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build_model Create ML Model
Description

The function build_model() is designed to construct and attach a ML model to an existing analysis
object,which contains the preprocessed dataset generated in the previous step using the preprocess-
ing() function. Based on the specified model type and optional hyperparameters, it supports several
popular algorithms—including Neural Network, Random Forest, XGBOOST, and SVM (James
et al., 2021)— by initializing the corresponding hyperparameter class, updating the analysis object
with these settings, and invoking the appropriate model creation function. For SVM models, it
further distinguishes between kernel types (rbf, polynomial, linear) to ensure the correct implemen-
tation. The function also updates the analysis object with the model name, the fitted model, and the
current processing stage before returning the enriched object, thereby streamlining the workflow for
subsequent training, evaluation, or prediction steps. This modular approach facilitates flexible and
reproducible ML pipelines by encapsulating both the model and its configuration within a single
structured object.

Usage

build_model (analysis_object, model_name, hyperparameters = NULL)

Arguments

analysis_object
analysis_object created from preprocessing function.

model_name Name of the ML Model. A string of the model name: "Neural Network", "Ran-
dom Forest", "SVM" or "XGBOOST".

hyperparameters

Hyperparameters of the ML model. List containing the name of the hyperpa-
rameter and its value or range of values.

Value

An updated analysis_object containing the fitted machine learning model, the model name, the spec-
ified hyperparameters, and the current processing stage. This enriched object retains all previously
stored information from the preprocessing step and incorporates the results of the model-building
process, ensuring a coherent and reproducible workflow for subsequent training, evaluation, or pre-
diction tasks.
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Hyperparameters

Neural Network:
Parsnip model using brulee engine. Hyperparameters:
* hidden_units: Number of Hidden Neurons. A single value, a vector with range values
c(min_val, max_val) or NULL for default range c(5, 20).
* activation: Activation Function. A vector with any of ("relu", "sigmoid", "tanh") or NULL

"non

for default values c("relu", "sigmoid", "tanh").

* learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(-3, -1) in log10 scale.

Random Forest:
Parsnip model using ranger engine. Hyperparameters:
* trees: Number of Trees. A single value, a vector with range values c(min_val, max_val).
Default range c(100, 300).

* mtry: Number of variables randomly selected as candidates at each split. A single value, a
vector with range values c(min_val, max_val) or NULL for default range c(3, 8).

¢ min_n: Minimum Number of samples to split at each node. A single value, a vector with
range values c(min_val, max_val) or NULL for default range c(5, 25).

XGBOOST:
Parsnip model using xgboost engine. Hyperparameters:
* trees: Number of Trees. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(100, 300).
e mtry: Number of variables randomly selected as candidates at each split. A single value, a
vector with range values c(min_val, max_val) or NULL for default range c(3, 8).
* min_n: Minimum Number of samples to split at each node. A single value, a vector with
range values c(min_val, max_val) or NULL for default range c(5, 25).
¢ tree_depth: Maximum tree depth. A single value, a vector with range values c(min_val,
max_val) or NULL for default range c(3, 8).
* learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(-3, -1) in log10 scale.
¢ loss_reduction: Minimum loss reduction required to make a further partition on a leaf node.

A single value, a vector with range values c(min_val, max_val) or NULL for default range
c(-3, 1.5) in log10 scale.

SVM:
Parsnip model using kernlab engine. Hyperparameters:

* cost: Penalty parameter that regulates model complexity and misclassification tolerance. A
single value, a vector with range values c(min_val, max_val) or NULL for default range
c(-3, 3) in log?2 scale.

* margin: Distance between the separating hyperplane and the nearest data points. A single
value, a vector with range values c(min_val, max_val) or NULL for default range c(0, 0.2).

* type: Kernel to be used. A single value from ("linear", "rbf", "polynomial"). Default: "lin-
ear".
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* rbf_sigma: A single value, a vector with range values c(min_val, max_val) or NULL for
default range c(-5, 0) in log10 scale.

* degree: Polynomial Degree (polynomial kernel only). A single value, a vector with range
values c(min_val, max_val) or NULL for default range c(1, 3).

* scale_factor: Scaling coefficient applied to inputs. (polynomial kernel only) A single value,
a vector with range values c(min_val, max_val) or NULL for default range c(-5, -1) in
log10 scale.

References

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning:
with Applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1

Examples

# Example 1: Random Forest for regression task
library(MLwrap)
data(sim_data) # sim_data is a simulated dataset with psychological variables

wrap_object <- preprocessing(
df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience + life_sat,
task = "regression”

)

wrap_object <- build_model(
analysis_object = wrap_object,

model_name = "Random Forest”,
hyperparameters = list(
mtry = 2,
trees = 10
)
)

# It is safe to reuse the same object name (e.g., wrap_object, or whatever)
# step by step, as all previous results and information are retained within
# the updated analysis object.

# Example 2: SVM for classification task
data(sim_data) # sim_data is a simulated dataset with psychological variables

wrap_object <- preprocessing(
df = sim_data,
formula = psych_well_bin ~ depression + emot_intel + resilience + life_sat,
task = "classification”

)

wrap_object <- build_model(
analysis_object = wrap_object,
model_name = "SVM",
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hyperparameters = list(
type = "rbf",
cost =1,
margin = 0.1,
rbf_sigma = 0.05
)

fine_tuning Fine Tune ML Model

Description

The fine_tuning() function performs automated hyperparameter optimization for ML workflows
encapsulated within an AnalysisObject. It supports two tuning strategies: Bayesian Optimization
(with cross-validation) and Grid Search Cross-Validation, allowing the user to specify evaluation
metrics and whether to visualize tuning results. The function first validates arguments and updates
the workflow and metric settings within the AnalysisObject. If hyperparameter tuning is enabled,
it executes the selected tuning procedure, identifies the best hyperparameter configuration based on
the specified metrics, and updates the workflow accordingly. For neural network models, it also
manages the creation and integration of new model instances and provides additional visualization
of training dynamics. Finally, the function fits the optimized model to the training data and updates
the AnalysisObject, ensuring a reproducible and efficient model selection process (Bartz et al.,
2023).

