The

Abstract

'kissDE’ package

Clara Benoit-Pilven', Camille Marchet?, Janice Kielbassa?,

Audric Cologne*, Aurélie Siberchicot®, and Vincent Lacroix*
1

1Université de Lyon, Université Lyon 1, CNRS UMRS5558, Laboratoire de Biométrie et Biolo-
gie Evolutive, Villeurbanne, France

2Univ Rennes, Inria, CNRS, IRISA, France

3Synergie Lyon Cancer, Université Lyon 1, Centre Léon Berard, Lyon, France

*vincent.lacroix@univ—lyonl.fr

April 15, 2025

kissDE is a package dedicated to the analysis of count data obtained from the quantification
of pairs of variants in RNA-Seq data.

It can be used to study splice variants, where the two variants of the pair differ by the inclu-
sion/exclusion of an exonic or intronic region. It can also be used to study genomic variants
(whenever they are transcribed), which differ by a single nucleotide variation (SNV) or an
indel.

The statistical framework is based on similar hypotheses as DESeq2 [1] and includes its nor-
malization method using geometric means. Counts are modelled using the negative binomial
distribution. We use the framework of the generalised linear model, and we test for associa-
tion of a variant with a condition using a likelihood ratio test.

This vignette explains how to use this package.

The workflow for SNPs/SNVs is fully described in Lopez-Maestre et al. [2], the workflow for
splicing is fully described in Benoit-Pilven et al. [3]

Package
kissDE 1.28.0
Contents
1 Prerequisites 3
1.1 Usecase. o v v i e e e 3
1.2 Installand load kissDE 3
1.3 Quickstart 3
2 kissDE’s workflow 4
2.1 Inputdatao 4
2.1.1 Conditionvector oo 4
2.1.2 User’s own data (without KisSplice): table of counts format . . . 5
2.1.3 Input table from KisSpliceoutput. 6

mailto:vincent.lacroix@univ-lyon1.fr
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

214 Input table from KisSplice2refgenome output 9

2.2 Quality Controlo 10
2.3 Differential analysis.o 11
2.4 Outputresults oo 12
2441 Finaltable. 000 12

24.2 f/PSltable. 14

3 kissDE’'stheory. 14
3.1 Normalization 14
3.2 Estimation of dispersion oo 15
3.3 Pre-testfiltering oL 15
3.4 Model fitting 16
3.5 Likelihood ratiotest. 16
3.6 Flagginglowcountso oL 16
3.7 Magnitude of theeffect 17
4 Casestudies 18
4.1 Application of kissDE to alternative splicing 18
4141 Dataset. Lo 18

41.2 Loaddata.o Lo Lo 18

413 Qualitycontrol. 19

414 Differential analysis. 19

41.5 Exportresults o000 21

4.1.6 Exploreresults. 21

417 One commandtorulethemall. 21

4.2 Application of kissDE to SNPs/SNVs 21
4.21 Dataset.o 0L 22

422 Loaddata.o 22

423 Qualitycontrol. 23

424 Differential analysis. 24

425 Exportresultso 25

4.2.6 Exploreresults. 25

427 One commandtorulethemall. 25

4.3 Time/Requirements 25

5 Sessioninfo., 26

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

Prerequisites

1.1

1.2

1.3

Use case

kissDE is meant to work on pairs of variants that have been quantified across different con-
ditions. It can deal with single nucleotide variations (SNPs, mutations, RNA editing), indels
or alternative splicing.

As kissDE was first designed to be a brick of the KisSplice [4] pipeline (web page: http:
//Kissplice.prabi.fr/), the kissplice2counts function can be directly applied to the output
files from KisSplice or KisSplice2refgenome. Yet, kissDE can also run with any other software
which produces count data as long as this data is properly formatted.

kissDE was designed to work with at least two replicates for each condition, which means
that the minimal input contains the read counts of the variants for 4 different samples, each
couple representing a biological condition and its 2 replicates. There can be more replicates
and more conditions, but it is not mandatory to have an equal number of replicates in each
condition.

Install and load kissDE

In a R session, the BiocManager package has first to be installed.

install.packages("BiocManager")

Then, the kissDE package can be installed from Bioconductor and finally loaded.

BiocManager: :install("kissDE")

library(kissDE)

Quick start

Here we present the basic R commands for an analysis with kissDE. These commands re-
quire an external output file of KisSplice , for example ‘output_kissplice.fa’ (which is not
included in this package). To deal with other types of input files, please refer to section
2.1. The funtions used in kissDE are kissplice2counts, qualityControl, diffExpressed
Variants and writeOutputKissDE. For each function, default values of the parameters are
used. For more details on functions and their parameters see section 2. Here we assume that
there are two conditions (condition_1 and condition_2) with two biological replicates and
we also assume that the RNA-Seq libraries are single-end.

counts <- kissplice2counts("output_kissplice.fa")

conditions <- c(rep("condition_1", 2), rep("condition_2", 2))
qualityControl(counts, conditions)

results <- diffExpressedVariants(counts, conditions)
writeOutputKissDE (results, output = "kissDE output.tab")

Note that the functions kissplice2counts and diffExpressedVariants may take some time
to run (see section 4.3 for more details on running time).

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://kissplice.prabi.fr/
http://kissplice.prabi.fr/
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
https://CRAN.R-project.org/package=BiocManager
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

2 kissDE’s workflow

In this section, the successive steps and functions of a differential analysis with kissDE are
described.

KisSplice2refgenome
output

KisSplice Counts

output\ /ﬁle

— Counts table ETNEAI
diffExpressedvariants | ENEg™ Final table
Condition vector m

qualityContro writeQutputKissDE
.4

Quality plots Output file

Figure 1: Schema of kissDE's workflow. Numbers in light blue point to the section of this vignette explain-
ing the step.

2.1 Input data

kissDE's input is a table of raw counts and a vector describing the number of conditions and
replicates per condition. The table of raw counts can either be directly provided by the user
or obtained with KisSplice or KisSplice2refgenome (http://kissplice.prabi.fr/training/).

2.1.1 Condition vector

The condition vector describes the order of the columns in the count table.

As an example, the counts are ordered as follow: the two first counts represent the two
replicates of condition_1 and the two following counts the two replicates of condition_2.
In this case, the condition vector for these 2 conditions with 2 replicates per condition, would
be:

myConditions <- c(rep("condition_1", 2), rep("condition_2", 2))

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://kissplice.prabi.fr/training/

The ’kissDE’ package

21.2

In the case where the input data contains more than 2 conditions, we advise the user to
remove samples from the analysis in order to compare 2 conditions only, because kissDEwas
uniquely tested in this context. To remove samples from the analysis the "*" character can
be used:

myConditionsRm <- c(rep("condition_1", 2), rep("x", 2), rep("condition_3",
2))

Here, there are 3 conditions and 2 replicates per condition, but only condition_1 and
condition_3 will be considered in the analysis.

If the count table was loaded from KisSplice or KisSplice2refgenome output, the condition
vector must contain the samples in the same order they were given to KisSplice (see sections
2.1.3 and 2.1.4).

Warning: To run kissDE, all conditions must have replicates. So each condition must at
least be present twice in the condition vector. If this is not the case, an error message will
be printed.

User’s own data (without KisSplice): table of counts format

Let’s assume we work with two conditions (condition_1 and condition_2) and two replicates
per condition. An input example table contained in a flat file called ‘table_counts_alt_
splicing.txt’ is loaded and stored in a tableCounts object.

fpathl

fpathl <- system.file("extdata", "table_counts_alt_splicing.txt",
package = "kissDE")
tableCounts <- read.table(fpathl, head = TRUE)

In kissDE, the table of counts must be formatted as follows:

head(tableCounts)

eventsName eventsLength condlrepl condlrep2 cond2repl cond2rep2
1 eventl 261 105 41 15 26
2 eventl 81 2 5 100 150
3 event2 207 20 17 60 58
4 event2 80 58 33 7 1
5 event3 268 53 26 19 29
6 event3 82 3 1 31 55

It must be a data frame with:
= in rows:

= One variation is represented by two lines, one for each variant. For instance, for
SNVs, one allele is described in the first line, and the other in the second line. For
alternative splicing events, the inclusion isoform and the exclusion isoform have
one line each.

= The header must contain the column names in the flat file.
= in columns:

= The first column (eventsName) contains the name of the variation.

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

2.1.3

= The second column (eventsLength) contains the effective size of the variant in
nucleotides (bp). The effective size corresponds to the number of read mapping
positions used when estimating the abundance of a variant.
For the exclusion variant (2nd line), which should correspond to an exon-exon
junction, it corresponds to:

ef fectiveLengthExclu = readLength — 2 x overhang + 1

where overhang corresponds to the minimal number of bases needed to accept
that a read is aligned to a junction.
For the inclusion variant (1st line), it corresponds to:

ef fectiveLengthInclu = ef fectiveLengthExclu + variable Part Length B

where variable Part Length is the length of the region only present in the inclusion
variant.

In the special case where the abundance of the inclusion variant has been estimated
using only junction reads, then the effective length of the inclusion variant is:

ef fectiveLengthInclu = 2 x ef fective Length Exclu 3]

This information is used only in the context of alternative splicing. In the context
of SNVs, it can be set to 0. It is used to assess which splice variants may induce a
frameshift (the difference of length between the inclusion and exclusion variant is
not a multiple of 3). It is also used to precisely estimate the PSI (Percent Spliced

In).

