Package 'HCTDesign'

October 20, 2025

Title Group Sequential Design for Historical Control Trial with

Survival Outcome
Version 0.7.4
Imports Rdpack, diversitree, mvtnorm, flexsurv, stats, survival, crayon
RdMacros Rdpack
Description It provides functions to design historical controlled trials with survival outcome by group sequential method. The options for interim look boundaries are efficacy only, efficacy & futility or futility only. It also provides the function to monitor the trial for any unplanned look. The package is based on Jianrong Wu, Xiaoping Xiong (2016) <doi:10.1002 pst.1756=""> and Jianrong Wu, Yimei Li (2020) <doi:10.1080 10543406.2019.1684305="">.</doi:10.1080></doi:10.1002>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no
Author Tushar Patni [aut, cre], Yimei Li [aut], Jianrong Wu [aut]
Maintainer Tushar Patni <tushar.patni006@gmail.com></tushar.patni006@gmail.com>
Repository CRAN
Date/Publication 2025-10-20 21:30:02 UTC
Contents
calendar_time 2 EffDesign 3 EffIM 4 FutDesign 6 FutIM 7 HCTSurvDesign 8 IM 10
1

2 calendar_time

calendar_time

Calculate Calendar Times for Interim Analysis Looks

Description

Calculate Calendar Times for Interim Analysis Looks

Usage

```
calendar_time(
   k,
   d2max,
   htime,
   hevent,
   delta,
   ta,
   tf,
   method = c("KM"),
   event_ind = 1
)
```

Arguments

k Numeric vector of event fractions for each look (e.g., c(0.5, 1))

d2max maximum number of events in the experimental group calculated from the de-

sign function.

htime Historical survival times

hevent Historical event indicators (0/1)

delta Hazard ratio (experimental vs. historical)

ta Accrual time tf Follow-up time

method "exponential", "log_normal" or "KM" for survival function estimation(Default

is KM)

event_ind Event indicator value (default = 1)

Value

Data frame with columns: Distribution, look, time fraction, events, calendar time

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

EffDesign 3

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

Examples

```
time <- c(20, 65, 12, 50, 58, 65, 45, 44)
event <- c(1, 0, 0, 0, 1, 1, 1, 1)
gg<-calendar_time(k=c(0.5, 1),d2max=46,htime=time,hevent=event,delta=0.7,ta=5,tf=4,method="KM")
```

EffDesign

HCT design with interim monitoring for efficacy only

Description

The group sequential design for historical controlled survival outcome trials with efficacy boundaries only.

Usage

```
EffDesign(
   k,
   alpha,
   beta,
   delta,
   delta0,
   d1,
   option = "OBF",
   param = 4,
   trial = "Superiority"
)
```

Arguments

k	vector of time fraction for all planned looks: $k=c(1/3,2/3,1)$ if the three planned looks will be carried out at $1/3$, $2/3$ and all of the total events in the experiment arm.
alpha	type I error.
beta	type II error.
delta	hazard ratio: hazard of experiment group over hazard of control group.
delta0	Non-inferiority margin.
d1	total number of events in the historical control group.

4 EffIM

option	type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is "OBF.
param	Parameter for Gamma family or Rho family. Default value is 4.
trial	Type of trial: "Superiority" or "Non-inferiority". Default is "Superiority".

Value

List of dataframes and vectors containing the details about the following: design of the trial which includes the number of looks and events; details about futility and efficacy boundaries which include transformed information time at each look, cumulative beta and alpha respectively, p-values and crossing probabilities; etam(drift parameter); d2max(maximum number of events in the experimental group); delta_used(hazard ratio used in the design).

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

Examples

```
 \begin{tabular}{ll} \#Superiority trial with three equally spaced looks for efficacy using OBF spending function. \\ gg<-EffDesign(k=c(0.3,0.6,1),alpha=0.05,beta=0.1,delta=0.57,d1=65,option="OBF",trial="Superiority") \\ \end{tabular}
```

EffIM Monitoring the trial at interim looks for a trial with efficacy monitoring only

Description

Calculates one-sided efficacy boundary values at the observed number of events.

Usage

```
EffIM(
   d2,
   dmax,
   last.look = FALSE,
   d1,
   etam,
   alpha,
   beta,
```

EffIM 5

```
opt = "OBF",
  param = 4
)
```

Arguments

d2 vector of number of events at which you want to monitor the trial.

dmax maximum number of events in the experimental group calculated from design function.

last.look logical which indicates whether the current look is the last look or not. Default is FALSE. If true, the post hoc power is calculated.

d1 total number of events in the historical control group.

etam value of the drift parameter obtained from design function.

alpha type I error.

beta type II error.

opt type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is

"OBF".

param Parameter for "gamma family" or rho family. Default value is 4.