Usage

fine_tuning(analysis_object, tuner, metrics = NULL)

Arguments

analysis_object
analysis_object created from build_model function.

tuner Name of the Hyperparameter Tuner. A string of the tuner name: "Bayesian
Optimization" or "Grid Search CV".

metrics Metric used for Model Selection. A string of the name of metric (see Metrics).
By default either "rmse" (regression) or "roc_auc" (classification).

Value

An updated analysis_object containing the fitted model with optimized hyperparameters, the tuning
results, and all relevant workflow modifications. This object includes the final trained model, the
best hyperparameter configuration, tuning diagnostics, and, if applicable, plots of the tuning pro-
cess. It can be used for further model evaluation, prediction, or downstream analysis within the
package workflow.
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Tuners

Bayesian Optimization (with cross-validation):
¢ Number of Folds: 5
¢ Initial data points: 20
¢ Maximum number of iterations: 25

» Convergence after 5 iterations without improvement
* Train/Test: 0.75/0.25

Grid Search CV:

¢ Number of Folds: 5
e Maximum levels per hyperparameter: 10
e Train/ Test: 0.75/0.25

Metrics

Regression Metrics:

® rmse
® mae

* mpe
* mape
® CCC

* smape
* 1piq

* 18(q

Classification Metrics:

* accuracy
* bal_accuracy

* recall

* sensitivity

* specificity

* kap

e f meas

e mcc

* j_index

* detection_prevalence
e roc_auc

e pr_auc

* gain_capture

¢ brier_class

¢ roc_aunp
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References

Bartz, E., Bartz-Beielstein, T., Zaefferer, M., & Mersmann, O. (2023). Hyperparameter tuner for
Machine and Deep Learning with R. A Practical Guide. Springer. doi:10.1007/9789811951701

Examples

# Fine tuning function applied to a regression task using Random Forest

wrap_object <- preprocessing(
df = sim_data[1:500 ,1],
formula = psych_well ~ depression + life_sat,
task = "regression”
)
wrap_object <- build_model(
analysis_object = wrap_object,

model_name = "Random Forest”,
hyperparameters = list(
mtry = 2,
trees = 3
)
)

set.seed(123) # For reproducibility

wrap_object <- fine_tuning(wrap_object,
tuner = "Grid Search CV",
metrics = c("rmse")

)

plot_calibration_curve
Plotting Calibration Curve

Description

The plot_calibration_curve() function generates calibration plots for binary classification models
evaluating the agreement between predicted probabilities and observed class frequencies in binned
prediction intervals. Implements reliability diagrams comparing empirical success rates within each
probability bin against the predicted probability levels, identifying systematic calibration errors in-
cluding overconfidence (predicted probabilities exceed observed frequencies) and underconfidence
patterns across prediction ranges.

Usage

plot_calibration_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with *fine_tuning()’.


https://doi.org/10.1007/978-981-19-5170-1
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Value

analysis_object

Examples

# Note: For obtaining the calibration curve plot the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline and
# only with binary outcome.

wrap_object <- preprocessing(df = sim_data[1:300 ,],
formula = psych_well_bin ~ depression + resilience,
task = "classification”)
wrap_object <- build_model(wrap_object, "Random Forest”,
hyperparameters = list(mtry = 2, trees = 5))
set.seed(123) # For reproducibility
wrap_object <- fine_tuning(wrap_object, "Grid Search CV")

# And then, you can obtain the calibration curve plot.

plot_calibration_curve(wrap_object)

plot_confusion_matrix Plotting Confusion Matrix

Description

The plot_confusion_matrix() function generates confusion matrices from classification predictions
displaying the contingency table of true class labels versus predicted class labels. Visualizes true
positives, true negatives, false positives, and false negatives for both training and test sets, enabling
computation of derived performance metrics (sensitivity, specificity, precision, F1-score) and iden-
tification of specific class pair misclassification patterns.

Usage

plot_confusion_matrix(analysis_object)

Arguments

analysis_object
Fitted analysis_object with "fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve
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Examples

# Note: For obtaining confusion matrix plot the user needs to

# complete till fine_tuning( ) function of the MLwrap pipeline and
# only with categorical outcome.

# See the full pipeline example under plot_calibration_curve()

# Final call signature:

# plot_confusion_matrix(wrap_object)

plot_distribution_by_class
Plotting Output Distribution By Class

Description

The plot_distribution_by_class() function visualizes kernel density estimates or histograms of pre-
dicted probability distributions stratified by true class labels. Enables assessment of class separa-
bility through probability overlap quantification and identification of prediction probability ranges
where different classes exhibit substantial overlap, indicating classification ambiguity regions.

Usage

plot_distribution_by_class(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

Examples

# Note: For obtaining the distribution by class plot the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline

# and only with categorical outcome.

# See the full pipeline example under plot_calibration_curve()

# Final call signature:

# plot_distribution_by_class(wrap_object)
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plot_gain_curve Plotting Gain Curve

Description

The plot_gain_curve() plots cumulative gain as a function of sorted population percentile when
observations are ranked by descending predicted probability. For each percentile threshold, calcu-
lates the ratio of positive class proportion in the top-ranked subset relative to overall positive class
proportion, quantifying model’s efficiency in concentrating target cases at the top of rankings.

