of the simulated model,
as in the following simulation in step 3.
3. perform a simulation of the model: that can be done in bimets by using the SIMULATE

procedure with the option ConstantAdjustment=ConstantAdjustmentRESCHECK;
4. compute the difference between the historical and the simulated values for all the endoge-
nous variables;
5. check whether all the differences assessed in step 4 are zero in whole time range, eventually
accounting for the error autocorrelation in behaviorals.

An example on ConstantAdjustmentRESCHECK usage is available at the end of the SIMULATE

help page in the reference manual;

If a perfect tracking of the history is obtained, then the equations have been written co-
herently with the data, otherwise a simulated equation not tracking the historical values is
an unambiguous symptom of data inconsistent with the model definition.

Back to Kelin’s model example, let’s forecast the GNP3 (i.e. the "y" endogenous variable) up
to 1944:

3originally referred as "Net national income, measured in billions of 1934 dollars", pag. 141 in "Economic

https://CRAN.R-project.org/package=bimets/bimets.pdf

34 bimets: Time Series and Econometric Modeling in R

R> #FORECAST GNP in 1942:1944

R> #we need to extend exogenous variables in 1942 up to 1944

R> #in this exercise we perform a simple time series extension

R> kleinModel$modelData <- within(kleinModel$modelData,{

w2 = TSEXTEND(w2, UPTO = c(1944,1), EXTMODE = 'CONSTANT')

t = TSEXTEND(t, UPTO = c(1944,1), EXTMODE = 'CONSTANT')

g = TSEXTEND(g, UPTO = c(1944,1), EXTMODE = 'CONSTANT')

time = TSEXTEND(time, UPTO = c(1944,1), EXTMODE = 'LINEAR')

})

R> #simulate model

R> kleinModel <- SIMULATE(kleinModel

,simType = 'FORECAST'

,TSRANGE = c(1941,1,1944,1)

,simConvergence = 0.00001

,simIterLimit = 100

,quietly = TRUE

)

R> #get forecasted GNP

R> TABIT(kleinModel$simulation$y)

Date, Prd., kleinModel$simulation$y

1941, 1 , 95.41613

1942, 1 , 106.8923

1943, 1 , 107.4302

1944, 1 , 100.7512

R> #save simulated time series to csv

R> BIMETS2CSV(

kleinModel$simulation[kleinModel$vendog],

filePath='temp.csv',

mergeList=TRUE,

overWrite=TRUE)

Fluctuations in the United States 1921-1941" by L. R. Klein, Wiley and Sons Inc., New York, 1950

Andrea Luciani 35

3.6. Rational Expectations

bimets classifies a model as a forward-looking model if any model equation contains the
TSLEAD time series function. Forward-looking models assume that economic agents have com-
plete knowledge of an economic system and calculate the future value of economic variables
correctly according to that knowledge. Thus, forward-looking models are called also rational
expectations models and, in macro-econometric models, model-consistent expectations.

In forward-looking models, simulation complexity arises, and all simulation periods must
be solved simultaneously because equations can contain references to past and future val-
ues. Thus, given N simulation periods requested by the user, each model equation must
be replicated N-1 times and modified before the simulation takes place, accounting for lead
transformations. Finally, the extended model must be simulated as a single block of equations.

Internal data structures too, such as the incidence and the Jacobian matrix, and the re-
ordering arrays vpre and vblocks (described later in the The Optimal Reordering, par. 3.7)
section), grow with the number of simulation periods requested by the user. Therefore, they
can only be calculated when a new simulation is requested rather than when the model MDL

definition is parsed, further extending computational time in simulation.

To understand bimets internals when dealing with forward-looking models, please consider
the following simple example of a forward-looking model having a single identity:

36 bimets: Time Series and Econometric Modeling in R

IDENTITY> Y

EQ> Y = TSLEAD(Y) - TSLAG(Y) + X

Given X as an exogenous variable, if the requested simulation has a TSRANGE that spans
two periods, then the model will be internally transformed into something like:

IDENTITY> Y

EQ> Y = Y__LEAD__1 - TSLAG(Y) + X

IDENTITY> Y__LEAD__1

EQ> Y__LEAD__1 = TSLEAD(Y,2) - Y + TSLEAD(X)

Accordingly, the model will be simulated only on the first period of the TSRANGE. Please
note that TSLAG(Y) in the first equation, and TSLEAD(Y,2) in the second equation, are a
kind of exogenous variables and must be defined in order for the simulation to be completed.
Moreover, Y and Y__LEAD__1 are simultaneously involved in the iterative simulation algo-
rithm, and both depend on each other, as also stated in the incidence matrix for the extended
model:

$incidence_matrix
Y Y__LEAD__1

Y 0 1

Y__LEAD__1 1 0

Due to the mechanism described above, only DYNAMIC simulations are allowed in forward-
looking models. A Klein-like forward-looking model example is available in the SIMULATE

help page of the reference manual.

3.7. The Optimal Reordering

In fact, the simulation process takes advantage of an appropriate equations reordering to in-
crease the performances by iteratively solving only one subset of equations, while the others
are solved straightforwardly4.

For backward-looking models, the LOAD_MODEL() function builds the model’s incidence ma-
trix, then defines the proper equation reordering. The incidence matrix is built from the
equations of the model; it is a square matrix in which each row and each column represent an
endogenous variable. If the (i,j) element is equal to 1 then in the model definition the cur-
rent value of the endogenous variable referred by the i-row depends directly from the current
value of the endogenous variable referred by the j-column. The reader can see an incidence
matrix example in the par. 3.1 wherein the content of the kleinModel$incidence_matrix

4"...a different ordering of the equations can substantially affect the speed of convergence of the algorithm;

indeed some orderings may produce divergence. The less feedback there is, the better the chances for fast

convergence..." - Don, Gallo - Solving large sparse systems of equations in econometric models - Journal of

Forecasting 1987.

https://CRAN.R-project.org/package=bimets/bimets.pdf

Andrea Luciani 37

variable is printed out.

