## ----setup, include = FALSE, echo = FALSE, warning = FALSE-------------------- knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(warning = FALSE) knitr::opts_chunk$set(dev = "png", dev.args = list(type = "cairo-png")) knitr::opts_chunk$set(fig.width = 7, fig.height = 5) ## ----include=FALSE------------------------------------------------------------ library(HaDeX2) library(ggplot2) library(dplyr) library(r3dmol) states <- unique(alpha_dat[["State"]]) states_uptake_dat <- create_state_comparison_dataset(alpha_dat, time_t = 1) woods_diff_uptake_dat <- calculate_diff_uptake(alpha_dat, states = c(states[3], states[1])) uptake_dat <- create_state_uptake_dataset(alpha_dat, state = states[3]) diff_uptake_dat <- create_diff_uptake_dataset(alpha_dat, state_1 = states[3], state_2 = states[1]) ## ----------------------------------------------------------------------------- create_state_comparison_dataset(alpha_dat, time_t = 1) %>% plot_state_comparison(., fractional = TRUE) + labs(x = "Position in sequence", y = "Fractional deuterium uptake [%]", title = "Measurement after 1 min of exchange") ## ----------------------------------------------------------------------------- calculate_diff_uptake(alpha_dat, states = c(states[3], states[1])) %>% plot_differential(., fractional = TRUE, show_houde_interval = TRUE) + labs(x = "Position in seqence", y = "Fractional deuterium uptake difference [%]", title = "Measurement after 1 min of uptake") ## ----------------------------------------------------------------------------- create_state_uptake_dataset(alpha_dat, state = states[3]) %>% plot_butterfly(., fractional = FALSE) ## ----message=FALSE------------------------------------------------------------ create_diff_uptake_dataset(alpha_dat, state_1 = states[3], state_2 = states[1]) %>% filter(Exposure < 1440) %>% plot_differential_butterfly(fractional = TRUE, show_houde_interval = TRUE) ## ----------------------------------------------------------------------------- create_state_uptake_dataset(alpha_dat, state = states[3]) %>% filter(Exposure < 1440) %>% plot_chiclet(show_uncertainty = TRUE, fractional = FALSE) ## ----------------------------------------------------------------------------- diff_uptake_dat %>% filter(Exposure < 1440 & Exposure > 0.001) %>% plot_differential_chiclet(show_uncertainty = TRUE, fractional = TRUE) ## ----warning = FALSE---------------------------------------------------------- p_dat <- create_p_diff_uptake_dataset(alpha_dat) plot_volcano(p_dat, show_confidence_limits = TRUE) ## ----warning = FALSE, message = FALSE----------------------------------------- calculate_peptide_kinetics(dat = alpha_dat) %>% plot_uptake_curve() + ylim(c(0, NA)) ## ----warning=FALSE------------------------------------------------------------ alpha_dat %>% filter(Exposure > 0) %>% plot_uncertainty() ## ----------------------------------------------------------------------------- p_diff_dat <- create_p_diff_uptake_dataset(dat = alpha_dat, diff_uptake_dat = diff_uptake_dat, state_1 = states[3], state_2 = states[1]) plot_manhattan(p_diff_dat, show_peptide_position = TRUE) ## ----------------------------------------------------------------------------- kin_dat <- create_uptake_dataset(alpha_dat, states = "Alpha_KSCN") aggregated_dat <- create_aggregated_uptake_dataset(kin_dat) plot_aggregated_uptake(aggregated_dat) ## ----------------------------------------------------------------------------- diff_uptake_dat <- create_diff_uptake_dataset(alpha_dat, state_1 = states[3], state_2 = states[1]) averaged_diff_dat <- create_aggregated_diff_uptake_dataset(diff_uptake_dat) plot_aggregated_differential_uptake(averaged_diff_dat, panels = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # pdb_file_path <- system.file(package = "HaDeX2", "HaDeX/data/Model_eEF1Balpha.pdb") # # plot_aggregated_uptake_structure(aggregated_dat, # differential = FALSE, # time_t = 1, # pdb_file_path = pdb_file_path) # ## ----------------------------------------------------------------------------- auc_dat <- calculate_auc(create_uptake_dataset(alpha_dat)) plot_coverage_heatmap(auc_dat, value = "auc") ## ----------------------------------------------------------------------------- bex_dat <- calculate_back_exchange(alpha_dat, state = "Alpha_KSCN") plot_coverage_heatmap(bex_dat, value = "back_exchange") ## ----echo=FALSE--------------------------------------------------------------- summary_plots <- data.frame(types = c("comparison", "Woods (differential)", "butterfly", "butterfly differential", "volcano", "chiclet", "chiclet differential", "uptake curve"), "time course" = c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), "length of the peptide" = c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), "uncertainty" = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), "all peptides" = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE), "different states" = c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE), "position" = c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), check.names = FALSE) knitr::kable(summary_plots)