## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ProfileGLMM) data("exposure_data") exp_data = exposure_data$df head(exp_data) ## ----------------------------------------------------------------------------- covList = {} covList$FE = c('X') covList$RE = c('t') covList$REunit = c('indiv') covList$Lat = c('X') covList$Assign$Cont = c('Exp1','Exp2') covList$Assign$Cat = NULL covList$Y = c('Y') dataProfile = profileGLMM_preprocess(regType = 'linear', covList = covList, dataframe = exp_data, nC = 30, intercept = list(FE = T, RE = F, Lat = T)) print(dataProfile) ## ----------------------------------------------------------------------------- MCMC_Obj = profileGLMM_Gibbs(model = dataProfile, nIt = 5000, nBurnIn = 2000) ## ----------------------------------------------------------------------------- par(mfrow = c(1,2), col.sub="blue", cex.sub=2) plot(MCMC_Obj$zeta,ylab = 'zeta',xlab = 'samples') plot(MCMC_Obj$beta[1,],ylab = 'beta_1',xlab = 'samples') ## ----------------------------------------------------------------------------- post_Obj = profileGLMM_postProcess(MCMC_Obj) #Fixed effects estimates summary(post_Obj) ## ----------------------------------------------------------------------------- plot(post_Obj,color = hcl.colors(9, palette = "Set 2")) ## ----------------------------------------------------------------------------- pred = predict(post_Obj,dataProfile$d) table(pred$classPred,exposure_data$theta0$Lat)