In econometric models, the incidence matrix is usually very sparse. Only a few of the total
set of endogenous variables are used in each equation. In this situation, ordering the equation
in a particular sequence will lead to a sensible reduction of the number of iterations needed to
achieve convergence. Reordering the equations is equivalent to rearranging rows and columns
of the incidence matrix. In this way, the incidence matrix might be made lower triangular for
a subset of the equations. For this subset, an endogenous variable determined in a specific
equation has no incidence in any equation above it, although the same variable might have
incidence in equations below it. Such a subset of equations is called recursive. Recursive
systems are easy to solve. It is only necessary to solve each equation once if this is done
in the proper order. On the other hand, it is unlikely for the whole model to be recursive.
Indeed the incidence graph is often cyclic, as in the Klein’s model that presents the following
circular dependencies in the incidence matrix: p <- w1 <- y <- i <- p, as shown in the
par. 3.1 figure.

For a subset of the equations, some 1’s will occur in the upper triangle of the incidence
matrix for all possible orderings. Such a subset of equations is called simultaneous. To solve
the endogenous variables in the simultaneous block of equations, an iterative algorithm has
to be used. Nevertheless, the equations in the simultaneous block may be ordered so that the
pattern of the 1’s in the upper triangle of the incidence matrix forms a spike. The variables
corresponding to the 1’s in the upper triangle are called feedback variables.

A qualitative graphical example of an ordered incidence matrix is given in the following
figure. The white areas are all 0’s, the gray areas contain both 0’s and 1’s. The 1’s in the
light gray areas refer to variables already assessed in previous subset of equations, therefore
they are known terms within the current subset The 1’s in the dark gray areas refer to vari-
ables assessed within the current subset.

38 bimets: Time Series and Econometric Modeling in R

In bimets, the final pattern of an incidence matrix after the equation reordering generally
features N+1 blocks:

1. One a recursive subset of equations, i.e. the pre-recursive VPRE in image;

2. N blocks of equations, VBLOCK in image, each built with a simultaneous VSIM and a
post-recursive VPOST subset of equations;

As said, the pre-recursive and the post-recursive subsets are lower triangular. Therefore the
corresponding equations are solvable with a cascade substitution with no iteration. Only the
simultaneous equations subset needs an iterative algorithm to be solved. It is important to
say that the convergence criterion may also be applied to feedback variables only: when the
feedback variables converge, the rest of the simultaneous variables also do.

bimets builds and analyzes the model’s incidence matrix, and then it i) computes the strongly
connected component of the related incidence graph by using the Tarjan algorithm5, and ii)
orders the equations in pre-recursive and, for each block of equations, in simultaneous and
post-recursive subsets. The simultaneous subsets are then analyzed in order to find a minimal
set of feedback variables. This last problem is known to be NP-complete6.

The optimal reordering of the model equations is programmatically achieved through the

5Tarjan, Robert - Depth-first search and linear graph algorithms - SIAM Journal on Computing - June 1972
6Garey, Johnson - Computers and Intractability: a Guide to the Theory of NP-completeness - San Francisco,

Freeman 1979

Andrea Luciani 39

use of an iterative algorithm applied to the incidence matrix that can produce 1+3*N ordered
lists of endogenous variables:

1. One list vpre is the ordered list containing the names of the endogenous pre-recursive
variables to be sequentially computed (once per simulation period) before the simulation
iterative algorithm takes place;

2. For each of the N elements in the vblocks list:

(a) One list vsim (the simultaneous subset) that is the ordered list containing the
names of the endogenous variables to be sequentially computed during each itera-
tion of the simulation iterative algorithm;

(b) One list vfeed that is the list containing the names of the endogenous feedback
variables; generally vfeed are the last variables of the ordered vsim list in the same
block;

(c) One list vpost that is the ordered list containing the names of the endogenous post-
recursive variables to be sequentially computed (once per simulation period) after
the simulation iterative algorithm has found a solution in the previous simultaneous
subset in the same block;

Once equations are reordered, the previous conceptual scheme is modified as follows:

– initialize the solution for the current simulation period;

– compute the pre-recursive equations (i.e. the equation of the endogenous variables in
the vpre ordered list);

– for each block in vblocks:

— iteratively compute the system of simultaneous equations (i.e. the equation of
the endogenous variables in the vsim ordered list): for each iteration i) update
the values of the current endogenous variables, ii) update the feedback variables
accordingly to the simulation algorithm in use (see next section for details on
simulation algorithms) and iii) verify that the convergence criterion is satisfied on
the feedback variables vfeed or that the maximum number of iterations has been
reached;

— compute the post-recursive equations (i.e. the equation of the endogenous variables
in the vpost ordered list);

– finally, save the solutions;

Clearly, each endogenous variable is updated accordingly to its related equation EQ> in the
MDL model definition.

In forward-looking models, the incidence matrix and the equations reordering depend on
the simulation periods count, therefore the model attributes incidence_matrix, vblocks,
and vpre are calculated only after a simulation has been initialized, and will be available to
users in the model$simulation[[’__SIM_PARAMETERS__’]] lists.

40 bimets: Time Series and Econometric Modeling in R

The reader can see an equations reordering example in the Model Description Language,
par. 3.1, wherein the content of the kleinModel$vpre and kleinModel$vblocks variables
are printed out.

3.8. The Simulation Algorithms

Given xj the j-exogenous variable, j = 1..m, and yi,k the value of the i-endogenous variable,
i = 1..n, in the simultaneous block at the iteration k, with i the position of the equation
in a reordered model, the modified Gauss-Seidel method takes for the approximation of the
endogenous variable yi,k the solution of the following:

yi,k = fi(x1, ..., xm, y1,k, ..., yi−1,k, yi,k−1, ..., yn,k−1)

Newton-Raphson methods can be seen as an extension of the modified Gauss-Seidel algo-
rithm, and a further step is required: in Newton-Raphson, feedback variables are updated
not by using their model equations, but by using the inverse of the Jacobian matrix and the
following assignment:

ȳF
k ← ȳF

k−1 + (I − J)−1[ȳF
k − ȳF

k−1]

given the vector of feedback variables values ȳF
k = [yn−F +1,k, ..., yn,k] at iteration k, the iden-

tity matrix I, and the Jacobian matrix J , with I, J ∈ RF,F and F equal to the number of
feedback variables for the given block of equations. Please note that the modified Gauss-
Seidel algorithm can be seen as a reduced form of a Netwotn algorithm, given J = 0.