= All other columns (condlrepl, condlrep2, cond2repl, cond2rep2) contain read
counts of a variant in a sample. In the example above, condlrepl is the number
of reads supporting this variant in the first replicate of condition_1, condlrep2
is the number of reads supporting replicate 2 in condition_1, cond2repl and
cond2rep2 are counts for replicates 1 and 2 of condition_2.

Input table from KisSplice output

kissDE was developped to deal with KisSplice output, which is in fasta format. Below is the
first four lines of an example of KisSplice output:

headfasta <- system.file("extdata",
"head_output_kissplice_alt_splicing_fasta.txt", package = "kissDE")
writeLines(readlLines(headfasta))

>bcc_68965|Cycle_4|Type_1|upper_path_length_112|AS1_1|SB1_1|S1_0|ASSB1_0|AS2_0]|
SB2_0|S2_0|ASSB2_0|AS3_0|SB3_0|S3_0|ASSB3_0|AS4_1|SB4_0|S4_0|ASSB4_0|AS5_8|SB5_
2|S5_0|ASSB5_1|AS6_13|SB6_4|S6_0|ASSB6_3|AS7_4|SB7_1|S7_0|ASSB7_1|AS8_3|SB8_1]|S
8_0|ASSB8_0| rank_0.76503
CACACCAGCCATAAAAAGCGAAAGAATAAAAACCGGCACAGCCCGTCTGGCATGTTTGATTATGACTTTGAGTATGTAT
ATTAGGTTAGGCTGGGAAGTTTTTTTTAAAAAC
>bcc_68965|Cycle_4|Type_1|lower_path_length_82|AB1_21|AB2_12|AB3_12|AB4_2|AB5_5
|AB6_1|AB7_2|AB8_1|rank_0.76503
CACACCAGCCATAAAAAGCGAAAGAATAAAAACCGGCACAGGTATGTATATTAGGTTAGGCTGGGAAGTTTTTTTTAAA
AAC

Events are reported in blocks of 4 lines, the first two lines correspond to one variant of the
splicing event (or one allele of the SNV), the following two lines correspond to the other
variant (or the other allele). As for all fasta file, there is a header line beginning with the >
symbol and a line with the sequence. Each variant correspond to one entry in the fasta file.

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

Headers contain information used in kissDE. In the example, there are:
= elements shared by the headers of the two variants:
= bcc_68965|Cycle_4 is the event's ID.

= Type_1 means that the sequences correspond to a splicing event. Type_ 0 corre-
sponds to SNVs.

= elements that are specific to a variant:

= upper_path_length_112 and lower_path_length_82 gives the length of the nu-
cleotide sequences. Upper path and lower path are a denomination for the rep-
resentation of each variant in KisSplice's graph. For alternative splicing events,
the upper path represents the inclusion isoform and the lower path the exclusion

isoform.
= AS1_1|SB1.1|S1_0]|ASSB1_0|AS2_0|SB2_0|S2_0|ASSB2_0]|AS3_0| SB3.0|... and
AB1 21|AB2 12|AB3_12|AB4 2|AB5 5]|... summarizes the counts found by KisS-

plice quantification step. Here KisSplice was run with the option counts set to 2.
For the upper path, we have 4 counts for each sample: AS, SB, S and ASSB. For
the lower path, we have 1 count per sample: AB. The different reads categories
are shown on Figure 2. There are 8 sets of counts because we gave 8 files in input
to KisSplice (denotated by the number before the "_" character). Each count
(denotated by the number after the "_" character) corresponds to the reads com-
ing from each file that could be mapped on the variant, in the order they have
been passed to KisSplice.

= a rank information which is a deprecated measure.

exonic S read
reads
ASSB read B B T — - inclusion
junction reads
reads AS read == -
exclusion

AB read == reads

ANNOTATION A s B

Figure 2: Different categories of reads. In this figure, we show an example of an alternative skipped exon.
AS reads correspond to reads spanning the junction between the excluded sequence and its left flanking
exon, SB to reads spanning the junction between the excluded sequence and its right flanking exon, ASSB
to reads spanning the two inclusion junctions, S to reads entirely included in the alternative sequence and
AB to reads spanning the junction between the two flanking exons. S reads correspond to exonic reads and
all other categories of reads represented here correspond to junction reads.

kissDE can be used on any type of events output by KisSplice (0: SNV, 1: alternative splicing
events, 3: indels,...). The user should refer to KisSplice manual (http://kissplice.prabi.fr/
documentation/) for further questions about the KisSplice format and its output.

To be used in kissDE, KisSplice output must be converted into a table of counts. This can
be done with the kissplice2counts function. In the example below, the KisSplice output
file called ‘output_kissplice_alt_splicing.fa’, included in the kissDE package, is loaded.
The table of counts yielded by the kissplice2counts function is stored in myCounts.
Comment: fpath2 contains the absolute path of the file on the user’s hard disk.

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://kissplice.prabi.fr/documentation/
http://kissplice.prabi.fr/documentation/
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

fpath2 <- system.file("extdata", "output_kissplice_alt_splicing.fa",
package = "kissDE")
myCounts <- kissplice2counts(fpath2, pairedEnd = TRUE)

The counts returned by kissplice2counts are extracted from the KisSplice header. By
default, kissplice2counts expects single-end reads and one count for each variant.

The counts parameter of kissplice2counts must be the same as the counts parameter used
to obtain data with KisSplice. The possible values are 0, 1 or 2. 0 is the default value for
both kissplice2counts and KisSplice.

The user can also specify the pairedEnd parameter in kissplice2counts. If RNA-Seq libraries
are paired-end, pairedEnd should be set to TRUE. In this case, the kissplice2counts function
expects the counts of the paired-end reads to be next to each other. If it is not the case,
an additional order parameter should be used to indicate the actual order of the counts.
For instance, if the experimental design is composed of two conditions with two paired-end
replicates and if the input in KisSplice followed this order:

condl_samplel_readpairl, condl_sample2_readpairl, cond2_samplel_readpairl,
cond2_sample2_readpairl, condl_samplel_readpair2, cond1l_sample2_readpair2,
cond2_samplel_readpair2 and cond2_sample2_readpair2.

The order vector should be equal to ¢(1,2,3,4,1,2,3,4).

An example of a paired-end dataset run with counts equal to 0 is shown in section 4.2.

kissplice2counts returns a list of four elements, including countsEvents which contains the
table of counts required in kissDE.

names (myCounts)
[1] "countsEvents" "psiInfo" "exonicReadsInfo" "k2rgFile"
head(myCounts$countsEvents)

events.names events.length countsl counts2 counts3 counts4

1 bcc_68965|Cycle_4 112 2 0 8 3
2 bcc_68965|Cycle_4 82 33 14 6 3
3 bcc_83285|Cycle_2 180 11 8 26 32
4 bcc_83285|Cycle_2 81 2 5 100 150
5 bcc_161433|Cycle_2 127 0 0 13 8
6 bcc_161433|Cycle_2 80 58 33 7 1

myCounts$countsEvents has the same structure as the tableCounts object in the section
2.1.2. It is a data frame with:

= in rows: One variation is represented by two lines, one for each variant. For instance
for SNVs, one allele is described in the first line and the other in the second line. For
alternative splicing events (as in this example), the inclusion and the exclusion isoform
have one line each.

= in columns:

= The first column (events.names) contains the name of the variation, using KisS-
plice notation.

= The second column (events.length) contains the size of the variant in bp, ex-
tracted from the KisSplice header.

= All others columns (countsl, counts2, counts3, counts4) contain counts for
each replicate in each condition for the variant.

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

214

Input table from KisSplice2refgenome output

The kissplice2counts function can also deal with KisSplice2refgenome output data, in this
case the k2rg parameter has to be set to TRUE. KisSplice2refgenome allows the annotation of
the alternative splicing events. It assigns each event a gene and a type of alternative splicing
event, among which: Exon Skipping (ES), Intron Retention (IR), Alternative Donor (AltD),
Alternative Acceptor (AltA). Interested users should refer to KisSplice2refgenome manual
for further questions about KisSplice2refgenome format and output (http://kissplice.prabi.
fr/tools/kiss2refgenome/).

In the example below, ‘output_k2rg_alt splicing.txt’, a KisSplice2refgenome’s output
included in the kissDE package, is loaded. The kissplice2counts function uses the same
counts and pairedEnd parameters as explained in the section 2.1.3. The table of counts
yielded by the kissplice2counts function is stored in myCounts_k2rg. It has exactly the
same structure as detailed in section 2.1.3.

fpath3

fpath3 <- system.file("extdata", "output_k2rg_alt_splicing.txt",
package = "kissDE")

myCounts_k2rg <- kissplice2counts(fpath3, pairedEnd = TRUE, k2rg = TRUE)

names (myCounts_k2rg)

[1] "countsEvents" "psiInfo" "exonicReadsInfo" "k2rgFile"
head(myCounts_k2rg$countsEvents)

events.names events.length countsl counts2 counts3 counts4

1 bcc_162707|Cycle_0 190 10 13 10 19
2 bcc_162707|Cycle_0 80 129 145 120 101
3 bcc_132936|Cycle_3 245 253 240 112 173
4 bcc_132936|Cycle_3 81 21 5 3 4
5 bcc_100903|Cycle_0 183 5 3 1 4
6 bcc_100903|Cycle_0 81 503 231 134 175

The KisSplice2refgenome output contains information about the type of splicing events. By
default, all of the splicing events are analysed in kissDE, but it is also possible to focus on
subtypes of events. This events selection will speed up kissDE’s running time and improve
statistical power for choosen events. To do this, the kissplice2counts function contains two
parameters: keep and remove. Both take a character vector indicating the types of events
to keep or remove. The event names must be part of this list: deletion, insertion, IR, ES,
altA, altD, altAD, indel, -.