Usage

plot_gain_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

Examples

# Note: For obtaining the gain curve plot the user needs to complete till
# fine_tuning( ) function of the MLwrap pipeline and only with categorical
# outcome.

# See the full pipeline example under plot_calibration_curve()

# Final call signature:

# plot_gain_curve(wrap_object)

plot_graph_nn Plot Neural Network Architecture

Description

Renders a directed acyclic graph representation of Neural Network architecture showing layer stack-
ing order, layer-specific dimensions (neurons per layer), activation functions applied at each layer,
and optimized hyperparameter values (learning rate, batch size, dropout rates, regularization coef-
ficients) obtained from hyperparameter tuning procedures.
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Usage

plot_graph_nn(analysis_object)

Arguments

analysis_object
Fitted analysis_object with "fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the Neural Network architecture graph plot the user
needs to complete till the fine_tuning( ) function of the MLwrap pipeline.
See the full pipeline example under table_best_hyperparameters()

(Neural Network engine required)

Final call signature:

#
#
#
#
#
# plot_graph_nn(wrap_object)

plot_integrated_gradients
Plotting Integrated Gradients Plots

Description

The plot_integrated_gradients() function implements interpretability visualizations of integrated
gradient attributions measuring feature importance through accumulated gradients along the inter-
polation path from baseline (zero vector) to observed input. Provides four visualization modalities:
mean absolute attributions (bar plots), directional effects showing positive and negative contribution
patterns (directional plots), distributional properties of attributions across instances (box plots), and
individual-level attribution contributions (swarm plots).

Usage

plot_integrated_gradients(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Integrated Gradi-
ents")’.

show_table Boolean. Whether to print Integrated Gradients summarized results table.
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Value

analysis_object

See Also

sensitivity_analysis

Examples

# Note: For obtaining the Integrated Gradients plot the user needs to
# complete till sensitivity_analysis( ) function of the MLwrap pipeline
# using the Integrated Gradients method.

# See the full pipeline example under sensitivity_analysis()

# (Requires sensitivity_analysis(methods = "Integrated Gradients"))

# Final call signature:
# plot_integrated_gradients(wrap_object)

plot_lift_curve Plotting Lift Curve

Description

The plot_lift_curve() function plots lift factor as a function of population percentile when obser-
vations are ranked by descending predicted probability. The lift factor quantifies model’s ranking
efficiency relative to random ordering baseline at each population cumulative segment, showing
how much better model selection performs compared to random case selection.

Usage

plot_lift_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve
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Examples
# Note: For obtaining the lift curve plot the user needs to complete till
# fine_tuning( ) function of the MLwrap pipeline and only with categorical
# outcome.
# See the full pipeline example under plot_calibration_curve()
# Final call signature:
# plot_lift_curve(wrap_object)

plot_loss_curve Plot Neural Network Loss Curve

Description

Displays training loss trajectory computed on the validation set across training epochs. Enables
visual diagnosis of convergence dynamics, identification of appropriate early stopping points, de-
tection of overfitting patterns (where validation loss increases while training loss decreases), and
assessment of optimization stability throughout the training process.

Usage

plot_loss_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples
# Note: For obtaining the loss curve plot the user needs to
# complete till the fine_tuning( ) function of the MLwrap pipeline.
# See the full pipeline example under table_best_hyperparameters()
# (Neural Network engine required)
# Final call signature:
# plot_loss_curve(wrap_object)
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plot_olden Plotting Olden Values Barplot

Description

The plot_olden() function visualizes Olden sensitivity values computed from products of input-to-
hidden layer connection weights and hidden-to-output layer connection weights for each feature.
Provides relative feature importance rankings specific to feedforward Neural Networks based on
synaptic weight magnitude and directionality analysis across network layers.

Usage

plot_olden(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Olden")’.

show_table Boolean. Whether to print Olden results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples
# Note: For obtaining the Olden plot the user needs to complete till
# sensitivity_analysis( ) function of the MLwrap pipeline using the Olden
# method.
# See the full pipeline example under sensitivity_analysis()
# (Requires sensitivity_analysis(methods = "Olden"))
# Final call signature:
# plot_olden(wrap_object)
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plot_pfi Plotting Permutation Feature Importance Barplot

Description

The plot_pfi() function generates feature importance estimates via Permutation Feature Importance
measuring performance degradation when each feature’s values are randomly permuted while hold-
ing all other features constant. Provides model-agnostic importance ranking independent of feature-
target correlation patterns, capturing both linear and non-linear predictive contributions to model
performance.

Usage

plot_pfi(analysis_object, show_table = FALSE)

Arguments

analysis_object

>

Fitted analysis_object with ’sensitivity_analysis(methods = "PFI")’.

show_table Boolean. Whether to print PFI results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples
# Note: For obtaining the PFI plot results the user needs to complete till
# sensitivity_analysis( ) function of the MLwrap pipeline using the PFI
# method.
# See the full pipeline example under sensitivity_analysis()
# (Requires sensitivity_analysis(methods = "PFI"))
# Final call signature:
# plot_pfi(wrap_object)
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plot_pr_curve Plotting Precision-Recall Curve

Description

The plot_pr_curve() function generates Precision-Recall curve tracing the relationship between
precision and recall across all classification probability thresholds. Particularly informative for
imbalanced datasets where ROC curves may be misleading, as PR curves remain sensitive to class
distribution changes and provide intuitive performance assessment when one class is substantially
rarer than the other.