In Newton-Raphson methods, the Jacobian matrix J is calculated as follows:
1 - shock the feedback variables one at a time by a small amount;
2 - for each shocked feedback variable, evaluate the shocked solution of the simultaneous
block;
3 - calculate the derivatives (i.e. the column in the Jacobian matrix related to the shocked
feedback variable) using the difference quotients between the shocked and the base solution
of the simultaneous block.

As said, the convergence is tested at each iteration’s end on the feedback variables.

Newton-Raphson’s methods on a reordered model require the calculation of the Jacobian
matrix on the feedback endogenous variables, i.e. at least F + 2 iterations per simulation
period, with F as the number of feedback variables. For large models (i.e. more than 30 feed-
back variables) if the overall required convergence is greater than 10−6% the speedup over
the Gauss-Seidel method is small or negative, if the Jacobian matrix is recalculated at each
iteration. Moreover, the Gauss-Seidel method does not require a matrix inversion; therefore,
it is more robust against algebraical and numerical issues. For small models, both methods
are fast on modern computers.

On the other hand, Gausse-Seidel fails to find a convergence for a small set of economet-

Andrea Luciani 41

ric models, even when a convergence exists. In general, given a system of equations Ax = b,
with x, b ∈ Rn, n > 0 and A ∈ Rn,n, the Gauss-Seidel algorithm is known to converge if either:
- A is symmetric positive-definite;
- A is strictly or irreducibly diagonally dominant.

To improve simulation speed, bimets evaluates the Newton-Raphson algorithm performance
during simulation, and, at each iteration, a new Jacobian matrix is calculated only if the
convergence speed is slower than a predefined threshold.

The simulation of a non-trivial model, if computed by using the same data but on differ-
ent hardware, software or numerical libraries, may produce numerical differences. Therefore
a convergence criterion smaller than 10−7% frequently leads to a local solution.

See Numerical methods for simulation and optimal control of large-scale macroeconomic mod-
els - Gabay, Nepomiastchy, Rachidi, Ravelli - 1980 for further information.

Below is an example of advanced simulation using the Newton-Raphson algorithm:

R> #DYNAMIC NEWTON SIMULATION EXAMPLE WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS

R>

R> #define exogenization list

R> #'cn' exogenized in 1923-1925

R> #'i' exogenized in whole TSRANGE

R> exogenizeList <- list(

cn = c(1923,1,1925,1)

,i = TRUE

)

R> #define add-factor list

R> constantAdjList <- list(

cn = TIMESERIES(1,-1, START = c(1923,1), FREQ = 'A')

,y = TIMESERIES(0.1,-0.1,-0.5, START = c(1926,1), FREQ = 'A')

)

R> #simulate model

R> kleinModel <- SIMULATE(kleinModel

,simAlgo='NEWTON'

,simType = 'DYNAMIC'

,TSRANGE = c(1923,1,1941,1)

,simConvergence = 0.00001

,simIterLimit = 100

,Exogenize = exogenizeList

,ConstantAdjustment = constantAdjList

)

Below is an example of a Klein model forecasting exercise in three alternative exogenous
scenarios:

R> #COMPARE FORECAST IN 3 ALTERNATIVE

R> #EXOGENOUS SCENARIOS

42 bimets: Time Series and Econometric Modeling in R

R>

R> #create 3 new models for the 3 scenarios

R> modelScenario1 <- advancedKleinModel

R> modelScenario2 <- advancedKleinModel

R> modelScenario3 <- advancedKleinModel

R> #scenario 1, define exogenous paths

R> modelScenario1$modelData <- within(modelScenario1$modelData,{

k = TSEXTEND(k, UPTO=c(1943,1))

w2 = TSEXTEND(w2, UPTO=c(1943,1))

t = TSEXTEND(t, UPTO=c(1943,1))

g = TSEXTEND(g, UPTO=c(1943,1))

time = TSEXTEND(time,UPTO=c(1943,1)

,EXTMODE='LINEAR')

})

R> #scenario 2, define exogenous paths

R> modelScenario2$modelData <- within(modelScenario2$modelData,{

k = TSEXTEND(k, UPTO=c(1943,1))

w2 = TSEXTEND(w2, UPTO=c(1943,1))

t = TSEXTEND(t, UPTO=c(1943,1))

g = TSEXTEND(g, UPTO=c(1943,1)

,EXTMODE='LINEAR')

time = TSEXTEND(time,UPTO=c(1943,1)

,EXTMODE='LINEAR')

})

R> #scenario 3, define exogenous paths

R> #we also change consumption cn add-factor

R> modelScenario3$modelData <- within(modelScenario3$modelData,{

k = TSEXTEND(k, UPTO=c(1943,1))

w2 = TSEXTEND(w2, UPTO=c(1943,1)

,EXTMODE='MEAN4')

t = TSEXTEND(t, UPTO=c(1943,1))

g = TSEXTEND(g, UPTO=c(1943,1)

,EXTMODE='LINEAR')

time = TSEXTEND(time,UPTO=c(1943,1)

,EXTMODE='LINEAR')

})

R> constantAdjListScenario3 <- constantAdjList

R> constantAdjListScenario3$cn[[1941,1]] <- c(1,2,3)

R> #simulate the 3 models

R> modelScenario1 <- SIMULATE(modelScenario1

,simAlgo='NEWTON'

,simType='FORECAST'

,TSRANGE=c(1940,1,1943,1)

,simConvergence=1e-5

,simIterLimit=20

,quietly=TRUE)

R> modelScenario2 <- SIMULATE(modelScenario2

,simAlgo='NEWTON'

Andrea Luciani 43

,simType='FORECAST'

,TSRANGE=c(1940,1,1943,1)

,simConvergence=1e-5

,simIterLimit=20

,quietly=TRUE)

R> modelScenario3 <- SIMULATE(modelScenario3

,simAlgo='NEWTON'

,simType='FORECAST'

,TSRANGE=c(1940,1,1943,1)

,simConvergence=1e-5

,simIterLimit=20

,ConstantAdjustment=constantAdjListScenario3

,quietly=TRUE)

R> #compare results on GNP

R> TABIT(modelScenario1$simulation$y,

modelScenario2$simulation$y,

modelScenario3$simulation$y)

Date, Prd., modelScenario1$simulation$y, modelScenario2$simulation$y, modelScenario3$simulation$y

1940, 1 , 85.90719 , 85.90719 , 85.90719

1941, 1 , 140.018 , 140.018 , 147.4762

1942, 1 , 256.1528 , 233.0955 , 258.7197

1943, 1 , 461.0662 , 349.0985 , 404.442

3.9. Stochastic Simulation

Forecasts produced by structural econometric models are subject to several sources of error,
such as random disturbance term of each stochastic equation, errors in estimated coefficients,
errors in forecasts of exogenous variables, errors in preliminary data and mis-specification of
the model.

