
Searching Biological Sequences for Research

Erik S. Wright

April 15, 2025

Contents
1 Introduction 1

2 Getting Started 1
2.1 Startup . 2
2.2 Gathering the evidence . 2

3 Searching for hits between pattern and subject sequences 3

4 Aligning the search hits between pattern and subject 6

5 Controlling for false discoveries 9
5.1 Option 1: Calibrating an expect value (E-value) from hit scores . 9
5.2 Option 2: The knockoff approach for limiting false discoveries . 12

6 Maximizing search sensitivity to find distant hits 12

7 Mapping long reads to a genome 13

8 Recommended search settings 15

9 Session Information 15

1 Introduction
Sequence searching is an essential part of biology research. The word research even originates from a word in Old
French meaning ‘to search’. Yet, the sheer amount of biological sequences to comb through can make (re)search
feel like finding a needle in a haystack. To avoid heading out on a wild goose chase, it’s important to master the ins
and outs of searching. The goal of this vignette is to help you leave no stone unturned as you scout out homologous
sequences. Mixed metaphors aside, understanding how to properly use DECIPHER’s search functions is critical for
optimizing performance. The search functions’ versatility makes them highly customizable, but this also places the
onus of understanding on the user. This vignette is intended to bring you up to speed on how to best apply the search
functions in your research.

2 Getting Started
Fast sequence searching is performed by breaking the query and target sequences into k-mers. Behind the scenes,
the search function has to rapidly find significant paths among many k-mer matches shared by both sequences. This
process is especially difficult in the presence of many spurious matches and repeats (Fig. 1). The IndexSeqs and

1

SearchIndex functions introduced in this vignette employ many techniques to increase the accuracy and speed of
search, such as masking problematic regions. The examples below illustrate how to best apply these techniques to
solve different search problems, including searching translated sequences, extending k-mer matches, aligning search
hits, and mapping reads.

2.1 Startup

Figure 1: K-mer matches between a query and target se-
quence colored by their length. The presence of repeats can
be seen in rectangular blocks with many k-mer matches.

To get started we need to load the DECIPHER package,
which automatically loads a few other required pack-
ages.

> library(DECIPHER)

Help for a function can be accessed through:

> ? SearchIndex

Once DECIPHER is installed, the code in this tutorial
can be obtained via:

> browseVignettes("DECIPHER")

2.2 Gathering the evidence
There are umpteen reasons to search through biologi-
cal sequences. For the purposes of this vignette, we
are going to focus on finding homologous proteins in a
genome. In this case, our pattern (query) is the protein
sequence and the subject (target) is a 6-frame translation
of the genome. Feel free to follow along with your own
(nucleotide or protein) sequences or use those in the vi-
gnette:

> # specify the path to your file of pattern (query) sequences:
> fas1 <- "<<path to pattern FASTA file>>"
> # OR use the example protein sequences:
> fas1 <- system.file("extdata",

"PlanctobacteriaNamedGenes.fas.gz",
package="DECIPHER")

> # read the sequences into memory
> pattern <- readAAStringSet(fas1)
> pattern

AAStringSet object of length 2497:
width seq names

[1] 227 MAGPKHVLLVSEHWDLFFQTKE...VGYLFSDDGDKKFSQQDTKLS A0A0H3MDW1|Root;N...
[2] 394 MKRNPHFVSLTKNYLFADLQKR...GKREDILAACERLQMAPALQS O84395|Root;2;6;1...
[3] 195 MAYGTRYPTLAFHTGGIGESDD...GFCLTALGFLNFENAEPAKVN Q9Z6M7|Root;4;1;1...
[4] 437 MMLRGVHRIFKCFYDVVLVCAF...TASFDRTWRALKSYIPLYKNS Q46222|Root;2;4;9...
[5] 539 MSFKSIFLTGGVVSSLGKGLTA...FIEFIRAAKAYSLEKANHEHR Q59321|Root;6;3;4...
...

[2493] 1038 MFEEVLQESFDEREKKVLKFWQ...EGTDWDLNGEPTKIIIKKSEY Q6MDY1|Root;6;1;1...
[2494] 102 MVQIVSQDNFADSIASGLVLVD...VERSVGLKDKDSLVKLISKHQ Q9PJK3|Root;NoEC;...