Usage

plot_pr_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with "fine_tuning()’.
Value

analysis_object

See Also

plot_calibration_curve

Examples

# See the full pipeline example under plot_calibration_curve()
# Final call signature:
# plot_pr_curve(wrap_object)

plot_residuals_distribution
Plotting Residuals Distribution

Description

The plot_residuals_distribution() function generates histogram and kernel density visualizations
of residuals for regression models on training and test datasets. Enables assessment of residual
normality through visual inspection of histogram shape, detection of systematic biases indicating
omitted variables or model specification errors, and identification of heavy tails suggesting outliers
or influential observations.
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Usage

plot_residuals_distribution(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

# Note: For obtaining the residuals distribution plot the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline.

# See the full pipeline example under table_best_hyperparameters()

# Final call signature:

# plot_residuals_distribution(wrap_object)

plot_roc_curve Plotting ROC Curve

Description

The plot_roc_curve() function plots Receiver Operating Characteristic (ROC) curve displaying true
positive rate versus false positive rate across all classification probability thresholds. Computes Area
Under Curve (AUC) as an aggregate discrimination performance metric independent of threshold
selection, providing comprehensive assessment of classifier discrimination ability across the entire
decision boundary range.

Usage

plot_roc_curve(analysis_object)

Arguments

analysis_object
Fitted analysis_object with "fine_tuning()’.

Value

analysis_object
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See Also

plot_calibration_curve

Examples

Note: For obtaining roc curve plot the user needs to

complete till fine_tuning( ) function of the MLwrap pipeline and
only with categorical outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:

plot_roc_curve(wrap_object)

od o

plot_scatter_predictions
Plotting Observed vs Predictions

Description

The plot_scatter_predictions() function generates scatter plots with 45-degree reference lines
comparing observed values (vertical axis) against model predictions (horizontal axis) for training
and test data. Enables visual assessment of prediction accuracy through distance from the reference
line, identification of systematic bias patterns, detection of heteroscedastic prediction errors, and
quantification of generalization performance gaps between training and test sets.

Usage

plot_scatter_predictions(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.
Value

analysis_object

See Also

table_best_hyperparameters

Examples

# Note: For obtaining the observed vs. predicted values plot the user needs
# to complete till fine_tuning( ) function of the MLwrap pipeline.

# See the full pipeline example under table_best_hyperparameters()

# Final call signature:

# plot_scatter_predictions(wrap_object)
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plot_scatter_residuals
Plotting Residuals vs Predictions

Description

The plot_scatter_residuals() function Visualizes residuals plotted against fitted values to detect vi-
olations of ordinary least squares assumptions including homoscedasticity (constant error variance),
linearity, and independence. Identifies heteroscedastic patterns (non-constant variance across the
predictor range), systematic curvature indicating omitted polynomial terms, and outlier points with
extreme residual magnitudes.

Usage

plot_scatter_residuals(analysis_object)

Arguments

analysis_object
Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

# Note: For obtaining the residuals vs. predicted values plot the user needs
# to complete till fine_tuning( ) function of the MLwrap pipeline.

# See the full pipeline example under table_best_hyperparameters()

# Final call signature:

# plot_scatter_residuals(wrap_object)

plot_shap Plotting SHAP Plots
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Description

21

The plot_shap() function implements comprehensive SHAP (SHapley Additive exPlanations) value
visualizations where SHAP values represent each feature’s marginal contribution to model output
based on cooperative game theory principles. Provides four visualization modalities: bar plots
of mean absolute SHAP values ranking features by average impact magnitude, directional plots
showing feature-value correlation with SHAP magnitude and sign, box plots illustrating SHAP
value distributions across instances, and swarm plots combining individual prediction contributions

with distributional information.

Usage

plot_shap(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "SHAP")’.

show_table Boolean. Whether to print SHAP summarized results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples
# Note: For obtaining the SHAP plots the user needs to complete till
# sensitivity_analysis( ) function of the MLwrap pipeline using the SHAP
# method.
# See the full pipeline example under sensitivity_analysis()
# (Requires sensitivity_analysis(methods = "SHAP"))
# Final call signature:
# plot_shap(wrap_object)

plot_sobol_jansen Plotting Sobol-Jansen Values Barplot

Description

The plot_sobol_jansen() function displays first-order and total-order Sobol indices decomposing
total output variance into contributions from individual features and higher-order interaction terms.
Implements variance-based global sensitivity analysis providing comprehensive understanding of
feature contributions to output uncertainty, with application restricted to continuous predictor vari-

ables.



22 plot_tuning_results

Usage

plot_sobol_jansen(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Sobol_Jansen")’.

show_table Boolean. Whether to print Sobol-Jansen results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples
# Note: For obtaining the Sobol_Jansen plot the user needs to complete till
# sensitivity_analysis( ) function of the MLwrap pipeline using
# the Sobol_Jansen method.
# See the full pipeline example under sensitivity_analysis()
# (Requires sensitivity_analysis(methods = "Sobol_Jansen”))
# Final call signature:
# plot_sobol_jansen(wrap_object)

plot_tuning_results Plotting Tuner Search Results

Description

The plot_tuning_results() function Visualizes hyperparameter optimization search results adapt-
ing output format to the optimization methodology employed. For Bayesian Optimization: displays
iteration-by-iteration loss function evolution across iterations, acquisition function values guiding
sequential hyperparameter sampling, and final hyperparameter configuration with cross-validation
performance metrics. For Grid Search: displays performance surfaces across hyperparameter di-
mensions and rank-ordered configurations by validation performance.

Usage

plot_tuning_results(analysis_object)

Arguments

analysis_object
Fitted analysis_object with *fine_tuning()’.
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Value

analysis_object

See Also

table_best_hyperparameters

Examples

# Note: For obtaining the plot with tuning results the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline.

# See the full pipeline example under table_best_hyperparameters()
# Final call signature:

# plot_tuning_results(wrap_object)
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preprocessing

Preprocessing Data Matrix

Description

The preprocessing() function streamlines data preparation for regression and classification tasks
by integrating variable selection, type conversion, normalization, and categorical encoding into a
single workflow. It takes a data frame and a formula, applies user-specified transformations to
numeric and categorical variables using the recipes package, and ensures the outcome variable is
properly formatted. The function returns an AnalysisObject containing both the processed data and
the transformation pipeline, supporting reproducible and efficient modeling (Kuhn & Wickham,

2020).