The forecast error depending on the structural disturbances can be analyzed using the stochas-
tic simulation procedure.

The deterministic simulation is the simultaneous solution of an econometric model obtained
by applying, for each stochastic (behavioral) equation, the expected values of the structural
disturbances, which are all zero by assumption. In the bimets STOCHSIMULATE stochastic sim-
ulation, the structural disturbances are given values that have specified stochastic properties.
The error terms of the estimated behavioral equation of the model are appropriately per-
turbed. Identity equations and exogenous variables can be as well perturbed by disturbances
that have specified stochastic properties. The model is then solved for each data set with
different values of the disturbances. Finally, mean and standard deviation are computed for
each simulated endogenous variable.

In terms of computational efficiency, the procedure takes advantage of the fact that mul-
tiple datasets are bound together in matrices. Therefore, to achieve a global convergence, the
iterative simulation algorithm is executed once for all perturbed datasets. This solution can

44 bimets: Time Series and Econometric Modeling in R

be viewed as a sort of a SIMD (i.e. Single Instruction Multiple Data) parallel simulation: the
STOCHSIMULATE function transforms time series into matrices; consequently, the procedure
can easily bind multiple datasets by column. At the same time, a single run ensures a fast
code execution. Finally, each column in the output matrices represents a stochastic realiza-
tion.

By using the StochStructure argument of this function, users can define a stochastic struc-
ture for the disturbances. For each variable of the model, users can provide a distinct distri-
bution and time range for the disturbance. Mean and standard deviation for each simulated
endogenous time series will be stored in the stochastic_simulation element of the output
model object; all the stochastic realizations will be stored in the simulation_MM element of
the output model object as named matrices.

In the following example, we will perform a stochastic forecast of the previously estimated
advancedKleinModel. The advanced Klein model will be perturbed during the forecast op-
eration by applying a normal disturbance to the endogenous Consumption behavioral cn

in year 1942, and a uniform disturbance to the exogenous Government Expenditure time
series g along all the simulation TSRANGE. The normal disturbance applied to the cn be-
havioral has a zero mean and a standard deviation equal to its regression standard error,
i.e. advancedKleinModel$behaviorals$cn$statistics$StandardErrorRegression, thus
roughly replicating the ESTIMATE regression error during the current perturbation (not ac-
counting for inter-equations cross-covariance).

R> #we want to perform a stochastic forecast of the GNP up to 1944

R> #we will add normal disturbances to endogenous Consumption 'cn'

R> #in 1942 by using its regression standard error

R> #we will add uniform disturbances to exogenous Government Expenditure 'g'

R> #in whole TSRANGE

R> myStochStructure <- list(

cn = list(

TSRANGE = c(1942,1,1942,1)

,TYPE = 'NORM'

,PARS = c(0,advancedKleinModel$behaviorals$cn$statistics$StandardErrorRegression)

),

g = list(

TSRANGE = TRUE

,TYPE = 'UNIF'

,PARS = c(-1,1)

)

)

R> #we need to extend exogenous variables up to 1944

R> advancedKleinModel$modelData <- within(advancedKleinModel$modelData,{

w2 = TSEXTEND(w2, UPTO = c(1944,1), EXTMODE = 'CONSTANT')

t = TSEXTEND(t, UPTO = c(1944,1), EXTMODE = 'LINEAR')

g = TSEXTEND(g, UPTO = c(1944,1), EXTMODE = 'CONSTANT')

k = TSEXTEND(k, UPTO = c(1944,1), EXTMODE = 'LINEAR')

time = TSEXTEND(time, UPTO = c(1944,1), EXTMODE = 'LINEAR')

Andrea Luciani 45

})

R> #stochastic model forecast

R> advancedKleinModel <- STOCHSIMULATE(advancedKleinModel

,simType = 'FORECAST'

,TSRANGE = c(1941,1,1944,1)

,StochStructure = myStochStructure

,StochSeed = 123

,quietly = TRUE)

R> #print mean and standard deviation of forecasted GNP

R> with(advancedKleinModel$stochastic_simulation, TABIT(y$mean, y$sd))

Date, Prd., y$mean , y$sd

1941, 1 , 125.5045 , 4.250935

1942, 1 , 173.2946 , 9.2632

1943, 1 , 185.9602 , 11.87774

1944, 1 , 141.0807 , 11.6973

R> #print the unperturbed forecasted GNP along with the

R> #first 5 perturbed realizations

R> with(advancedKleinModel$simulation_MM, print(y[,1:6]))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 125.2511 121.3591 123.7998 120.3449 121.0243 123.0448

[2,] 172.3125 170.2987 174.5269 170.0456 169.3925 168.6419

[3,] 185.2961 186.5037 187.3361 185.0368 177.2287 186.3369

[4,] 140.8831 145.1024 139.5191 139.5570 135.5024 151.5389

46 bimets: Time Series and Econometric Modeling in R

At the moment, all the disturbances are i.i.d. and are not transformed into a congruent
autoregressive scheme in case the related perturbed endogenous behavioral presents an auto-
correlation for the errors in its MDL definition, e.g. ERROR> AUTO(n)

Users can also pass an arbitrary matrix to the stochastic simulation algorithm, by using
the TYPE=’MATRIX’ directive in the StochStructure argument: in this case PARS=matrix

with matrix as a [TSRANGE x StochReplica] matrix. An example follows:

R> TSRANGE <- c(1935,1,1940,1)

R> StochReplica <- 100

R> #we will perturb simulation by using regression residuals

R> #get cn and i residuals in TSRANGE

R> cn_residuals <- TSPROJECT(advancedKleinModel$behaviorals$cn$residuals,

TSRANGE=TSRANGE,

ARRAY = TRUE)

R> i_residuals <- TSPROJECT(advancedKleinModel$behaviorals$i$residuals,

TSRANGE=TSRANGE,

ARRAY = TRUE)

