## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) if (!requireNamespace("dplyr", quietly = TRUE)) { knitr::knit_exit() } ## ----------------------------------------------------------------------------- library("CTE") library("dplyr") data(example_temp_data) #extract data for nest 2, which only has 1 day of data nest2 <- example_temp_data[example_temp_data$nest == "nest2",] #calculate the mean (M) daily.mean <- mean(nest2$temp) #calculate the maximum deviation from the mean (R) #take the difference between the maximum and mean temp and difference between mean # and minimum temp. The larger of the two values will be R. daily.dev <- max( (max(nest2$temp)-daily.mean), (daily.mean-min(nest2$temp)) ) #The T0 value (temp below which no development occurs) cannot be calculated from the # data and has to be determined based on the biology of the study species. # We will use T0 = 16 for our example. #We will run CTE using the calculated values and leave t and max.it on their defaults cte.res <- CTE(M = daily.mean, R = daily.dev,T0 = 16) cte.res ## ----------------------------------------------------------------------------- cte.res2 <- CTE(M = daily.mean, R = daily.dev,T0 = 16,t=.01) cte.res cte.res2 ## ----------------------------------------------------------------------------- #calculate M (daily mean) and R (daily.dev) for each nest for each date. daily.values <- example_temp_data %>% group_by(nest,date) %>% dplyr::summarize(daily.mean = mean(temp), daily.dev = max( (max(temp)-mean(temp)), (mean(temp)-min(temp)) )) daily.values #calculate CTE for each nest for each date #CTE will be added as a new column daily.values <- daily.values %>% group_by(nest,date) %>% dplyr::mutate(CTE=CTE(M = daily.mean, R=daily.dev,T0=16)) daily.values