params <- list(eval = FALSE) ## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = params$eval ) ## ----------------------------------------------------------------------------- # library(LBBNN) # library(ggplot2) # library(torch) ## ----------------------------------------------------------------------------- # loaders <- get_dataloaders(Raisin_Dataset, train_proportion = 0.8, # train_batch_size = 720, test_batch_size = 180) # train_loader <- loaders$train_loader # test_loader <- loaders$test_loader ## ----------------------------------------------------------------------------- # problem <- 'binary classification' # sizes <- c(7,5,5,1) # inclusion_priors <- c(0.5,0.5,0.5) # stds <- c(1,1,1) # inclusion_inits <- matrix(rep(c(-10,15),3), nrow = 2, ncol = 3) # device <- 'cpu' # # torch_manual_seed(0) # model_input_skip <- LBBNN_Net(problem_type = problem, sizes = sizes, prior = inclusion_priors, # inclusion_inits = inclusion_inits, input_skip = TRUE, std = stds, # flow = FALSE, device = device) ## ----------------------------------------------------------------------------- # results_input_skip <- train_LBBNN(epochs = 50, LBBNN = model_input_skip, # lr = 0.005, train_dl = train_loader, device = device) ## ----------------------------------------------------------------------------- # validate_LBBNN(LBBNN = model_input_skip, num_samples = 100, # test_dl = test_loader, device = device) ## ----------------------------------------------------------------------------- # LBBNN_plot(model_input_skip, layer_spacing = 1, neuron_spacing = 1, # vertex_size = 15, edge_width = 0.5) # # x <- torch::dataloader_next(torch::dataloader_make_iter(train_loader))[[1]] # inds <- sample.int(dim(x)[1], 1) # data <- x[inds,] # plot_local_explanations_gradient(model_input_skip, data, num_samples = 100, device = device)