R> #define stochastic matrices

R> cn_matrix <- c()

R> i_matrix <- c()

R> #populate matrices

Andrea Luciani 47

R> for (idx in 1:StochReplica)

{

rand <- rnorm(1,0,1)

cn_matrix <- cbind(cn_matrix,rand*cn_residuals)

i_matrix <- cbind(i_matrix,rand*i_residuals)

}

R> #define stochastic structure

R> myStochStructure <- list(

cn=list(

TSRANGE=TRUE,

TYPE='MATRIX',

PARS=cn_matrix

),

i=list(

TSRANGE=TRUE,

TYPE='MATRIX',

PARS=i_matrix

)

)

R> #stochastic simulation

R> advancedKleinModel <- STOCHSIMULATE(advancedKleinModel

,TSRANGE=TSRANGE

,StochStructure=myStochStructure

,quietly = TRUE)

R> #print GNP mean and sd

R> with(advancedKleinModel$stochastic_simulation,TABIT(y$mean, y$sd))

Date, Prd., y$mean , y$sd

1935, 1 , 50.22247 , 3.077131

1936, 1 , 39.53867 , 21.64031

1937, 1 , 35.53497 , 23.75123

1938, 1 , 45.1226 , 12.42018

1939, 1 , 58.64743 , 9.648934

1940, 1 , 76.91834 , 23.7928

48 bimets: Time Series and Econometric Modeling in R

3.10. Multipliers Analysis

The bimets MULTMATRIX() function computes the matrix of both impact and interim multi-
pliers, for a selected set of endogenous variables (i.e. TARGET) with respect to a selected set of
exogenous variables (i.e. INSTRUMENT), by subtracting the results from different simulations
in each period of the provided time range (i.e. TSRANGE). The simulation algorithms are the
same as those used for the SIMULATE() operation.

The MULTMATRIX() procedure is articulated as follows:

1. simultaneous simulations are done;

2. the first simulation establishes the base line solution (without shocks);

3. the other simulations are done with shocks applied to each of the INSTRUMENT one at a
time for every period in TSRANGE;

4. each simulation follows the defaults described in the "Simulation" section, but has to be
STATIC for the IMPACT multipliers and DYNAMIC for INTERIM multipliers;

5. given MM_SHOCK shock amount as a very small positive number, derivatives are computed
by subtracting the base line solution of the TARGET from the shocked solution, then
dividing by the value of the base line INSTRUMENT times the MM_SHOCK;

The IMPACT multipliers measure the effects of impulse exogenous changes on the endoge-
nous variables in the same time period. They can be defined as partial derivatives of each
current endogenous variable with respect to each current exogenous variable, all other exoge-
nous variables being kept constant.

Given Y (t) an endogenous variable at time t and X(t) an exogenous variable at time t,
the impact multiplier m(Y, X, t) is defined as m(Y, X, t) = ∂Y (t)/∂X(t) and can be approx-
imated by m(Y, X, t) ≈ (Yshocked(t)− Y (t))/(Xshocked(t)−X(t)), with Yshocked(t) the values
fo the simulated endogenous variable Y at time t when X(t) is shocked to
Xshocked(t) = X(t)(1 + MM_SHOCK)

The INTERIM or delay-r multipliers measure the delay-r effects of impulse exogenous changes
on the endogenous variables in the same time period. The delay-r multipliers of the endoge-
nous variable Y with respect to the exogenous variable X related to a dynamic simulation from
time t to time t+r can be defined as the partial derivative of the current endogenous variable
Y at time t+r with respect to the exogenous variable X at time t, all other exogenous variables
being kept constant.

Given Y (t + r) an endogenous variable at time t + r and X(t) an exogenous variable at time
t the interim or delay-r multiplier m(Y, X, t, r) is defined as m(Y, X, t, r) = ∂Y (t + r)/∂X(t)
and can be approximated by m(Y, X, t, r) ≈ (Yshocked(t + r)− Y (t + r))/(Xshocked(t)−X(t)),
with
Yshocked(t + r) the values fo the simulated endogenous variable Y at time t + r when X(t) is
shocked to Xshocked(t) = X(t)(1 + MM_SHOCK)

bimets users can also declare an endogenous variable as the INSTRUMENT variable. In this

Andrea Luciani 49

case, the constant adjustment (see Simulation 3.5) related to the provided endogenous vari-
able will be used as the INSTRUMENT exogenous variable.

Back to our Klein’s model example, we can calculate impact multipliers of Government Ex-
penditure "g" and Government Wage Bill "w2" with respect of Consumption "cn" and Gross
National Product "y" in the year 1941 by using the previously estimated model:

R> kleinModel <- MULTMATRIX(kleinModel

,TSRANGE = c(1941,1,1941,1)

,INSTRUMENT = c('w2','g')

,TARGET = c('cn','y')

)

Multiplier Matrix: 100.00 %

...MULTMATRIX OK

R> kleinModel$MultiplierMatrix

w2_1 g_1

cn_1 0.4540346 1.671956

y_1 0.2532000 3.653260

Results show that the impact multiplier of "y" with respect to "g" is +3.65. If we change the
Government Expenditure "g" value in 1941 from 22.3 (its historical value) to 23.3 (+1), then
the simulated Gross National Product "y" in 1941 changes from 95.2 to 99, thusly roughly
confirming the +3.65 impact multiplier. Note that "g" only appears once in the model defi-
nition, and only in the "y" equation, with a coefficient equal to one (Keynes would approve).

An interim-multiplier example follows:

R> #multi-period interim multipliers

R> kleinModel <- MULTMATRIX(kleinModel

,TSRANGE = c(1940,1,1941,1)

,INSTRUMENT = c('w2','g')

,TARGET = c('cn','y'))

Multiplier Matrix: 50.00 %

Multiplier Matrix: 100.00 %

...MULTMATRIX OK

R> #output multipliers matrix (note the zeros when the period

R> #of the INSTRUMENT is greater than the period of the TARGET)

R> kleinModel$MultiplierMatrix

w2_1 g_1 w2_2 g_2

cn_1 0.4478202 1.582292 0.0000000 0.000000

y_1 0.2433382 3.510971 0.0000000 0.000000

cn_2 -0.3911001 1.785042 0.4540346 1.671956

y_2 -0.6251177 2.843960 0.2532000 3.653260

50 bimets: Time Series and Econometric Modeling in R

3.11. Endogenous Targeting

The endogenous targeting7 of econometric models consists of solving the model while inter-
changing the role of one or more endogenous variables with an equal number of exogenous
variables.