Thus, if the user is only interested in intron retention events, the keep option should be set
to c("IR"). If the user isn't interessed in deletions and insertions, the remove option should
be equal to c("insertion", "deletion").

The keep and remove parameters can be used at the same time only if ES is part of the keep
vector. The remove vector will then act on the different types of exon skipping: multi-exon
skipping (MULTI) or exon skipping associated with an alternative acceptor site (altA), an
alternative donor site (altD), both alternative acceptor and donor site (altAD) or any of the
alt combinaison with MULTI. Thus, in this specific case, the remove vector should contain
names from this list: MULTI, altA, altD, altAD, MULTI_altA, MULTI_altD, MULTI_altAD.

If the user wants to analyse only cassette exon events (i.e., a single exon is skipped or
included), the following command should be used:

http://kissplice.prabi.fr/tools/kiss2refgenome/
http://kissplice.prabi.fr/tools/kiss2refgenome/
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

2.2

myCounts_k2rg_ES <- kissplice2counts(fpath3, pairedEnd = TRUE,
k2rg = TRUE, keep = c("ES"), remove = c("MULTI", "altA",
"altD", "altAD", "MULTI altA", "MULTI_altD", "MULTI _altAD"))

Quality Control

kissDE contains a function that allows the user to control the quality of the data and to
check if no error occured at the data loading step. This data quality assessment is essential
and should be done before the differential analysis.

The qualityControl function takes as input a count table (see sections 2.1.2, 2.1.3 and
2.1.4) and a condition vector (see section 2.1.1):

qualityControl(myCounts, myConditions)

It produces 2 graphs:

= a heatmap of the sample-to-sample distances using the 500 most variant events (see
left panel of Figure 3)

= the factor map formed by the first two axes of a principal component analysis (PCA)
using the 500 most variant events (see right panel of Figure 3)

Color Key 0l

0 004 008 0.2-
Value

—L
!

condition_1_repl1

group

condition_1

condition_1_repl2

PC2 (10.9%)

® condition_2

condition_2_repi2

condition_2_repl1 -01-

o
3

pi2
pi2
pil

condition_2_rey

condition_2_rej

condition_1_rey

condition_1_rej
L]

08 0.4 00
PC1 (78.6%)

Figure 3: Quality control plots. Left: Heatmap of the sample-to-sample distances. Right: Principal Com-

ponent Analysis.

These two graphs show the similarities and the differences between the analyzed samples.
Replicates of the same condition are expected to cluster together. If this is not the case, the
user should check if the order of the samples in the count table and in the condition vector
is the same. If it is, this could mean that a sample is contaminated or has an abnormality
that will influence the differential analysis. The user can then go back to the quality control
of the raw data to solve the problem or decide to remove the sample from the analysis.

In the heatmap plot, the samples that cluster together are from the same condition. In the
PCA plot, the first principal component (PC1) summarize 90.2% of the total variance of the
dataset. This first axis clearly separates the 2 conditions.

10

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

2.3

The created graphs can be saved by setting the storeFigs parameter of the qualityControl
function to TRUE (then graphs are stored in a ‘kissDEFigures’ folder, created in a temporary
directory, which is removed at the end of the user R session) or to the path where the user
wants to store his/her graphs. We recommend to use this parameter when the qualityCon
trol function is used in an automatized workflow.

To customize the PCA plot, the data frame used for this plot can be extracted by setting the
option returnPCAdata to TRUE as follows:

PCAdata <- qualityControl(myCounts, myConditions, returnPCAdata = TRUE)

Differential analysis

When data are loaded, the differential analysis can be run using the diffExpressedVariants
function. This function has two mandatory parameters: a count table (countsData parameter,
see sections 2.1.2, 2.1.3 and 2.1.4) and a condition vector (conditions parameter, see section
2.1.1).

In the example below, the differential analysis results are stored in the myResults object:

myResults <- diffExpressedVariants(countsData = myCounts,
conditions = myConditions)

The diffExpressedVariants function has three parameters to change the filters or the flags
applied on the data, one parameter to indicate if the replicates are technical or biological,
and one parameter to indicate how many cores should be used :

= pvalue: By default, the p-value threshold to output the significant events is set to 1.
So all variants are output in the final table. This parameter must be a numeric value
between 0 and 1. Be aware that by setting pvalue to 0.05, only events that have been
identified as significant between the conditions with a false discovery rate (FDR) < 5%
will be present in the final table. A posteriori changing this threshold will require to
re-run the differential analysis.

= filterLowCountsVariants: This parameter allows to change the threshold to filter low
expressed events before testing (as explained in section 3.3). By default, it is set to 10.

= flagLowCountsConditions: This parameter allows to change the threshold to flag low
expressed events (as explained in section 3.6). By default, it is set to 10.

= technicalReplicates: Boolean value indicating if the user is working with technical
replicates only (we do not advise users to mix biological and technical replicates in
their analyses). If this parameter is set to TRUE, the counts will be modeled with a
Poisson distribution. If it is equal to FALSE, the counts will be modeled with a Negative
Binomial distribution. For more information, see section 3.2. By default, this option is
set to FALSE.

= nbCore: An integer value indicating how many cores should be used for the computa-
tion. This parameter should be strictly lower than the number of core of the computer
(nbCore < nbr computer cores —1). By default, this parameter is set to 1, meaning
that the computation are not parallelized.

The diffExpressedVariants function returns a list of 6 objects:

11

The ’kissDE’ package

names (myResults)
[1] "finalTable" "correctedPVal" "uncorrectedPVal"
[4] "resultFitNBglmModel" "f/psiTable" "k2rgFile"

The uncorrectedPVal and correctedPval outputs are numeric vectors with p-values before
and after correction for multiple testing. resultFitNBglmModel is a data frame containing
the results of the fitting of the model to the data. k2rgFile is a string containing either the
KisSplice2refgenome file path and name or NULL if no KisSplice2refgenome file was used
as input. For explanations about the finalTable and f/psiTable outputs, see section 2.4.1
and section 2.4.2, respectively.

To visualize the distribution of the p-values before the application of the Benjamini-Hochberg
[5] multiple testing correction procedure, the histogram of the p-values before correction can
be plotted by using the following command:

hist(myResults$uncorrectedPVal, main = "Histogram of p-values",
xlab = "p-values", breaks = 50)

Because the dataset used here is small (~ 100 lines), the histograms of the two complete
datasets presented in the case studies (section 4) are represented. As expected, the histograms
show a uniform distribution with a peak near 0 (Figure 4).

Histogram of p-values: SNV dataset Histegram of p-values: AS dataset

12000
10000 15000

BOOG

Frequency
Frequency

4000

o - WLV
1

Hl”T [TITIT INIRRNRRRRNERE dauidnlunninnll] = mln:_.."..'lull'l'l'l'l'llll||||:|:|::::::rrr|rr|rn||
T T T T 1 T T T T T

0o 02 0.4 LL] 0.8 .0 0.0 (¥ 04 08 0B 1.0

p-values pvaluss

Figure 4: Distribution of p-values before correction for multiple testing. Left: for the complete dataset
presented in section 4.2. Right: for the complete dataset presented in section 4.1.

2.4 Output results
2.41 Final table

The finalTable object is the main output of the diffExpressedVariants function. The first
3 rows of the myResults$finalTable output are as follows:

print(str(myResults))

List of 6

$ finalTable :'data.frame': 106 obs. of 13 variables:
..$ ID : chr [1:106] "bcc_135201|Cycle_433392" "bcc_144389|Cycle_0" "bcc_13520
..$ Length_diff : num [1:106] 104 12 1064 1096 183 ...

..$ Variantl _ condition_1_repll_Norm: num [1:106] 60 0 60 3696 117 ...
..$ Variantl _condition_1_repl2_Norm: num [1:106] 37 9 35 2799 234 ...

12

The ’kissDE’ package

..$ Variantl_condition_2_repll_Norm: num [1:106] 27 92 31 1158 270 ...

..$ Variantl_condition_2_repl2_Norm: num [1:106] 32 143 38 1236 294 ...

..$ Variant2_condition_1 repll_Norm: num [1:106] 2 17 2 76 32 17 8 2 3 39 ...

..$ Variant2_condition_1 repl2_Norm: num [1:106] 1 10 1 25 30 24 916 24 ...

..$ Variant2_condition_2_repll_Norm: num [1:106] 30 7 32 199 6 18 36 9 7 20 ...

..$ Variant2_condition_2_repl2_Norm: num [1:106] 59 17 59 272 4 17 18 2 13 44 ...

..$ Adjusted_pvalue : 'pval' num [1:106] 5.88e-15 2.05e-12 5.88e-14 0.00 7.04e-09 ..

..$ Deltaf/DeltaPSI : num [1:106] -0.698 0.68 -0.674 -0.565 0.333 ..

..$ lowcounts : logi [1:106] FALSE FALSE FALSE FALSE FALSE FALSE ...
$ correctedPVal : 'pval' Named num [1:106] 2.36e-04 2.17e-05 7.85e-15 5.88e-14 5.88e-15 ..

.- attr(*, "names")= chr [1:106] "bcc_68965|Cycle_4" "bcc_83285|Cycle_2" "bcc_161433|Cycle_2" "bcc_135201
$ uncorrectedPVal : 'pval' Named num [1:106] 2.00e-05 1.64e-06 2.22e-16 2.22e-15 1.11le-16 ..