Details

The number of events have to be entered sequentially. See example.

Value

A list containing efficacy boundary values along with the p-values and transformed information time for the current look. Post-hoc power is also calculated in case of early stopping of the trial.

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

Examples

```
#Interim look for the trial when the number of events is 13(first look).
gg<-EffIM(c(13),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="OBF",last.look=FALSE)
#Interim look for the trial when the number of events is 35(second look).
gg<-EffIM(c(13,35),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="OBF",last.look=FALSE)</pre>
```

6 FutDesign

FutDesign

HCT design with interim monitoring for futilty only

Description

The group sequential design for historical controlled survival outcome trials with futility boundaries only.

Usage

```
FutDesign(
   k,
   alpha,
   beta,
   delta,
   d1,
   option = "OBF",
   param = 4,
   trial = "Superiority",
   delta0
)
```

Arguments

k	vector of time fraction for all planned looks: $k=c(1/3,2/3,1)$ if the three planned looks will be carried out at $1/3$, $2/3$ and all of the total events in the experiment arm.
alpha	type I error.
beta	type II error.
delta	hazard ratio: hazard of experiment group over hazard of control group.
d1	total number of events in the historical control group.
option	type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is "OBF.
param	Parameter for Gamma family or Rho family. Default value is 4.
trial	Type of trial: "Superiority" or "Non-inferiority". Default is "Superiority".
delta0	Non-inferiority margin.

Value

List of dataframes and vectors containing the details about the following: design of the trial which includes the number of looks and events; details about futility and efficacy boundaries which include transformed information time at each look, cumulative beta and alpha respectively, p-values and crossing probabilities; etam(drift parameter); d2max(maximum number of events in the experimental group); delta_used(hazard ratio used in the design).

FutIM 7

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

Examples

```
#Sequential superiority trial for three equally spaced looks for OBF spending function. gg<-FutDesign(k=c(0.3,0.6,1),alpha=0.05,beta=0.1,delta=0.57,d1=65,option="OBF",trial="Superiority")
```

FutIM

Monitoring the trial at interim looks for a trial with futility monitoring only

Description

Calculates one-sided futility boundary values at the observed number of events.

Usage

```
FutIM(
    d2,
    dmax,
    last.look = FALSE,
    d1,
    etam,
    alpha,
    beta,
    opt = "OBF",
    param = 4
)
```

Arguments

d2	vector of number of events at which you want to monitor the trial.
dmax	maximum number of events in the experimental group caculated from design function.
last.look	logical which indicates whether the current look is the last look or not. Default is FALSE.
d1	total number of events in the historical control group.
etam	value of the drift parameter obtained from design function.

8 **HCTSurvDesign**

alpha	type I error.
beta	type II error.
opt	type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is "OBF".
param	Parameter for Gamma family or Rho family. Default value is 4.

Details

The number of events have to be entered sequentially. See example.

Value

A list containing futility boundary values along with the p-values and transformed information time for the current look.Post-hoc power is also calculated in case of early stopping of the trial.

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." Pharmaceutical Statistics, 15(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." Journal of Biopharmaceutical Statistics, 30(2), 351-363.

Examples

```
#Interim look for the trial when the number of events is 13(first look).
gg<-FutIM(c(13),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="0BF",last.look=FALSE)
#Interim look for the trial when the number of events is 35(second look).
gg<-FutIM(c(13,35),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="0BF",last.look=FALSE)
```

HCTSurvDesign

HCT design with interim monitoring for both efficacy and futility

Description

The group sequential design for historical controlled survival outcome trials with both efficacy and futility boundaries.

HCTSurvDesign 9

Usage

```
HCTSurvDesign(
   k,
   alpha,
   beta,
   delta,
   d1,
   option = "OBF",
   param = 4,
   trial = "Superiority",
   delta0
)
```

Arguments

k	vector of time fraction for all planned looks: $k=c(1/3,2/3,1)$ if the three planned looks will be carried out at $1/3$, $2/3$ and all of the total events in the experiment arm.
alpha	type I error.
beta	type II error.
delta	hazard ratio: hazard of experiment group over hazard of control group.
d1	total number of events in the historical control group.
option	type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is "OBF".
param	Parameter for Gamma family or Rho family. Default value is 4.
trial	Type of trial: "Superiority" or "Non-inferiority". Default is "Superiority".
delta0	Non-inferiority margin.