The bimets RENORM() function determines the values for the INSTRUMENT exogenous vari-
ables that allow the objective TARGET endogenous values to be achieved, with respect to the
constraints given by the model equations.

This is an approach to economic and monetary policy analysis, and is based on two as-
sumptions:

1. there exists a desired level for a set of n endogenous variables defined as TARGET;

2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the endogenous targeting process consists in determining the values of
the exogenous variables chosen as INSTRUMENT allowing us to achieve the desired values for
the endogenous variables designated as TARGET. In other words the procedure allows users to
exchange the role of exogenous and endogenous among a set of time series pairs.

Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time se-
ries, the iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with
respect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system:
Vexog(i + 1) = Vexog(i)+ MULTMAT −1 ∗ (Vendog(i)− TARGET), where Vexog(i) are the ex-
ogenous variables in the INSTRUMENT list and Vendog(i) are the endogenous variables that
have a related target in the TARGET list, given i the current iteration;

3. Simulation of the model with the new set of exogenous variables computed in step 2,
then a convergence check by comparing the subset of endogenous variables arising from
this simulation and the related time series in TARGET list. If the convergence condition
is satisfied, or the maximum number of iterations is reached, the algorithm will stop,
otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the
constant adjustment (see Simulation 3.5) related to the provided endogenous variable will
be used as the instrument exogenous variable. This procedure is particularly suited for the
automatic computation of the add-factors needed to fine tune the model into a baseline path
and to improve the forecasting accuracy.

If the convergence condition is satisfied, the RENORM function will return the INSTRUMENT

time series allowing us to achieve the desired values for the endogenous variables designated
as TARGET.

7On the Theory of Economic Policy - Tinbergen J. 1952

Andrea Luciani 51

Back to our Klein’s model example, we can perform the endogenous targeting of the pre-
viously estimated model. First of all, the targets must be defined:

R> #we want an arbitrary value on Consumption of 66 in 1940 and 78 in 1941

R> #we want an arbitrary value on GNP of 77 in 1940 and 98 in 1941

R> kleinTargets <- list(

cn = TIMESERIES(66,78, START = c(1940,1), FREQ = 1)

,y = TIMESERIES(77,98, START = c(1940,1), FREQ = 1)

)

Then, we can perform the model endogenous targeting by using the "w2" (Wage Bill of the
Government Sector) and the "g" (Government Expenditure) exogenous variables as INSTRUMENT,
in the years 1940 and 1941 (output omitted):

R> kleinModel <- RENORM(kleinModel

,INSTRUMENT = c('w2','g')

,TARGET = kleinTargets

,TSRANGE = c(1940,1,1941,1)

,simIterLimit = 100

,quietly = TRUE)

Once RENORM completes, the calculated values of exogenous INSTRUMENT allowing us to achieve
the desired endogenous TARGET values are stored in the model:

R> with(kleinModel,TABIT(modelData$w2

,renorm$INSTRUMENT$w2

,modelData$g

,renorm$INSTRUMENT$g

,TSRANGE = c(1940,1,1941,1)

)

)

Date, Prd., modelData$w2 , renorm$INSTRUMENT$w2, modelData$g , renorm$INSTRUMENT$g

1940, 1 , 8 , 7.413331 , 15.4 , 16.1069

1941, 1 , 8.5 , 9.3436 , 22.3 , 22.65985

So, if we want to achieve on "cn" (Consumption) an arbitrary simulated value of 66 in 1940
and 78 in 1941, and if we want to achieve on "y" (GNP) an arbitrary simulated value of 77
in 1940 and 98 in 1941, we need to change exogenous "w2" (Wage Bill of the Government
Sector) from 8 to 7.41 in 1940 and from 8.5 to 9.34 in 1941, and we need to change exogenous
"g" (Government Expenditure) from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941.

Let’s verify:

R> #create a new model

R> kleinRenorm <- kleinModel

R> #get instruments to be used

R> newInstruments <- kleinModel$renorm$INSTRUMENT

52 bimets: Time Series and Econometric Modeling in R

R> #change exogenous by using new instruments data

R> kleinRenorm$modelData <- within(kleinRenorm$modelData,

{

w2[[1940,1]] = newInstruments$w2[[1940,1]]

w2[[1941,1]] = newInstruments$w2[[1941,1]]

g[[1940,1]] = newInstruments$g[[1940,1]]

g[[1941,1]] = newInstruments$g[[1941,1]]

}

)

R> #users can also replace last two commands with:

R> #kleinRenorm$modelData <- kleinRenorm$renorm$modelData

R> #simulate the new model

R> kleinRenorm <- SIMULATE(kleinRenorm

,TSRANGE = c(1940,1,1941,1)

,simConvergence = 0.00001

,simIterLimit = 100

,quietly = TRUE)

R> #verify targets are achieved

R> with(kleinRenorm$simulation,

TABIT(cn,y)

)

Date, Prd., cn , y

1940, 1 , 66.01116 , 77.01772

1941, 1 , 78.02538 , 98.04121

3.12. Optimal Control

An approach to policy evaluation is via a so-called "social welfare function". This approach
relaxes the assumptions of the instruments-targets framework, (see Endogenous Targeting,
par. 3.11) . Rather than assuming specific desired targets for some endogenous variables, it
assumes the existence of a social welfare function determining a scalar measure of performance
based on both endogenous and policy (exogenous) variables.

The social welfare function can incorporate information about tradeoffs in objectives that
are not allowed by the RENORM instruments-targets approach.

bimets supplies the OPTIMIZE procedure in order to perform optimal control exercises on
econometric models.

The optimization consists of maximizing a social welfare function, i.e. the objective-function,
depending on exogenous and (simulated) endogenous variables, subject to user constraints
plus the constraints imposed by the econometric model equations. Users are allowed to de-
fine constraints and objective-functions of any degree, and are allowed to provide different
constraints and objective-functions in different optimization time periods.