Usage

preprocessing(
df,
formula,

task = "regression”,
num_vars = NULL,
cat_vars = NULL,

norm_num_vars = "all”,

encode_cat_vars = "all”,

y_levels = NULL
)

Arguments

df Input DataFrame. Either a data.frame or tibble.
formula Modelling Formula. A string of characters or formula.
task Modelling Task. Either "regression” or "classification".
num_vars Optional vector of names of the numerical features.
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cat_vars Optional vector of names of the categorical features.

norm_num_vars Normalize numeric features as z-scores. Either vector of names of numerical
features to be normalized or "all" (default).

encode_cat_vars
One Hot Encode Categorical Features. Either vector of names of categorical
features to be encoded or "all" (default).

y_levels Optional ordered vector with names of the target variable levels (Classification
task only).

Value

The object returned by the preprocessing function encapsulates a dataset specifically prepared for
ML analysis. This object contains the preprocessed data—where variables have been selected,
standardized, encoded, and formatted according to the requirements of the chosen modeling task
(regression or classification) —as well as a recipes::recipe object that documents all preprocessing
steps applied. By automating essential transformations such as normalization, one-hot encoding of
categorical variables, and the handling of missing values, the function ensures the data is optimally
structured for input into machine learning algorithms. This comprehensive preprocessing not only
exposes the underlying structure of the data and reduces the risk of errors, but also provides a robust
foundation for subsequent modeling, validation, and interpretation within the machine learning
workflow (Kuhn & Johnson, 2019).

References

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A Practical Approach for
Predictive Models. Chapman and Hall/CRC. doi:10.1201/9781315108230

Kuhn, M., & Wickham, H. (2020). Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles. https://www.tidymodels.org.

Examples

# Example 1: Dataset with preformatted categorical variables
# In this case, internal options for variable types are not needed since
# categorical features are already formatted as factors.

library(MLwrap)
data(sim_data) # sim_data is a simulated dataset with psychological variables

wrap_object <- preprocessing(
df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience + life_sat + gender,
task = "regression”

)
# Example 2: Dataset where neither the outcome nor the categorical features
# are formatted as factors and all categorical variables are specified to be

# formatted as factors

wrap_object <- preprocessing(


https://doi.org/10.1201/9781315108230
https://www.tidymodels.org
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df = sim_data,

formula = psych_well_bin ~ gender + depression + age + life_sat,
task = "classification”,

cat_vars = c("gender")

sensitivity_analysis  Perform Sensitivity Analysis and Interpretable ML methods

Description

As the final step in the MLwrap package workflow, this function performs Sensitivity Analysis
(SA) on a fitted ML model stored in an analysis_object (in the examples, e.g., tidy_object). It
evaluates the importance of features using various methods such as Permutation Feature Importance
(PFI), SHAP (SHapley Additive exPlanations), Integrated Gradients, Olden sensitivity analysis, and
Sobol indices. The function generates numerical results and visualizations (e.g., bar plots, box plots,
beeswarm plots) to help interpret the impact of each feature on the model’s predictions for both
regression and classification tasks, providing critical insights after model training and evaluation.

Following the steps of data preprocessing, model fitting, and performance assessment in the ML-
wrap pipeline, sensitivity_analysis() processes the training and test data using the preprocessing
recipe stored in the analysis_object, applies the specified SA methods, and stores the results within
the analysis_object. It supports different metrics for evaluation and handles multi-class classifi-
cation by producing class-specific analyses and plots, ensuring a comprehensive understanding of
model behavior (Iooss & Lemaitre, 2015).

Usage

sensitivity_analysis(analysis_object, methods = c("PFI"), metric = NULL)

Arguments

analysis_object
analysis_object created from fine_tuning function.

methods Method to be used. A string of the method name: "PFI" (Permutation Feature
Importance), "SHAP" (SHapley Additive exPlanations), "Integrated Gradients"
(Neural Network only), "Olden" (Neural Networks only), "Sobol_Jansen" (only
when all input features are continuous).

metric Metric used for "PFI" method (Permutation Feature Importance). A string of the
name of metric (see Metrics).

Details

As the concluding phase of the MLwrap workflow—after data preparation, model training, and
evaluation—this function interprets models by quantifying and visualizing feature importance. It
validates input with check_args_sensitivity_analysis(), preprocesses data using the recipe
stored in analysis_object$transformer, then calculates feature importance via the specified
methods:
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Value

sensitivity_analysis

PFI (Permutation Feature Importance): Assesses importance by shuffling feature values
and measuring the change in model performance (using the specified or default metric).

SHAP (SHapley Additive exPlanations): Computes SHAP values to explain individual pre-
dictions by attributing contributions to each feature.

Integrated Gradients: Evaluates feature importance by integrating gradients of the model’s
output with respect to input features.

Olden: Calculates sensitivity based on connection weights, typically for neural network mod-
els, to determine feature contributions.

Sobol_Jansen: Variance-based global sensitivity analysis that decomposes model output vari-
ance into contributions from individual features and their interactions. Quantifies how much
each feature accounts for prediction variability. Only for continuous outcomes. Estimates
first-order and total-order Sobol indices using the Jansen (1999) Monte Carlo estimator.