.- attr(x, "names")= chr [1:106] "bcc_68965|Cycle_4" "bcc_83285|Cycle_2" "bcc_161433|Cycle_2" "bcc_135201
$ resultFitNBglmModel: 'data.frame': 106 obs. of 7 variables:

..$ I vs A: num [1:106] 2.00e-05 1.64e-06 2.22e-16 2.22e-15 1.11e-16 ...

..$ bicA : num [1:106] 59.5 75.9 107.2 118.9 124.1 ...
..$ bicI : num [1:106] 43.3 55 41.8 58 57.6 ...
..$ codeA : num [1:106] 0 0O O OO OO0 0O0OO ...
..$ codeI : num [1:106] 0 0O O O O OO0 0OOO6 ...
..$ shA :num [1:106] 0 O OO OO OO0O00O ...
..$ shI :num [1:106] 0 0O OO OO OO0O00O ...
$ f/psiTable :'data.frame': 106 obs. of 5 variables:
..$ ID : chr [1:106] "bcc_100903|Cycle_0" "bcc_108176|Cycle_0" "bcc_120508|Cycle_0" "bcc_125
..$ condition_1_repll: num [1:106] 0.00442 0.03258 0.93211 0.12935 0.05437 ...
..$ condition_1 repl2: num [1:106] 0.00553 0.05826 0.9458 NaN 0.0505 ...
..$ condition_2_repll: num [1:106] 0.00315 0.03281 0.94602 0.01624 0.03273 ...
..$ condition_2_repl2: num [1:106] 0.00938 0.02694 0.92338 0.21268 0.03417 ...
$ k2rgFile : NULL
NULL

The columns of this table contain the following information:
= ID is the event identifier. Each event is represented by one row in the table.

= Length diff contains the variable part length in a splicing event. It is the length
difference between the upper and lower path. This column is not relevant for SNVs.

= Variantl_ condition_1_repll Norm and following columns contain the counts for each
replicate of each variant after normalization (raw counts are normalized as in the DE-
Seq2 Bioconductor R package, see details in section 3.1). The first half of these
columns concerns the first variant of each event, the second half the second variant.

= Adjusted_pvalue contains p-values adjusted by a Benjamini-Hochberg procedure.
= Deltaf/DeltaPSI summarizes the magnitude of the effect (see details in section 3.7).

= lowcounts contains booleans which flag low counts events as described in section 3.6.
A TRUE value means that the event has low counts (counts below the chosen threshold).

In the finalTable output, events are sorted by p-values and then by magnitude of effect
(based on their absolute values), so that the top candidates for further investigation /validation
appear at the beginning of the output.

13

http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2

The ’kissDE’ package

242

Warning: When the p-value computed by kissDE is lower than the smallest number greater
than zero that can be stored (i.e., 2.2e-16), this p-value is set to 0.

To save results, a tab-delimited file can be written with writeOutputKissDE function where
an output parameter (containing the name of the saved file) is required. Here, the myResults
output is saved in a file called ‘results_table.tab":

writeOutputKissDE (myResults, output = "kissDE_results_table.tab")

Users can choose to export only events passing some thresholds on adjusted p-value and/or
Deltaf/DeltaPSI using the options adjPvalMax and dPSImin of the writeOutputKissDE func-
tion. For example, if we want to save in a file called ‘results_table_filtered.tab’ only
events with the adjusted p-value < 0.05 and the Deltaf/DeltaPSI| absolute value > 0.10, the
following command can be used:

writeOutputKissDE (myResults, output = "kissDE results_table_filtered.tab",
adjPvalMax = 0.05, dPSImin = 0.1)

If the counts table was built from a KisSplice2refgenome output with the kissplice2counts
function, running the writeOutputKissDE will write a file merging results of differential anal-
ysis with KisSplice2refgenome data. As previously explained (section 2.4.1), users can choose
to save only events passing thresholds:

writeOutputKissDE (myResults_K2RG, output = "kissDE K2RG_results_table.tab",
adjPvalMax = 0.05, dPSImin = 0.1)

f/PSI table

The f/psiTable output of the diffExpressedVariants function contains the f values for
SNV analysis or PSI values for alternative splicing analysis (see details and computation in
section 3.7) for each event in each sample. The first three rows of the f/psiTable output of
the myResults object (created in the section 2.3) look like this:

This output can be useful to carry out downstream analysis or to produce specific plots (like
heatmap on f/PSI events). To use this information with external tools, this table can be
saved in a tab-delimited file (here called ‘result_PSI.tab'), setting the writePSI parameter
to TRUE in the writeOutputKissDE function:

writeOutputKissDE(myResults, output = "result_PSI.tab", writePSI = TRUE)

kissDE’s theory

3.1

In this section, the different steps of the kissDE main function, diffExpressedVariants, are
detailed. They are summarized in the Figure 5.

Normalization

In a first step, counts are normalized with the default normalization methods provided by
the DESeq2 [1] package. The size factors are estimated using the sum of counts of both
variants for each event, which is a proxy of the gene expression. By using this normalization,
we correct for library size, because the sequencing depth can vary between samples.

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/DESeq2

The ’kissDE’ package

‘ Raw counts ‘

normalization 3.1

’ Normalized counts ‘

estimation of pre-test
dispersion 3.2 filtering 3.3
‘ Dispersions ‘ ‘ Filtered counts ‘

model fitting 3.4
&
likelihood ratio test 3.5

‘ p-values & FDR ‘

flagging low counts 3.6
&

magnitude of the effect 3.7

‘ Final table ‘

Figure 5: The different steps of the diffExpressedVariants function. Numbers in light blue point to the
section of this vignette explaining the step.

3.2 Estimation of dispersion

A model to describe the counts distribution is first chosen. When working with technical
replicates (technicalReplicates = TRUE in diffExpressedVariants), the Poisson model
(model M(¢ = 0)) is chosen in kissDE.

When working with biological replicates (technicalReplicates = FALSE in diffExpressed
Variants), the Poisson distribution’s variance parameter is in general not flexible enough to
describe the data, because replicates add several sources of variance.

This overdispersion is often modeled using a Negative Binomial distribution. In kissDE,
the overdispersion parameter, ¢, is estimated using the DSS R package [6, 7, 8, 9] (model
M(= dhss).

The DSS package (and, to our knowledge, every other package estimating the overdispersion
of the Negative Binomial model) is suited for differential expression analysis (one count per
sample). In differential splicing and SNV analysis, two counts (one for each splice variant or
allele) are associated with each sample. In order to mimic gene expression, the overdispersion
parameter ¢ is estimated on the sum of the splice variant or allele counts of each sample.

3.3 Pre-test filtering

If global counts for both variants are too low (option filterLowCountsVariants), the event
is not tested. The rationale behind this filter is to speed up the analysis and gain statistical
power.

Here we present an example to explain how filterLowCountsVariants option works. Let's
assume that there are two conditions and two replicates per condition. filterLowCountsVari
ants keeps its default value, 10.

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/DSS
http://bioconductor.org/packages/DSS

The ’kissDE’ package

Condition 1 Condition 2 Sum by variant
replicate 1 ‘ replicate 2 | replicate 1 ‘ replicate 2
Variant 1 2 1 3 2 24+14342=8 < 10
Variant 2 8 0 1 0 84+0+14+0=9 < 10

Table 1: Example of an event filtered out before the differential analysis, because less than 10 reads sup-
port each variant.

In this example (Table 1), the two variants have global counts less than 10, this event will
be used to compute the overdispersion, but will not be used to compute the models. It will
neither appear in the result table.

3.4 Model fitting

Then we design two models to take into account interactions with variants (SNVs or alter-
native isoforms) and experimental conditions as main effects. We use the generalised linear
model framework. The expected intensity A;j, can be written as follows:

M+ log Nijk = p+ a; + B; B
Moot loghije =p+a; + 65 + (aﬂ)ij 5

where 1 is the local mean expression of the transcript that contains the variant, «; the effect
of variant ¢ on the expression, §; the contribution of condition j to the total expression, and
(aB),;; the interaction term.

To avoid singular hessian matrices while fitting models, pseudo-counts (i.e., systematic ran-
dom allocation of ones) were considered for variants showing many zero counts.

3.5 Likelihood ratio test

To select between M, and M, we perform a Likelihood Ratio Test (LRT) with one degree
of freedom. In the null hypothesis H : {(a/3),; = 0}, there is no interaction between variant
and condition. For events where Hj is rejected, the interaction term is significant to explain
the count’s distribution, which leads to conclude to a differential usage of a variant across
conditions. p-values are then adjusted with a 5% false discovery rate (FDR) following a
Benjamini-Hochberg procedure [5] to account for multiple testing.

3.6 Flagging low counts

If in at least n — 1 conditions (be n the number of conditions > 2) an event has low counts
(option flagLowCountsConditions), it is flagged (TRUE in the last column of the finalTable
output).

In the example Table 2, we can see that the counts are quite contrasted, variant 1 seemed
more expressed in condition 2 and variant 2 in condition 1. Moreover, this event has enough
counts for each variant not to be filtered out when the filterLowCountsVariants parameter
is set to 10:

The ’kissDE’ package

Condition 1 Condition 2 Sum by variant
replicate 1 | replicate 2 | replicate 1 | replicate 2
Variant 1 1 0 60 70 1+0+60+70=131 > 10
Variant 2 5 3 10 20 5+3+10+20=38 > 10
Sum by condition 9 <10 160 > 10

Table 2: Example of an event flagged as having low counts, because less than 10 reads support this event
in the first condition.