Value

List of dataframes and vectors containing the details about the following: design of the trial which includes the number of looks and events; details about futility and efficacy boundaries which include transformed information time at each look, cumulative beta and alpha respectively, p-values and crossing probabilities; etam(drift parameter); d2max(maximum number of events in the experimental group); delta_used(hazard ratio used in the design).

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

10 IM

Examples

#Sequential superiority trial for three equally spaced looks for OBF spending function. gg<-HCTSurvDesign(k=c(0.3,0.6,1),alpha=0.05,beta=0.1,delta=0.57,d1=65,option="OBF")

IM	Monitoring the trial at interim looks for a trial with efficacy and futility boundaries

Description

Calculates one-sided boundary values at the observed number of events.

Usage

```
IM(d2, dmax, last.look = FALSE, d1, etam, alpha, beta, opt = "OBF", param = 4)
```

Arguments

d2	vector of number of events at which you want to monitor the trial.
dmax	maximum number of events in the experimental group calculated from design function.
last.look	logical which indicates whether the current look is the last look or not. Default is FALSE.
d1	total number of events in the historical control group.
etam	value of the drift parameter obtained from design function.
alpha	type I error.
beta	type II error.
opt	type of spending function: "OBF", "Gamma", "Rho" or "Pocock". Default is "OBF".
param	Parameter for Gamma family or Rho family. Default value is 4.

Details

The number of events have to be entered sequentially. See example.

Value

A list containing efficacy and futility boundary values along with the p-values and transformed information time for the current look. Post-hoc power is also calculated in case of early stopping of the trial.

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

sf 11

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

Examples

```
#Interim look for the trial when the number of events is 13(first look). gg<-IM(c(13),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="OBF",last.look=FALSE) #Interim look for the trial when the number of events is 35(second look). gg<-IM(c(13,35),dmax=57,alpha=0.05,beta=0.1,etam=3.0726,d1=65,opt="OBF",last.look=FALSE)
```

sf

Log rank test for non-inferiority trial

Description

Calculates the score function of the log rank test for non-inferiority trial

Usage

```
sf(event, status, delta0, group, experiment, control)
```

Arguments

event	event time vector from person level trial data.
status	numeric vector indicating the status of event from person level trial data.
delta0	Non-inferiority margin.
group	group string vector indicating the assignment of patients into control or experimental group.
experiment	name of experimental group as character string.
control	name of control group as character string.

Value

Returns the value of score statistic.

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

Examples

```
time<-c(20,65,12,50,58,65,45,44)
event<-c(1,0,0,0,1,1,1,1)
group<-c(rep("exp",4),rep("cont",4))
gg<-sf(event=time,status=event,delta0=1.3,group=group,experiment="exp",control="cont")</pre>
```

12 SM

SM

Sample size in terms of number of subjects in the experimental group

Description

Calculates the total number of subjects for the experimental group using the total number of events(d2max:the output from design functions) and the estimated failure probability based on the person level historical control data and proportional hazard assumption.

Usage

```
SM(time, event, d2max, opt = c("KM"), event_ind, ta, tf, delta)
```

Arguments

time	event time vector from person level historical control data.
event	numeric vector indicating the status of event from person level historical control data.
d2max	maximum number of events in the experimental group calculated from the design function.
opt	the method of fitting survival curve-"log_normal", "exponential or "KM" (log-normal, exponential or Kaplan Meier). Default is "KM".
event_ind	numeric value indicating the occurrence of event.
ta	enrollment time.
tf	follow-up time.
delta	hazard ratio.

Value

Returns the value of sample size.

Author(s)

Tushar Patni, Yimei Li and Jianrong Wu.

References

Wu J, Xiong X (2016). "Survival trial design and monitoring using historical controls." *Pharmaceutical Statistics*, **15**(5), 405-411.

Wu J, Li Y (2020). "Group sequential design for historical control trials using error spending functions." *Journal of Biopharmaceutical Statistics*, **30**(2), 351-363.

SM 13

Examples

```
time<-c(20,65,12,50,58,65,45,44)
event<-c(1,0,0,0,1,1,1,1)
d2max=57
gg<-SM(time,event,d2max,opt="log_normal",ta=4,tf=3,delta=0.57,event_ind=1)</pre>
```

Index

```
calendar_time, 2
EffDesign, 3
EffIM, 4
FutDesign, 6
FutIM, 7
HCTSurvDesign, 8
IM, 10
sf, 11
SM, 12
```