Andrea Luciani 53

The core of the OPTIMIZE procedure is based on a Monte Carlo method that takes advantage
of the STOCHSIMULATE (see Stochastic Simulation, par. 3.9) procedure. Policy variables, i.e.
INSTRUMENT, are uniformly perturbed in the range defined by the user-provided boundaries,
then the INSTRUMENT values that i) verify the user-provided constraints and ii) maximize the
objective-functions are selected and stored into the optimize element of the output bimets

model.

The following steps can describe the procedure implemented in OPTIMIZE:

1. check the correctness of input arguments;

2. perform a STOCHSIMULATE by uniformly perturbing the INSTRUMENT variables inside the
user-boundaries provided in the OptimizeBounds function argument;

3. during the STOCHSIMULATE, for each period in the optimization TSRANGE: i) discard the
stochastic realizations that do not verify the restrictions provided in the OptimizeRestrictions

argument; ii) for all the remaining realizations, compute the current value of the
objective-functions time series, as defined in the OptimizeFunctions argument, by
using the exogenous and (simulated) endogenous stochastic time series;

4. once the STOCHSIMULATE completes, select the stochastic realization that presents the
higher value in the sum of the corresponding objective-function time series values, and
return, among other data, the related optimal INSTRUMENT time series.

In the following figure, the scatter plot is populated with 2916 objective function stochastic
realizations, computed by using the example code at the end of this section; the 210.58 local
maximum is highlighted (i.e. advancedKleinModel$optimize$optFunMax in code example).

In this example:

i) The objective function definition is:
f(y, cn, g) = (y − 110) + (cn− 90) ∗ |cn− 90| − √g − 20
given y as the simulated Gross National Product, cn as the simulated Consumption and g
as the exogenous Government Expenditure: the basic idea is to maximize Consumption, and
secondarily the Gross National Product, while reducing the Government Expenditure;

ii) The INSTRUMENT variables are the cn Consumption "booster" (i.e. the add-factor, not
to be confused with the simulated Consumption in the objective function) and the g Govern-
ment Expenditure, defined over the following domains: cn ∈ (−5, 5), g ∈ (15, 25);

iii) The following restrictions are applied to the INSTRUMENT: g + cn2/2 < 27 ∧ g + cn > 17,
given cn as the Consumption "booster" (i.e. the add-factor) and g as the Government Expen-
diture;

54 bimets: Time Series and Econometric Modeling in R

The figure clearly shows that non-linear restrictions have been applied, and that non-computable
objective functions have been discarded, e.g. the stochastic realizations having g < 20 due to
the square root operation in the objective function, given instrument g ∈ (15, 25).

Optimal control example of the previously defined advancedKleinModel follows:

R> #load the advanced model

R> advancedKleinModel <- LOAD_MODEL(modelText = advancedKlein1.txt

,quietly = TRUE)

R> #load time series into the model object

R> advancedKleinModel <- LOAD_MODEL_DATA(advancedKleinModel

,kleinModelData

,quietly = TRUE)

R> #estimate the model

R> advancedKleinModel <- ESTIMATE(advancedKleinModel

,quietly = TRUE)

R> #we want to maximize the non-linear objective function:

R> #f()=(y-110)+(cn-90)*ABS(cn-90)-(g-20)^0.5

R> #in 1942 by using INSTRUMENT cn in range (-5,5)

R> #(cn is endogenous so we use the add-factor)

R> #and g in range (15,25)

Andrea Luciani 55

R> #we will also impose the following non-linear restriction:

R> #g+(cn^2)/2<27 & g+cn>17

R> #we need to extend exogenous variables up to 1942

R> advancedKleinModel$modelData <- within(advancedKleinModel$modelData,{

w2 = TSEXTEND(w2, UPTO = c(1942,1), EXTMODE = 'CONSTANT')

t = TSEXTEND(t, UPTO = c(1942,1), EXTMODE = 'LINEAR')

g = TSEXTEND(g, UPTO = c(1942,1), EXTMODE = 'CONSTANT')

k = TSEXTEND(k, UPTO = c(1942,1), EXTMODE = 'LINEAR')

time = TSEXTEND(time, UPTO = c(1942,1), EXTMODE = 'LINEAR')

})

R> #define INSTRUMENT and boundaries

R> myOptimizeBounds <- list(

cn = list(TSRANGE = TRUE

,BOUNDS = c(-5,5)),

g = list(TSRANGE = TRUE

,BOUNDS = c(15,25))

)

R> #define restrictions

R> myOptimizeRestrictions <- list(

myRes1=list(

TSRANGE = TRUE

,INEQUALITY = 'g+(cn^2)/2<27 & g+cn>17')

)

R> #define objective function

R> myOptimizeFunctions <- list(

myFun1 = list(

TSRANGE = TRUE

,FUNCTION = '(y-110)+(cn-90)*ABS(cn-90)-(g-20)^0.5')

)

R> #Monte-Carlo optimization by using 10000 stochastic realizations

R> #and 1E-4 convergence criterion

R> advancedKleinModel <- OPTIMIZE(advancedKleinModel

,simType = 'FORECAST'

,TSRANGE=c(1942,1,1942,1)

,simConvergence= 1E-4

,simIterLimit = 1000

,StochReplica = 10000

,StochSeed = 123

,OptimizeBounds = myOptimizeBounds

,OptimizeRestrictions = myOptimizeRestrictions

,OptimizeFunctions = myOptimizeFunctions

,quietly = TRUE)

R> #print local maximum

R> advancedKleinModel$optimize$optFunMax

56 bimets: Time Series and Econometric Modeling in R

[1] 210.5755

R> #print INSTRUMENT that allow local maximum to be achieved

R> advancedKleinModel$optimize$INSTRUMENT

$cn

Time Series:

Start = 1942

End = 1942

Frequency = 1

[1] 2.032203

$g

Time Series:

Start = 1942

End = 1942

Frequency = 1

[1] 24.89773

R> #LET'S VERIFY RESULTS

R> #copy into modelData the computed INSTRUMENT

R> #that allow to maximize the objective function

R> advancedKleinModel$modelData <- advancedKleinModel$optimize$modelData

R> #simulate the model by using the new INSTRUMENT

R> #note: we used cn add-factor as OPTIMIZE instrument, so we need

R> #to pass the computed cn add-factor to the SIMULATE call

R> newConstantAdjustment <- advancedKleinModel$optimize$ConstantAdjustment

R> advancedKleinModel <- SIMULATE(advancedKleinModel

,simType = 'FORECAST'