However, in n—1 (here 1) condition, the global count for one condition is less than 10 (9 for
condition 1), so flagLowCountsConditions option will flag this event as ’'Low_Counts’. This
event may be interesting because it has the potential to be found as differential. However, it
will be hard to validate it experimentally, because the gene is poorly expressed in condition
1.

3.7 Magnitude of the effect

When a gene is found to be differentially spliced between two conditions, or an allele is found
to be differentially present in two populations/conditions, one concern which remains is to
quantify the magnitude of this effect. Indeed, especially in RNA-Seq, where some genes are
very highly expressed (and hence have very high read counts), it is often the case that we
detect significant (p-value < 0.05) but weak effects.

When dealing with genomic variants, we quantify the magnitude of the effect using the
difference of allele frequencies (f) between the two conditions. When dealing with splicing
variants, we quantify the magnitude of the effect using the difference of Percent Spliced In
(PSI) between the two conditions. These two measures turn out to be equivalent and can be
summarized using the following formula:

PSI = f = #counts * _variant, 6
1 #counts x _variant, + Fcounts_variants

APSI = PSIonagi — PSIeonas

Af = fcondl - fcond2 B

In this formula, #counts *x _variant, correspond to the normalized number of reads of the
varianty, itself normalized for the variant length. Indeed, by construction, variant; always
have a length greater than or equal to the variants. That's why we divide the normalized
number of reads of the variant; by the ratio of the length of the variant; and the variants.

The APSI/Af is computed as follows:

= First, individual (per replicate) PSI/f are calculated. If counts for both upper and lower
paths are too low (< 10) after normalization, the individual PSI/f are not computed.

= Then mean PSI/f are computed for each condition. If more than half of the individual
PSI/f were not calculated at the previous step, the mean PSI/f is not computed either.

= Finally, we output APSI/Af. Unless one of the mean PSI/f of a condition could not
be computed, APSI/Af is calculated subtracting one condition PSI/f from another.
APSI/Af absolute value vary between 0 and 1, with values close to 0 indicating low
effects and values close to 1 strong effects. Note that the conditions are ordered
alphabetically, and that kissDE substract the condition coming first in the alphabet to
the other.

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

Case studies

4.1

411

41.2

To detect SNVs (SNPs, mutations, RNA editing) or alternative splicing (AS) in the expressed
regions of the genome, KisSplice can be run on RNA-seq data. Counts can then be analysed
using kissDE. We present two distinct case study with kissDE: analysis of AS events and
analysis of SNVs.

Application of kissDE to alternative splicing

This first example corresponds to the case of differential analysis of alternative splicing (AS)
events. The sample data presented here is a subset of the case study used in [3] (http:
//kissplice.prabi.fr/pipeline_ks_ farline/).

Dataset

The data used in this example comes from the ENCODE project [10]. The samples are from a
neuroblastoma cell line, SK-N-SH, with or without a retinoic acid treatment. Each condition
is composed of two biological replicates. The data are paired-end.

In a preliminary step, KisSplice has been run to analyse these two conditions. Results from
KisSplice (type 1 events) were then mapped to the reference genome with STAR [11] and
analyzed with KisSplice2refgenome. KisSplice2refgenome enables to annotate the AS events
discovered by KisSplice. It assigns to each event a gene and a type of alternative splicing
(Exon Skipping (ES), Intron Retention (IR), Alternative Donor (AltD), Alternative Acceptor
(AltA), ...).

For further information on these tools (KisSplice and KisSplice2refgenome), please refer to
the manual that can be found on this web page: http://kissplice.prabi.fr/.

The output file of KisSplice2refgenome is a tab-delimited file that stores the annotated
alternative splicing events found in the dataset. Below is an extract of this file (the first 3
rows and first 10 columns), where each row is one alternative splicing event of our data:

Gene_Id Gene_name Chromosome_and_genomic_position Strand Event_type

ENSGO0000066651.18 TRMT11 6:125999573-126008430 + ES
ENSG00000124074.11 ENKD1 16:67663517-67666111 - ES
ENSG00000112146.16 FBX09 6:53065752-53071096 + ES
Variable_part_length Frameshift_? CDS_? Gene_biotype

110 False True protein_coding

164 False True protein_coding

102 True False protein_coding

number_of_known_splice_sites/number_of_SNPs
3_ss_annotated_(over_4_ss):125999613,126006954,126008392
all_splice_sites_known_(4_ss)
all_splice_sites_known_(4_ss)

Load data

The kissplice2counts function allows to load directly the KisSplice2refgenome output file
(here called ‘output_k2rg_alt_splicing.txt') into a format compatible with kissDE's main
functions.

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://kissplice.prabi.fr/pipeline_ks_farline/
http://kissplice.prabi.fr/pipeline_ks_farline/
http://kissplice.prabi.fr/
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

41.3

41.4

fileInAS
The k2rg parameter is set to TRUE to indicate that the file comes from KisSplice2refgenome and
not directly from KisSplice. As these samples are paired-end, the pairedEnd parameter is set
to TRUE. The counts parameter must be set to the same value (i.e., 2) used in KisSplice and
KisSplice2refgenome to indicate which type of counts are given in the input. Here the exonic
reads are not taken into account (exonicReads = FALSE). Only junction reads will be used
(see Figure 2).

The table of counts is stored in a myCounts_AS object (for a detailed description of its
structure, see section 2.1.4):

fileInAS <- system.file("extdata", "output_k2rg_alt_splicing.txt",
package = "kissDE")

myCounts_AS <- kissplice2counts(fileInAS, pairedEnd = TRUE, k2rg = TRUE,
counts = 2, exonicReads = FALSE)

head(myCounts_AS$countsEvents)

events.names events.length countsl counts2 counts3 counts4

1 bcc_162707|Cycle_0 190 4 8 4 12
2 bcc_162707|Cycle_0 80 129 145 120 101
3 bcc_132936|Cycle_3 245 8 20 14 8
4 bcc_132936|Cycle_3 81 21 5 3

5 bcc_100903|Cycle_0 183 4 2 0 2
6 bcc_100903|Cycle_0 81 503 231 134 175

To perform the differential analysis, a vector that describes the experimental plan is needed. In
this case study, there are two replicates of the SK-N-SH cell line without treatment (SKNSH)
followed by two replicates of the same cell line treated with retinoic acid (SKSNH-RA). So
the myConditions_AS vector is defined as follows:

myConditions_AS <- c(rep("SKNSH", 2), rep("SKNSH-RA", 2))

Quality control

Before running the differential analysis, we check that the data was loaded correctly, using
the qualityControl function.

qualityControl(myCounts_AS, myConditions_AS)

On both plots returned by the qualityControl function (Figure 6), the replicates of the
same condition seem to be more similar between themselves than to the samples of the
other condition. On the heatmap (left of Figure 6), the samples of the same condition
cluster together. On the PCA plot (right of Figure 6), the first principal component (which
summarises 88% of the total variance) clearly discriminates the two conditions.

Differential analysis

The main function of kissDE, diffExpressedVariants, can now be run to compute the
differential analysis. Outputs are stored in a myResult_AS object (for a detailed description
of its structure, see section 2.4.1) and the result for the first three events is given below:

myResult_AS <- diffExpressedVariants(myCounts_AS, myConditions_AS)
head(myResult_AS$finalTable, n = 3)
str(myResult_AS)

19

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

Color Key

1

0 004 008

—
-

pi2

SKNSH-RA_rej

SKNSH-RA_repl1

SKNSH_repl1

0.004 group
SKNSH
® SKNSH-RA

SKNSH_repl2

PC2 (15.5%)

SKNSH-RA_repl1

SKNSH-RA_repl2

SKNSH_repl2
SKNSH_repl1

PCL (76%)

Figure 6: Quality control plots on alternative data. Left: Heatmap of the sample-to-sample distances for
the alternative splicing dataset. Right: Principal Component Analysis for the alternative splicing dataset.

List of 6
$ finalTable

. $

B2 -2 A 2 A S R R -2 © S - 2 S T R -

.. $

ID
Length_diff

:'data.frame': 106 obs. of 13 variables:

: chr [1:106] "bcc_135201|Cycle_433392" "bcc_144389|Cycle_0" "bcc_135201|C
: num [1:106] 104 12 104 372 183 260 75 635 129 97 ...

Variantl SKNSH_repll_Norm : num [1:106] 21 0 21 84 54 ...

Variantl SKNSH_repl2_Norm : num [1:106] 11 10 8 66 115 ...

Variantl SKNSH-RA_repll_Norm: num [1:106] 15 95 19 9 138 ...

Variantl SKNSH-RA_repl2_Norm: num [1:106] 24 144 30 32 135 ...
Variant2_SKNSH_repl1l_Norm :num [1:166] 2 17 2 15 32 89 18 34 8 792 ...
Variant2_SKNSH_repl2_Norm :num [1:166] 1 11 1 25 31 64 24 36 10 416 ...
Variant2_SKNSH-RA_repll_Norm: num [1:106] 31 8 33 14 6 31 18 37 37 144 ...
Variant2_SKNSH-RA_repl2_Norm: num [1:106] 59 17 59 46 4 37 17 15 18 142 ...

Adjusted_pvalue
Deltaf/DeltaPSI

lowcounts

$ correctedPVal

attr(x, "names")=
$ uncorrectedPVal
attr(x, "names")=

: 'pval' num [1:106] 1.71e-07 5.40e-11 3.78e-06 3.03e-05 1.64e-07 ...
: num [1:106] -0.658 0.649 -0.627 -0.402 0.378 ...
: logi [1:106] FALSE FALSE FALSE FALSE FALSE FALSE ...