For classification tasks with more than two outcome levels, the function generates separate results
and plots for each class. Visualizations include bar plots for importance metrics, box plots for
distribution of values, and beeswarm plots for detailed feature impact across observations. All
results are stored in the analysis_object under the sensitivity_analysis slot, finalizing the
MLwrap pipeline with a deep understanding of model drivers.

An updated analysis_object containing sensitivity analysis results. Results are stored in the
sensitivity_analysis slot as a list, with each method’s results accessible by name. Generates
bar, box, and beeswarm plots for feature importance visualization, completing the workflow with
actionable insights.

References

Iooss, B., & Lemaitre, P. (2015). A review on global sensitivity analysis methods. In: G. Dellino &
C. Meloni (Eds.), Uncertainty Management in Simulation-Optimization of Complex Systems. Oper-
ations Research/Computer Science Interfaces Series (vol. 59). Springer, Boston, MA. doi:10.1007/
9781489975478_5

Jansen, M. J. W. (1999). Analysis of variance designs for model output. Computer Physics Com-
munications, 117(1-2), 35-43. doi:10.1016/S00104655(98)001544

Examples

# Example: Using PFI

wrap_object <- preprocessing(

df = sim_data,
formula = psych_well ~ depression + life_sat,
task = "regression”

)

wrap_object <- build_model(

analysis_object = wrap_object,
model_name = "Random Forest”,
hyperparameters = list(

mtry = 2,


https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1016/S0010-4655%2898%2900154-4
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trees = 3
)
)
set.seed(123) # For reproducibility
wrap_object <- fine_tuning(wrap_object,
tuner = "Grid Search CV",
metrics = c("rmse")

)
wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")

# Extracting Results

table_pfi <- table_pfi_results(wrap_object)

sim_data sim_data

Description

This dataset, included in the MLwrap package, is a simulated dataset (Martinez-Garcia et al., 2025)
designed to capture relationships among psychological and demographic variables influencing psy-
chological wellbeing, the primary outcome variable. It comprises data for 1,000 individuals.

Usage

data(sim_data)

Format

A data frame with 1,000 rows and 10 columns:

psych_well Psychological Wellbeing Indicator. Continuous with (0,100)
psych_well_bin Psychological Wellbeing Binary Indicator. Factor with ("Low", "High")

psych_well_pol Psychological Wellbeing Polytomic Indicator. Factor with ("Low", "Somewhat",
"Quite a bit", "Very Much")

gender Patient Gender. Factor ("Female", "Male")

age Patient Age. Continuous (18, 85)

socioec_status Socioeconomial Status Indicator. Factor ("Low", "Medium", "High")
emot_intel Emotional Intelligence Indicator. Continuous (24, 120)

resilience Resilience Indicator. Continuous (4, 20)

depression Depression Indicator. Continuous (0, 63)

life_sat Life Satisfaction Indicator. Continuous (5, 35)
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Details

The predictor variables include gender (50.7% female), age (range: 18-85 years, mean = 51.63,
median = 52, SD = 17.11), and socioeconomic status, categorized as Low (n = 343), Medium (n =
347), and High (n = 310). Additional predictors (features) are emotional intelligence (range: 24-
120, mean = 71.97, median = 71, SD = 23.79), resilience (range: 4-20, mean = 11.93, median = 12,
SD = 4.46), life satisfaction (range: 5-35, mean = 20.09, median = 20, SD = 7.42), and depression
(range: 0-63, mean = 31.45, median = 32, SD = 14.85). The primary outcome variable is emotional
wellbeing, measured on a scale from 0 to 100 (mean = 50.22, median = 49, SD = 24.45).

The dataset incorporates correlations as conditions for the simulation. Psychological wellbeing is
positively correlated with emotional intelligence (r = 0.50), resilience (r = 0.40), and life satisfac-
tion (r = 0.60), indicating that higher levels of these factors are associated with better emotional
health outcomes. Conversely, a strong negative correlation exists between depression and psycho-
logical wellbeing (r = -0.80), suggesting that higher depression scores are linked to lower emotional
wellbeing. Age shows a slight positive correlation with emotional wellbeing (r = 0.15), reflecting
the expectation that older individuals might experience greater emotional stability. Gender and so-
cioeconomic status are included as potential predictors, but the simulation assumes no statistically
significant differences in psychological wellbeing across these categories.

Additionally, the dataset includes categorical transformations of psychological wellbeing into bi-
nary and polytomous formats: a binary version ("Low" = 477, "High" = 523) and a polytomous
version with four levels: "Low" (n = 161), "Somewhat" (n = 351), "Quite a bit" (n = 330), and
"Very much" (n = 158). The polytomous transformation uses the 25th, 50th, and 75th percentiles as
thresholds for categorizing psychological wellbeing scores. These transformations enable analyses
using machine learning models for regression (continuous outcome) and classification (binary or
polytomous outcomes) tasks.

Test Performance Exceeding Training Performance

If machine learning models, including SVMs, show better evaluation metrics on the test set than the
training set, this anomaly usually signals methodological issues rather than genuine model quality.
Typical causes reported in the literature (Hastie et al., 2017) include:

* Statistical variance in small samples: Random train-test splits may produce partitions where
the test set contains easier-to-classify examples by chance, especially with small sample sizes
or difficult tasks (Vabalas et al., 2019; An et al., 2021).

* Synthetic data characteristics: Simulated data may contain artificial patterns or non-uniform
distributions that create easier test sets compared to training sets.

» Excessive regularization: High regularization parameters may limit model capacity to fit
training data while paradoxically generalizing better to simpler test patterns, indicating under-
fitting.

* Train-test contamination: Preprocessing (scaling, normalization) performed before train-
test split leaks statistical information from test to train, producing overoptimistic performance
estimates (Kapoor & Narayanan, 2023).

* Kernel-data interaction: Inappropriate kernel parameters may create decision boundaries
that better fit test distribution than training distribution.