,TSRANGE = c(1942,1,1942,1)

,simConvergence = 1E-5

,simIterLimit = 1000

,ConstantAdjustment = newConstantAdjustment

,quietly = TRUE

)

R> #calculate objective function by using the SIMULATE output time series

R> #(y-110)+(cn-90)*ABS(cn-90)-(g-20)^0.5

R> y <- advancedKleinModel$simulation$y

R> cn <- advancedKleinModel$simulation$cn

R> g <- advancedKleinModel$modelData$g

R> optFunTest <- (y-110)+(cn-90)*abs(cn-90)-(g-20)^0.5

R> #verify computed max is equal to optimization max

R> #(in the following command TSPROJECT could be omitted because

R> #myFun1$TSRANGE = TRUE)

R> abs(sum(TSPROJECT(optFunTest

,TSRANGE = c(1942,1,1942,1)

,ARRAY = TRUE)

) - advancedKleinModel$optimize$optFunMax) < 1E-4

Andrea Luciani 57

[1] TRUE

A more complex example is available in the OPTIMIZE help page of the reference manual.

4. Computational Details

The iterative simulation procedure is the most time-consuming operation of the bimets pack-
age. For small models, this operation is quite immediate; on the other hand, the simulation
of models that count hundreds of equations could last for minutes, especially if the requested
operation involves a parallel simulation having hundreds of realizations per equation. This
could be the case for the endogenous targeting, the stochastic simulation and the optimal
control.

The SIMULATE code has been optimized in order to minimize the execution time in these
cases. In terms of computational efficiency, the procedure takes advantage of the fact that
multiple datasets are bound together in matrices, therefore in order to achieve a global con-
vergence, the iterative simulation algorithm is executed once for all perturbed datasets. This
solution can be viewed as a sort of a SIMD (i.e. Single Instruction Multiple Data) parallel
simulation: the SIMULATE algorithm transforms time series into matrices and consequently
can easily bind multiple datasets by column. At the same time, the single run ensures a fast
code execution, while each column in the output matrices represents a stochastic or perturbed
realization.

The above approach is even faster if R has been compiled and linked to optimized multi-
threaded numerical libraries, e.g. Intel® MKL, OpenBlas, Microsoft® R Open, etc.

Finally, model equations are pre-fetched into sorted R expressions, and an optimized R envi-
ronment is defined and reserved to the SIMULATE algorithm; this approach removes the over-
head usually caused by expression parsing and by the R looking for variables inside nested
environments.

bimets estimation and simulation results have been compared to the output results of leading
commercial econometric software by using several large and complex models.

The models used in the comparison have more than:

• +100 behavioral equations;

• +700 technical identities;

• +500 coefficients;

• +1000 time series of endogenous and exogenous variables;

In these models, there are equations with restricted coefficients, polynomial distributed lags,
error autocorrelation, and conditional evaluation of technical identities; all models have been

https://CRAN.R-project.org/package=bimets/bimets.pdf

58 bimets: Time Series and Econometric Modeling in R

simulated in static, dynamic, and forecast mode, with exogenization and constant adjustments
of endogenous variables through the use of bimets capabilities.

In the +800 endogenous simulated time series over the +20 simulated periods (i.e. more
than 16.000 simulated observations), the average percentage difference between bimets and
leading commercial software results has a magnitude of 10−7%. The difference between results
calculated by using different commercial software has the same average magnitude.

Several advanced econometric exercises on the US Federal Reserve FRB/US econometric
model (e.g., dynamic simulation in a monetary policy shock, rational expectations, endoge-
nous targeting, stochastic simulation, etc.) are available in the "US Federal Reserve quarterly
model (FRB/US) in R with bimets" vignette.

bimets stands for Bank of Italy Model Easy Time Series; it does not depend on compilers or
third-party software so it can be freely downloaded and installed on Linux, MS Windows®

and Mac OSX®, without any further requirements.

The package can be installed and loaded in R with the following commands (with "R>" as
the R command prompt):

> install.packages('bimets')

> library(bimets)

https://cran.r-project.org/package=bimets/vignettes/frb2bimets.pdf
https://cran.r-project.org/package=bimets/vignettes/frb2bimets.pdf

Andrea Luciani 59

References

[1] F. J. Henk Don and Giampiero M. Gallo Solving large sparse systems of equations in
econometric models. Journal of Forecasting, 6(3):167-180, 1987.

[2] Jan Tinbergen On the theory of economic policy. North-Holland, Amsterdam, 1952.

[3] Daniel Gabay, Pierre Nepomiastchy, M’Hamed Rachdi and Alain Ravelli Numerical
methods for simulation and optimal control of large-scale macroeconomic models. Ap-
plied stochastic control in econometrics and management science:115-158, 1980

[4] M. R. Garey, D. S. Johnson Computers and Intractability: a Guide to the Theory of
NP-completeness. San Francisco, Freeman 1979

[5] G. C. Chow, Tests of equality between sets of coefficients in two linear regressions.
Econometrica, Vol 28, 4. July 1960

[6] L. R. Klein Economic Fluctuations in the United States. Wiley and Sons Inc., New
York, 1950

[7] Board of governors of The Federal Reserve System - pyfrbus: a Python-based plat-
form to run simulations with the FRB/US model.. python package version 1.0.0,
https://www.federalreserve.gov/econres/us-models-about.htm

Affiliation:

Andrea Luciani
Bank of Italy
Directorate General for Economics, Statistics and Research
Via Nazionale, 91
00184, Rome - Italy
E-mail: andrea.luciani@bancaditalia.it

https://www.federalreserve.gov/econres/us-models-about.htm
mailto:andrea.luciani@bancaditalia.it

	Introduction
	Time Series
	Time Series Indexing
	Time Series Aggregation / Disaggregation
	Time Series Manipulation
	Time Series Import/Export

	Econometric Modeling
	Model Description Language
	Estimation
	Advanced Estimation
	Structural Stability
	Simulation
	Rational Expectations
	The Optimal Reordering
	The Simulation Algorithms
	Stochastic Simulation
	Multipliers Analysis
	Endogenous Targeting
	Optimal Control

	Computational Details