'pval’ Named num [1:106] 6.10e-01 2.39e-01 9.49e-01 4.82e-01 5.40e-11 ...
chr [1:106] "bcc_162707|Cycle_0" "bcc_132936|Cycle_3" "bcc_100903|Cycle_0" "bcc_1952

'pval' Named num [1:106] 2.57e-01 6.54e-02 7.82e-01 1.73e-01 1.02e-12 ...

chr [1:106] "bcc_162707|Cycle_0" "bcc_132936|Cycle_3" "bcc_100903|Cycle_0" "bcc_1952

$ resultFitNBglmModel: 'data.frame': 106 obs. of 7 variables:
..$ I vs A: num [1:106] 2.57e-01 6.54e-02 7.82e-01 1.73e-01 1.02e-12 ...
$ bicA : num [1:106] 63.8 56 59.7 51.1 114.5 ...
$ bicI : num [1:106] 64.5 54.6 61.6 51.3 65.7 ...
..$ codeA : num [1:106] 0 0O O O OO O00O0O0O ...
..$ codeI : num [1:106] 0 0O O O OO O0OOO6 ...
$ shA :num [1:106] 0 0 G O OO 00060 ...
..$ shI :num [1:106] 0 O O 0O OO O00O006O0O ...
$ f/psiTable :'data.frame': 106 obs. of b5 variables:
$ ID : chr [1:106] "bcc_100903|Cycle_0" "bcc_108176|Cycle_0" "bcc_120508|Cycle_0" "bcc_12586]
..$ SKNSH_repll : num [1:106] 0.00365 0.02557 0.91602 0.0766 0.0292 ...
..$ SKNSH_repl2 : num [1:106] 0.00407 0.02552 0.93035 NaN 0.02795 ...
..$ SKNSH-RA_repll: num [1:106] 0 0.01935 0.93819 0.00719 0.00943 ...
..$ SKNSH-RA_repl2: num [1:106] 0.00529 0.01288 0.90885 0.12698 0.01415 ...
$ k2rgFile : chr "/tmp/Rtmp08iTZN/Rinstle01dc6400df15/kissDE/extdata/output_k2rg_alt_splicing.txt

20

The ’kissDE’ package

4.1.5

4.1.6

41.7

4.2

The first event in the myResult_AS output has a very low p-value (Adjusted_pvalue column,
less than 2.2e-16) and a very contrasted APSI (Deltaf/DeltaPSI column, equal to -0.804)
close to the maximum value (1 in absolute). This gene is differentially spliced. When the
SK-N-SH cell line is treated with retinoic acid, the inclusion variant becomes the major
isoform.

Export results

In order to facilitate the downstream analysis of the results, two tables are exported: the
result table (myResults AS$finalTable object, see section 2.4.1) is saved in a ‘results_
table.tab’ file and the PSI table (myResults_AS$'f/psiTable', see section 2.4.2) is saved in
a ‘psi_table.tab’ file. Here are the commands to carry out this task:

writeOutputKissDE (myResults_AS, output = "results_table.tab")
writeOutputKissDE (myResults_AS, output = "psi_table.tab", writePSI = TRUE)

Explore results

The writeOutputKissDE function also write an rds file in the output directory, with a .rds
extension. This file can be inputed in the exploreResults function in order to explore and
plot the results of kissDEthrough a Shiny interface:

exploreResults(rdsFile = "results_table.tab.rds")

One command to rule them all
All of kissDER command line can be run at once with the kissDE function.

fileInAS <- system.file("extdata", "output_k2rg_alt_splicing.txt",
package = "kissDE")
myConditions_AS <- c(rep("SKNSH", 2), rep("SKNSH-RA", 2))

kissDE(fileName = fileInAS, conditions = myConditions_AS, output = "results_table.tab",

counts = 2, pairedEnd = TRUE, k2rg = TRUE, exonicReads = FALSE,
writePSI = TRUE, doQualityControl = TRUE, resultsInShiny = TRUE)

Application of kissDE to SNPs/SNVs

This second example present an analysis of SNPs/SNVs done with kissDE on RNA-Seq data
from a subset of the case study presented in [2] (http://kissplice.prabi.fr/TWAS/).

The original purpose of this study was to demonstrate that the method can deal with pooled
data (i.e. individuals are pooled prior to sequencing). Pooling can be used to decrease the
costs. It is also sometimes the only option, when too few RNA is available per individual. The
method can in principle be used on unpooled data, polyploid genomes, and for the detection
of somatic mutations, but has for now only been evaluated for the detection of SNPs/SNVs
in pooled RNAseq data.

In the remaining, we use the term SNV, which designates a variation of a single nucleotide,
without any restriction on the frequency of the two alleles. The term SNP is indeed classically
used for variants present in at least 1% of a population.

21

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://kissplice.prabi.fr/TWAS/

The ’kissDE’ package

4.2.1

422

Dataset

The dataset comes from the human GEUVADIS project. Two populations were selected:
Toscans (TSC) and Central Europeans (CEU). For each population, we selected 10 individu-
als, which are pooled in two groups of 5. Each group corresponds to a replicate for kissDE.
The conditions being compared are the populations.

Replicate 1 Replicate 2

Condition 1 :
Central Europeans

Condition 2 :
Toscans

Figure 7: Experimental design of the SNP dataset. Each cross corresponds to an individual.

The data are paired-end. So each sample consists of 2 files. In total, 8 files have been used:
4 files for the two TSC samples and 4 files for the two CEU samples. Paired-end files from a
same sample have been given as following each other to KisSplice.

KisSplice outputs a fasta file that stores SNVs found in the dataset. Its structure is described
in section 2.1.3. The first SNV is presented below:

>bcc_44787|Cycle_421687|Type_0b|upper_path_length_131|C1_455|C2_455|C3_839|
C4_848|C5_5|C6_0|C7-39|C8_-31|01_58|Q2_55|Q3_51|04_53|Q5_-70|Q06_0|Q7_66|Q8_65|
rank_0.97008
CCAGAGAATCGGTCAGGGACCCCTGAGGGCCGCTGATTATTCCTATAGATGAGGAGTTTGGGGGCCGTTCCTGGGA
GCTGCTGGTACCAGTTTACAGTATTACTTCCGATGTTGGAGCTGCTTCCAGAACA
>bcc_44787|Cycle_421687 | Type_0b|lower_path_length_131|C1_12|C2_14|C3_11|
C4_11|C5_.18|C6_10|C7_4481|C8_4088|Q01_0|Q2_0|Q3_0|Q4_0|Q5_0]|Q6_-0|Q7_35|Q8_35]|
rank_0.97008
CCAGAGAATCGGTCAGGGACCCCTGAGGGCCGCTGATTATTACTAGAGAAGAGGAGTTTGGGGGCCGTTCCTGGGA
GCTGCTGGTACCAATTTACAGTATTACTTCCGATGTTGGAGCTGCTTCCAGAACA

Events are reported in 4 lines, the two first represent one allele of the SNV, the two last the
other allele. Thus the sequences only differ from each other at one position which corresponds
to the SNV, here A/C in the center of the sequence (at position 42).

Because KisSplice was run with the default value of the counts parameter (i.e., 0), the counts
have the following format C1_x|C2_y|...|Cn_z. In this example, there are 8 counts because
we input 8 files. Each count corresponds to the reads coming from each file that could be
mapped on the variant, in the order they have been passed to KisSplice. This information is
particularly important in kissDE since it represents the counts used for the test.

Load data

The first step is to convert this fasta file (here called ‘output_kissplice_SNV.fa') into a

format that will be used in kissDE main functions, thanks to the kissplice2counts function.
fileInSNV

Due to paired-end RNA-Seq data, the pairedEnd parameter was set to TRUE.

22

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

This conversion in a table of counts is stored in the myCounts_SNV object (for a detailed
description of its structure, see section 2.1.3) and can be done as follows:

fileInSNV <- system.file("extdata", "output_kissplice_SNV.fa",

package = "kissDE")
myCounts_SNV <- kissplice2counts(fileInSNV, counts = 0, pairedEnd = TRUE)
head(myCounts_SNV$countsEvents)

events.names events.length countsl counts2 counts3 counts4

1 bcc_44787|Cycle_421687 131 910 1687 5 70
2 bcc_44787|Cycle_421687 131 26 22 28 8569
3 bcc_44787|Cycle_421701 139 389 3349 2 149
4 bcc_44787|Cycle_421701 139 88 31 29 8821
5 bcc_100871|Cycle_3 107 0 10 0 0
6 bcc_100871|Cycle_3 107 3 1 13 10

To perform the differential analysis, a vector with the conditions has to be provided.
In the example, there are two replicates of TSC and two replicates of CEU, thus the condition
vector myConditions_SNV is:

myConditions_SNV <- c(rep("TSC", 2), rep("CEU", 2))

4.2.3 Quality control

Before running the differential analysis, we recommand to check if the data was correctly
loaded, by running the qualityControl function.

qualityControl(myCounts_SNV, myConditions_SNV)

Color Key

°
=

CEU_repl2

group
CEU
® Tsc

CEU_repi1
0.00-

PC2 (8.2%)

TSC_repl2

I

TSC_repl1

"=

pi1

TSC_rey
TSC_repl2
CEU_repl
CEU_repl2

PC1 (85.7%)

Figure 8: Quality control plots on SNV data. Left: Heatmap of the sample-to-sample distances on SNV
data. Right: Principal Component Analysis on SNV data.

On both plots outputed (Figure 8), the replicates of the same condition seem to be more
similar between themselves than to the samples of the other condition. On the heatmap (left
of Figure 8), the samples of the same condition cluster together. On the PCA plot (right of
Figure 8), the first principal component (which summarises 88% of the total variance) clearly
discriminates the two conditions.