MLwrap implementation: MLwrap’s hyperparameter optimization (via Bayesian Optimization
or Grid Search CV) implements 5-fold cross-validation during the tuning process, which provides
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more robust parameter selection than single train-test splits. Users should examine evaluation met-
rics across both training and test sets, and review diagnostic plots (residuals, predictions) to identify
potential distribution differences between partitions. When working with small datasets where par-
tition variability may be substantial, running the complete workflow with different random seeds
can help assess the stability of results and conclusions. The sim_data dataset included in MLwrap
is a simulated matrix provided for demonstration purposes only. As synthetic data, it may occa-
sionally exhibit some of these anomalous phenomena (e.g., better test than training performance)
due to artificial patterns in the data generation process. Users working with real-world data should
always verify results through careful examination of evaluation metrics and diagnostic plots across
multiple runs.

References

An, C., Park, Y. W., Ahn, S. S., Han, K., Kim, H., & Lee, S. K. (2021). Radiomics machine learning
study with a small sample size: Single random training-test set split may lead to unreliable results.
PLOS ONE, 16(8), €0256152. doi:10.1371/journal.pone.0256152

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning: Data mining,
inference, and prediction (2nd ed., corrected 12th printing, Chapter 7). Springer. doi:10.1007/
9780387848587

Kapoor, S., & Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-
based science. Patterns, 4(9), 100804. doi:10.1016/j.patter.2023.100804

Martinez-Garcia, J., Montaiio, J. J., Jiménez, R., Gervilla, E., Cajal, B., Nuiiez, A., Leguizamo, F.,
& Sesé, A. (2025). Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral
Research. Clinical and Health, 36(2), 77-95. doi:10.5093/c1h2025a13

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm valida-
tion with a limited sample size. PLOS ONE, 14(11), €0224365. doi:10.1371/journal.pone.0224365

table_best_hyperparameters
Best Hyperparameters Configuration

Description

The table_best_hyperparameters() function extracts and presents the optimal hyperparameter
configuration identified during the model fine-tuning process. This function validates that the model
has been properly trained and that hyperparameter tuning has been performed, combining both con-
stant and optimized hyperparameters to generate a comprehensive table with the configuration that
maximizes performance according to the specified primary metric. The function includes optional
interactive visualization capabilities through the show_table parameter.

Usage

table_best_hyperparameters(analysis_object, show_table = FALSE)


https://doi.org/10.1371/journal.pone.0256152
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/j.patter.2023.100804
https://doi.org/10.5093/clh2025a13
https://doi.org/10.1371/journal.pone.0224365
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Arguments

analysis_object
Fitted analysis_object with "fine_tuning()’.

show_table Boolean. Whether to print the table.

Value

Tibble with best hyperparameter configuration.

Examples

# Note: For obtaining hyoperparameters table the user needs to
# complete till fine_tuning( ) function.

set.seed(123) # For reproducibility
wrap_object <- preprocessing(df = sim_data[1:300 ,],
formula = psych_well ~ depression + resilience,
task = "regression”)
wrap_object <- build_model(wrap_object, "Random Forest”,
hyperparameters = list(mtry = 2, trees = 3))
wrap_object <- fine_tuning(wrap_object, "Grid Search CV")

# And then, you can obtain the best hyperparameters table.

table_best_hyp <- table_best_hyperparameters(wrap_object)

table_evaluation_results
Evaluation Results

Description

The table_evaluation_results() function provides access to trained model evaluation metrics, au-
tomatically adapting to the type of problem being analyzed. For binary classification problems, it
returns a unified table with performance metrics, while for multiclass classification it generates sep-
arate tables for training and test data, enabling comparative performance evaluation and detection
of potential overfitting.

Usage

table_evaluation_results(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with *fine_tuning()’.

show_table Boolean. Whether to print the table.
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Value

Tibble or list of tibbles (multiclass classification) with evaluation results.

See Also

table_best_hyperparameters

Examples

# Note: For obtaining the evaluation table the user needs to

# complete till fine_tuning( ) function.

# See the full pipeline example under table_best_hyperparameters()
# Final call signature:

# table_evaluation_results(wrap_object)

table_integrated_gradients_results
Integrated Gradients Summarized Results Table

Description

The table_integrated_gradients_results() function implements a summarized metrics scheme for
Integrated Gradients values. This methodology, specifically designed for neural networks, calcu-
lates feature importance through gradient integration along paths from baseline to input. Three
different metrics are computed:

¢ Mean Absolute Value
e Standard Deviation of Mean Absolute Value

* Directional Sensitivity Value (Cov(Feature values, IG values) / Var(Feature values))

Usage

table_integrated_gradients_results(analysis_object, show_table = FALSE)

Arguments
analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Integrated Gradi-
ents")’.
show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with Integrated Gradient summarized results.

See Also

sensitivity_analysis
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Examples

Note: For obtaining the table with Integrated Gradients method results
the user needs to complete till sensitivity_analysis() function of the
MLwrap pipeline using the Integrated Gradient method.

See the full pipeline example under sensitivity_analysis

(Requires sensitivity_analysis(methods = "Integrated Gradients"))
Final call signature:

table_integrated_gradients_results(wrap_object)
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table_olden_results Olden Results Table

Description

The table_olden_results() function extracts results from the Olden method, a technique specific to
neural networks that calculates relative importance of input variables through analysis of connection
weights between network layers. This method provides a measure of each variable’s contribution
based on the magnitude and direction of synaptic connections.

Usage

table_olden_results(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Olden")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with Olden results.