The ’kissDE’ package

424

Differ
The m

ential analysis

ain function of kissDE,

statistical test.
Outputs are stored in a myResult_SNV object (for a detailed description of its structure, see
section 2.4.1) and the result for the first three events is printed:

, can now be run to compute the

myResult_SNV <- diffExpressedVariants(myCounts_SNV, myConditions_SNV)
str(myResult_SNV)

List o
$ fin
. $

B2 -2 A 2 S 2 R A 2 A - 2 S R C

. $
$ cor

$ unc

.. $

$
$
$
%
..
%
$ f/p
%
..
.
..

.3
$ k2r

f6

alTable :'data.frame':
ID : chr [1:
Length_diff :num [1:
Variantl CEU_repll_Norm: num [1:
Variantl CEU_repl2_Norm: num [1:
Variantl TSC_repll_Norm: num [1:
Variantl _TSC_repl2_Norm: num [1:
Variant2_CEU_repll_Norm: num [1:
Variant2_CEU_repl2_Norm: num [1:
Variant2_TSC_repll_Norm: num [1:
Variant2_TSC_repl2_Norm: num [1:
Adjusted_pvalue : 'pval’
Deltaf/DeltaPSI :num [1
lowcounts :
rectedPVal : 'pval’

attr(*, "names")= chr [1:
orrectedPVal : 'pval’

attr(x, "names")= chr [1:

63]
63]
631]
63]
63]
63]
63]
631]
63]
63]
num
1631

63 obs. of 13 variables:

"bcc_44787|Cycle_320265" "bcc_100871|Cycle_3" "bcc_44787|Cycle_4211

00000000000 ...

2014 0 5 18 3 ...

1172 0 72 11 4 ...

0 0 959 0 517 3 0 8 5 410 ...

2 10 1672 0 310 ...

23 12 25 3 828 19 3 0 36 26 ...
181 10 8836 1 352 ...

179 327 6 0 ...

853 1 22 11 89 ...

[1:63] 0.00 3.50e-06 1.69e-05 1.27e-09 0.00 ...

-0.926 0.909 0.892 -0.887 0.881 ...

: logi [1:63] FALSE FALSE FALSE FALSE FALSE FALSE ...

Named num [1:63] 1.69e-05 4.74e-04 3.50e-06 0.00 0.00
63] "bcc_44787|Cycle_421687" "bcc_44787|Cycle_421701"
Named num [1:63] 3.23e-06 1.13e-04 5.55e-07 0.00 0.00
63] "bcc_44787|Cycle_421687" "bcc_44787|Cycle_421701"
$ resultFitNBglmModel: 'data.frame':

63 obs. of 7 variables:

"bcc_100871|Cycle_3" "b

"bcc_100871|Cycle_3" "b

I vs A: num [1:63] 3.23e-06 1.13e-04 5.55e-07 0.00 0.60 ...

bicA : num [1:63] 133.3 133.3 63.6 345 481.4 ...

bicI : num [1:63] 113.6 120.4 40.6 125.3 186.2 ...

codeA : num [1:63] O OO O O00O0000O06 ...

codeI : num [1:63] © OO O 006000006 ...

shA :num [1:63] 0 00O OO O00O0O006O ...

shI :num [1:63] 0000010000 ...

siTable :'data.frame': 63 obs. of 5 variables:

ID : chr [1:63] "bcc_100871|Cycle_3" "bcc_117336|Cycle_0" "bcc_16074|Cycle_0" "bcc_23079|Cycle_3

CEU_repll: num [1:63] 6 NaN NaN NaN 0.375 ...
CEU_repl2: num [1:63] © NaN NaN NaN 0.0241 ...
TSC_repll: num [1:63] NaN NaN NaN 0.5 NaN ...
TSC_repl2: num [1:63] 0.909 NaN 0.242 0.5 0.929 ...

gFile : NULL

The first event in the myResult SNV output has a low p-value (Adjusted_pvalue column,
equal to 8.63e-13) and a very high absolute value of Af (Deltaf/DeltaPSI column, equal to
-0.926) close to the maximum value (1 in absolute). This SNP would typically be population
specific. One allele is enriched in the Toscan population, the other in the European population.

24

http://bioconductor.org/packages/kissDE

The ’kissDE’ package

4.2.5 Export results

We consider as significant the events that have an adjusted p-value lower than 5%, so
we set adjPvalMax = 0.05. Results passing this threshold are saved in a ‘final_table_
significants.tab’ file, with the writeOutputKissDE function, as follows:

writeOutputKissDE (myResults_SNV, output = "final_table_significants.tab",
adjPvalMax = 0.05)

4.2.6 Explore results

The writeOutputKissDE function also write an rds file in the output directory, with a .rds
extension. This file can be inputed in the exploreResults function in order to explore and
plot the results of kissDEthrough a Shiny interface:

exploreResults(rdsFile = "final_table_significants.tab.rds")

4.2.7 One command to rule them all
All of kissDER command line can be run at once with the kissDE function.

fileInSNV <- system.file("extdata", "output_kissplice_SNV.fa",
package = "kissDE")

myConditions_SNV <- c(rep("TSC", 2), rep("CEU", 2))

kissDE(fileName = fileInSNV, conditions = myConditions_SNV, output = "results_table.tab",
counts = 2, pairedEnd = TRUE, k2rg = TRUE, exonicReads = FALSE,
writePSI = TRUE, doQualityControl = TRUE, resultsInShiny = TRUE)

4.3 Time / Requirements

The statistical analysis function (diffExpressedVariants) is the most time-consuming steps.
Here is an example of the running time of this function on the two complete datasets presented
in the case studies(section 4). The time presented were evaluated on a desktop computer
with the following caracteristics: Intel Core i7, CPU 2,60 GHz, 16G RAM.

. Number of Running time of
Dataset Options _
events diffExpressedVariants
counts=2,
AS data | pairedEnd=TRUE 59132 17m
k2rg=TRUE
counts=0
NV dat ' 4824 1
S ata pairedEnd=TRUE 048 8m

Table 3: Profiling. Running time of the principal function of kissDE (diffExpressedVariants) for two
datasets (AS dataset from the ENCODE project [10] described in section 4.1 and SNV dataset from the
GEUVADIS project [12] described in section 4.2).

To reduce even more the running time of diffExpressedVariants, the parameter nbCore
can be used to parallelize the most time-consuming step of this function (for more detailed
explanation on this parameter see section 2.3).

http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE
http://bioconductor.org/packages/kissDE

The ’kissDE’ package

5 Session info

sessionInfo()

R version 4.5.0 RC (2025-04-04 r88126)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.21-bioc/R/1lib/1libRblas.so
LAPACK: /usr/1ib/x86_64-1linux-gnu/lapack/liblapack.s0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] kissDE_1.28.0

loaded via a namespace (and not attached):

[1] bitops_1.0-9 bsseq_1.44.0

[3] permute_0.9-7 rlang_1.1.6

[5] magrittr_2.0.3 ade4_1.7-23

[7]1 matrixStats_1.5.0 compiler_4.5.0

[9] DelayedMatrixStats_1.30.0 vctrs_0.6.5

[11] pkgconfig_2.0.3 crayon_1.5.3

[13] fastmap_1.2.0 XVector_0.48.0

[15] labeling_0.4.3 caTools_1.18.3

[17] Rsamtools_2.24.0 promises_1.3.2

[19] rmarkdown_2.29 UCSC.utils_1.4.0
[21] xfun_0.52 beachmat_2.24.0

[23] GenomeInfoDb_1.44.0 jsonlite_2.0.0

[25] later_1.4.2 rhdf5filters_1.20.0
[27] DelayedArray_0.34.0 Rhdf51ib_1.30.0

[29] BiocParallel_1.42.0 parallel_4.5.0

[31] R6_2.6.1 limma_3.64.0

[33] rtracklayer_1.68.0 GenomicRanges_1.60.0
[35] Rcpp_1.0.14 SummarizedExperiment_1.38.0
[37] iterators_1.0.14 knitr_1.50

[39] R.utils_2.13.0 IRanges_2.42.0

[41] httpuv_1.6.15 Matrix_1.7-3

The ’kissDE’ package

[43] splines_4.5.0

[45] abind_1.4-8

[47] doParallel_1.0.17
[49] codetools_0.2-20
[51] lattice_0.22-7

[53] withr_3.0.2

[55] shiny_1.10.0

[57] Biostrings_2.76.0
[59] pillar_1.10.2

[61] MatrixGenerics_1.20.0
[63] KernSmooth_2.23-26
[65] foreach_1.5.2

[67] generics_0.1.3

[69] S4Vectors_0.46.0
[71] sparseMatrixStats_1.20.0
[73] scales_1.3.0

[75] gtools_3.9.5

[77] glue_1.8.0

[79] BiocI0_1.18.0

[81] BSgenome_1.76.0
[83] GenomicAlignments_1.44.0
[85] rhdf5_.2.52.0

[87] colorspace_2.1-1
[89] HDF5Array_1.36.0
[91] cli 3.6.4

[93] S4Arrays_1.8.0

[95] gtable_0.3.6

[97] DESeq2_1.48.0

[99] BiocGenerics_0.54.0
[101] SparseArray_1.8.0
[103] htmlwidgets_1.6.4
[105] factoextra_1.0.7
[107] R.00_1.27.0
[109] h5mread_1.0.0
[111] statmod_1.5.0
[113] MASS_7.3-65

References

tidyselect_1.2.1
yaml_2.3.10
gplots_3.2.0

curl _6.2.2
tibble_3.2.1
Biobase_2.68.0
evaluate_1.0.3
shinycssloaders_1.1.0
BiocManager_1.30.25
DSS_2.56.0
DT_0.33
stats4_4.5.0
RCurl_1.98-1.17
ggplot2_3.5.2
munsell_0.5.1
BiocStyle_2.36.0
xtable_1.8-4
tools_4.5.0
data.table_1.17.0
locfit 1.5-9.12
XML_3.99-0.18
grid_4.5.0
GenomeInfoDbData_1.2.14
restfulr_0.0.15
a0ds3_0.5
dplyr_1.1.4
R.methodsS3.1.8.2
digest 0.6.37
ggrepel_0.9.6
farver_2.1.2
rjson_0.2.23
htmltools_0.5.8.1
lifecycle_1.0.4
httr_1.4.7
mime_0.13

[1] Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550,
2014. doi:10.1186/513059-014-0550-8

[2] Hélene Lopez-Maestre, Lilia Brinza, Camille Marchet, Janice Kielbassa, Sylvére
Bastien, Mathilde Boutigny, David Monnin, Adil El Filali, Claudia Marcia Carareto,
Cristina Vieira, Franck Picard, Natacha Kremer, Fabrice Vavre, Marie-France Sagot,
and Vincent Lacroix. SNP calling from RNA-seq data without a reference genome:

identification, quantification, differential analysis and impact on the protein sequence.

Nucleic Acids Research, 44(19):e148, 2016. doi:10.1093/nar/gkw655.

27

http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1093/nar/gkw655

The ’kissDE’ package

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

Clara Benoit-Pilven, Camille Marchet, Emilie Chautard, Leandro Lima, Marie-Pierre
Lambert, Gustavo Sacomoto, Amandine Rey, Cyril Bourgeois, Didier Auboeuf, and
Vincent Lacroix. Annotation and differential analysis of alternative splicing using de
novo assembly of rnaseq data. bioRxiv, 2016. URL:
https://www.biorxiv.org/content/early/2016,/09/12 /074807,
arXiv:https://www.biorxiv.org/content/early/2016/09/12/074807.full.pdf,
doi:10.1101/074807.

Gustavo A. T. Sacomoto, Janice Kielbassa, Rayan Chikhi, Raluca Uricaru, Pavlos
Antoniou, Marie-France Sagot, Pierre Peterlongo, and Vincent Lacroix. KISSPLICE:
de-novo calling alternative splicing events from RNA-seq data. BMC Bioinformatics,
13(6):S5, 2012. doi:10.1186/1471-2105-13-56-S5.

Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289-300, 1995. URL:
http://www.jstor.org/stable/2346101.

Hao Wu, Chi Wang, and Zhijin Wu. A new shrinkage estimator for dispersion improves
differential expression detection in RNA-seq data. Biostatistics, 14(2):232-43, 2013.
doi:10.1093/biostatistics/kxs033.

Hao Feng, Karen N. Conneely, and Hao Wu. A Bayesian hierarchical model to detect
differentially methylated loci from single nucleotide resolution sequencing data. Nucleic
Acids Research, 42(8):¢69, 2014. doi:10.1093/nar/gkul54.

Hao Wu, Tianlei Xu, Hao Feng, Li Chen, Ben Li, Bing Yao, Zhaohui Qin, Peng Jin,
and Karen N. Conneely. Detection of differentially methylated regions from
whole-genome bisulfite sequencing data without replicates. Nucleic Acids Research,
43(21):e141, 2015. doi:10.1093/nar/gkv715.

Yongseok Park and Hao Wu. Differential methylation analysis for BS-seq data under
general experimental design. Bioinformatics, 32(10):1446, 2016.
doi:10.1093/bioinformatics/btw026.

Sarah Djebali, Carrie A. Davis, Angelika Merkel, Alex Dobin, Timo Lassmann, Ali
Mortazavi, Andrea Tanzer, Julien Lagarde, Wei Lin, Felix Schlesinger, Chenghai Xue,
Georgi K. Marinov, Jainab Khatun, Brian A. Williams, Chris Zaleski, Joel Rozowsky,
Maik Roder, Felix Kokocinski, Rehab F. Abdelhamid, Tyler Alioto, Igor Antoshechkin,
Michael T. Baer, Nadav S. Bar, Philippe Batut, Kimberly Bell, lan Bell, Sudipto
Chakrabortty, Xian Chen, Jacqueline Chrast, Joao Curado, Thomas Derrien, Jorg
Drenkow, Erica Dumais, Jacqueline Dumais, Radha Duttagupta, Emilie Falconnet,
Meagan Fastuca, Kata Fejes-Toth, Pedro Ferreira, Sylvain Foissac, Melissa J.
Fullwood, Hui Gao, David Gonzalez, Assaf Gordon, Harsha Gunawardena, Cedric
Howald, Sonali Jha, Rory Johnson, Philipp Kapranov, Brandon King, Colin Kingswood,
Oscar J. Luo, Eddie Park, Kimberly Persaud, Jonathan B. Preall, Paolo Ribeca, Brian
Risk, Daniel Robyr, Michael Sammeth, Lorian Schaffer, Lei-Hoon See, Atif Shahab,
Jorgen Skancke, Ana Maria Suzuki, Hazuki Takahashi, Hagen Tilgner, Diane Trout,
Nathalie Walters, Huaien Wang, John Wrobel, Yanbao Yu, Xiaoan Ruan, Yoshihide
Hayashizaki, Jennifer Harrow, Mark Gerstein, Tim Hubbard, Alexandre Reymond,
Stylianos E. Antonarakis, Gregory Hannon, Morgan C. Giddings, Yijun Ruan, Barbara
Wold, Piero Carninci, Roderic Guigo, and Thomas R. Gingeras. Landscape of
transcription in human cells. Nature, 489(7414):101-108, 2012.
doi:10.1038/naturell233.

28

https://www.biorxiv.org/content/early/2016/09/12/074807
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2016/09/12/074807.full.pdf
http://dx.doi.org/10.1101/074807
http://dx.doi.org/10.1186/1471-2105-13-S6-S5
http://www.jstor.org/stable/2346101
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/nar/gku154
http://dx.doi.org/10.1093/nar/gkv715
http://dx.doi.org/10.1093/bioinformatics/btw026
http://dx.doi.org/10.1038/nature11233

The ’kissDE’ package

[11]

[12]

Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski,
Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics, 29(1):15-21, 2013.
d0i:10.1093/bioinformatics/bts635.

Tuuli Lappalainen, Michael Sammeth, Marc R. Friedlander, Peter A. C. 't Hoen, Jean
Monlong, Manuel A. Rivas, Mar Gonzalez-Porta, Natalja Kurbatova, Thasso Griebel,
Pedro G. Ferreira, Matthias Barann, Thomas Wieland, Liliana Greger, Maarten van
Iterson, Jonas Almlof, Paolo Ribeca, Irina Pulyakhina, Daniela Esser, Thomas Giger,
Andrew Tikhonov, Marc Sultan, Gabrielle Bertier, Daniel G. MacArthur, Monkol Lek,
Esther Lizano, Henk P. J. Buermans, Ismael Padioleau, Thomas Schwarzmayr, Olof
Karlberg, Halit Ongen, Helena Kilpinen, Sergi Beltran, Marta Gut, Katja Kahlem,
Vyacheslav Amstislavskiy, Oliver Stegle, Matti Pirinen, Stephen B. Montgomery, Peter
Donnelly, Mark I. McCarthy, Paul Flicek, Tim M. Strom, The Geuvadis Consortium,
Hans Lehrach, Stefan Schreiber, Ralf Sudbrak, Angel Carracedo, Stylianos E.
Antonarakis, Robert Hasler, Ann-Christine Syvénen, Gert-Jan van Ommen, Alvis
Brazma, Thomas Meitinger, Philip Rosenstiel, Roderic Guigd, Ivo G. Gut, Xavier
Estivill, and Emmanouil T. Dermitzakis. Transcriptome and genome sequencing
uncovers functional variation in humans. Nature, 501(7468):506-11, 2013.
doi:10.1038/naturel2531.

29

http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1038/nature12531

	1 Prerequisites
	1.1 Use case
	1.2 Install and load kissDE
	1.3 Quick start

	2 kissDE's workflow
	2.1 Input data
	2.1.1 Condition vector
	2.1.2 User's own data (without KisSplice): table of counts format
	2.1.3 Input table from KisSplice output
	2.1.4 Input table from KisSplice2refgenome output

	2.2 Quality Control
	2.3 Differential analysis
	2.4 Output results
	2.4.1 Final table
	2.4.2 f/PSI table

	3 kissDE's theory
	3.1 Normalization
	3.2 Estimation of dispersion
	3.3 Pre-test filtering
	3.4 Model fitting
	3.5 Likelihood ratio test
	3.6 Flagging low counts
	3.7 Magnitude of the effect

	4 Case studies
	4.1 Application of kissDE to alternative splicing
	4.1.1 Dataset
	4.1.2 Load data
	4.1.3 Quality control
	4.1.4 Differential analysis
	4.1.5 Export results
	4.1.6 Explore results
	4.1.7 One command to rule them all

	4.2 Application of kissDE to SNPs/SNVs
	4.2.1 Dataset
	4.2.2 Load data
	4.2.3 Quality control
	4.2.4 Differential analysis
	4.2.5 Export results
	4.2.6 Explore results
	4.2.7 One command to rule them all

	4.3 Time / Requirements

	5 Session info