See Also

sensitivity_analysis

Examples
# Note: For obtaining the table with Olden method results the user needs to
# complete till sensitivity_analysis() function of the MLwrap pipeline using
# the 0lden method. Remember Olden method only can be used with neural
# network model.
# See the full pipeline example under sensitivity_analysis
# (Requires sensitivity_analysis(methods = "0lden"))
# Final call signature:
# table_olden_results(wrap_object)
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table_pfi_results Permutation Feature Importance Results Table

Description

The table_pfi_results() function extracts Permutation Feature Importance results, a model-agnostic
technique that evaluates variable importance through performance degradation when randomly per-
muting each feature’s values.

Usage

table_pfi_results(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "PFI")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with PFI results.

Examples

# Note: For obtaining the table with PFI method results the user needs to
# complete till sensitivity_analysis() function of the
# MLwrap pipeline using PFI method

set.seed(123) # For reproducibility
wrap_object <- preprocessing(df = sim_data[1:300 ,],
formula = psych_well ~ depression + emot_intel,
task = "regression”)
wrap_object <- build_model(wrap_object, "Random Forest”,
hyperparameters = list(mtry = 2, trees = 3))
wrap_object <- fine_tuning(wrap_object, "Grid Search CV")
wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")

# And then, you can obtain the PFI results table.

table_pfi <- table_pfi_results(wrap_object)
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table_shap_results SHAP Summarized Results Table

Description

The table_shap_results() function processes previously calculated SHAP (SHapley Additive ex-
Planations) values and generates summarized metrics including mean absolute value, standard de-
viation of mean absolute value, and a directional sensitivity value calculated as the covariance
between feature values and SHAP values divided by the variance of feature values. This directional
metric provides information about the nature of the relationship between each variable and model
predictions. To summarize the SHAP values calculated, three different metrics are computed:

¢ Mean Absolute Value
¢ Standard Deviation of Mean Absolute Value

* Directional Sensitivity Value (Cov(Feature values, SHAP values) / Var(Feature values))

Usage

table_shap_results(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "SHAP")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with SHAP summarized results.

See Also

sensitivity_analysis

Examples
# Note: For obtaining the table with SHAP method results the user needs
# to complete till sensitivity_analysis() function of the
# MLwrap pipeline using the SHAP method.
# See the full pipeline example under sensitivity_analysis
# (Requires sensitivity_analysis(methods = "SHAP"))
# Final call signature:
# table_shap_results(wrap_object)
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table_sobol_jansen_results
Sobol-Jansen Results Table

Description

The table_sobol_jansen_results() function processes results from Sobol-Jansen global sensitivity
analysis, a variance decomposition-based methodology that quantifies each variable’s contribution
and their interactions to the total variability of model predictions. This technique is particularly
valuable for identifying higher-order effects and complex interactions between variables.

Usage

table_sobol_jansen_results(analysis_object, show_table = FALSE)

Arguments

analysis_object
Fitted analysis_object with ’sensitivity_analysis(methods = "Sobol_Jansen")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with Sobol-Jansen results.

See Also

sensitivity_analysis

Examples
# Note: For obtaining the table with Sobol_Jansen method results the user
# needs to complete till sensitivity_analysis() function of the MLwrap
# pipeline using the Sobol_Jansen method. Sobol_Jansen method only works
# when all input features are continuous.
# See the full pipeline example under sensitivity_analysis
# (Requires sensitivity_analysis(methods = "Sobol_Jansen”))
# Final call signature:
# table_sobol_jansen_results(wrap_object)
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tutorial MLwrap Comprehensive Tutorial

Description

A comprehensive tutorial demonstrating the complete MLwrap workflow is available. The tu-
torial provides detailed guidance on data preprocessing, model building, hyperparameter tuning,
model evaluation, and sensitivity analysis across all supported machine learning algorithms (Neural
Networks, Random Forests, SVM, and XGBoost) within the Knowledge Discovery in Databases
(KDD) framework.

Usage

MLwrap_tutorial()

Details

Citation: Jiménez, R., Martinez-Garcia, J., Montafio, J. J., & Sesé, A. (2025). MLwrap: Simplifying
Machine Learning workflows in R. PsyarXiv. doi:10.31234/osf.io/j6m4z_v1

Value

Character string with the arXiv URL

Preprint

Auwailable at doi:10.31234/osf.io/j6m4z_v1

Why consult the tutorial

While MLwrap provides a streamlined and user-friendly interface for implementing machine learn-
ing workflows, the underlying models represent sophisticated algorithms with substantial theoretical
and computational complexity. The tutorial bridges this gap by explaining the rationale behind pre-
processing decisions, hyperparameter choices, and interpretation of model outputs. Understanding
these concepts ensures appropriate application of the methods, proper interpretation of results, and
awareness of potential limitations in specific contexts.

The tutorial demonstrates practical applications through complete workflows, helping users nav-
igate the balance between methodological rigor and implementation simplicity that MLwrap of-
fers. This is particularly valuable for researchers transitioning from traditional statistical methods
to machine learning approaches, or those seeking to ensure reproducible and theoretically sound
applications in their work.

Users are strongly encouraged to consult the tutorial for detailed examples and best practices.


https://doi.org/10.31234/osf.io/j6m4z_v1
https://doi.org/10.31234/osf.io/j6m4z_v1
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Tutorial for implementing ML with Python

This paper is also interesting for ML users as it serves as a primer for estimating ML models using
Python code, particularly in the context of Social, Health, and Behavioral research.

Martinez-Garcia, J., Montafio, J. J., Jiménez, R., Gervilla, E., Cajal, B., Nudfiez, A., Leguizamo, F.,,
& Sesé, A. (2025). Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral
Research. Clinical and Health, 36(2), 77-95. doi:10.5093/c1h2025a13

Examples

MLwrap_tutorial()


https://doi.org/10.5093/clh2025a13
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