2

[2495] 224 MKPQDLKLPYFWEDRCPKIENH...NLWRSKGEKIFCTEFVKRVGI Q9PL91|Root;2;1;1...
[2496] 427 MLRRLFVSTFLIFGMVSLYAKD...KIVIGLGEKRFPSWGGFPNNQ Q256H8|Root;NoEC;...
[2497] 344 MLTLGLESSCDETACALVDAKG...GIHPCARYHWESISASLSPLP Q822Y4|Root;2;3;1...

Protein search is more accurate than nucleotide
search, so we are going to import a genome and per-
form 6-frame translation to get the subject sequences.
Feel free to carry on without translating the sequences
if you are searching nucleotides or otherwise would pre-
fer to skip translation. Note that SearchIndex only
searches the nucleotides in the direction they are pro-
vided, so if you desire to search both strands then you
will need to combine with the reverseComplement
as shown below.

> # specify the path to your file of subject (target) sequences:
> fas2 <- "<<path to subject FASTA file>>"
> # OR use the example subject genome:
> fas2 <- system.file("extdata",

"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

> # read the sequences into memory
> genome <- readDNAStringSet(fas2)
> genome

DNAStringSet object of length 1:
width seq names

[1] 1042519 GCGGCCGCCCGGGAAATTGCTA...GTTGGCTGGCCCTGACGGGGTA NC_000117.1 Chlam...

> genome <- c(genome, reverseComplement(genome)) # two strands
> subject <- subseq(rep(genome, each=3), rep(1:3, 2)) # six frames
> subject <- suppressWarnings(translate(subject)) # 6-frame translation
> subject

AAStringSet object of length 6:
width seq names

[1] 347506 AAAREIAKRWEQRVRDLQDKGAA...GCVHK*VRGSFRSEQVGWP*RG NC_000117.1 Chlam...
[2] 347506 RPPGKLLKDGSKELEIYKIKVLH...AAYTSECADHLEANKLAGPDGV NC_000117.1 Chlam...
[3] 347505 GRPGNC*KMGAKS*RSTR*RCCT...WLRTQVSARII*KRTSWLALTG NC_000117.1 Chlam...
[4] 347506 YPVRASQLVRF*MIRALTCVRSH...QHLYLVDL*LFAPIF*QFPGRP NC_000117.1 Chlam...
[5] 347506 TPSGPANLFASK*SAHSLVYAAI...STFIL*ISNSLLPSFSNFPGGR NC_000117.1 Chlam...
[6] 347505 PRQGQPTCSLLNDPRTHLCTQPS...AAPLSCRSLTLCSHLLAISRAA NC_000117.1 Chlam...

3 Searching for hits between pattern and subject sequences
Once the sequences are imported, we need to build an InvertedIndex object from the subject sequences. We can
accomplish this with IndexSeqs by specifying the k-mer length (K). If you don’t know what value to use for K,
then you can specify sensitivity, percentIdentity, and patternLength in lieu of K. Here, we want to ensure we find 99%
(0.99) of sequences with at least 70% identity to a pattern with 300 or more residues. Note that sensitivity is defined
as a fraction, whereas percentIdentity is defined as a percentage.

> index <- IndexSeqs(subject,
sensitivity=0.99,

3

percentIdentity=70,
patternLength=300,
processors=1)

==

Time difference of 0.73 secs

> index

An InvertedIndex built with:

* Amino acid sequences: 6

* Total k-mers: 1,228,562

* Alphabet: A, C, DE, FWY, G, H, ILMV, N, P, Q, RK, ST

* K-mer size: 5

* Step size: 1

Printing the index shows that we created an InvertedIndex object containing over 1 million 5-mers in a re-
duced amino acid alphabet with 12 symbols. Before we can find homologous hits to our protein sequences with
SearchIndex, we must decide how many hits we desire. The default is to return the best hit (above minScore) per
subject sequence, but this may return too many hits. Instead we could limit the number of hits by specifying a positive
value for perPatternLimit or perSubjectLimit (unlimited is 0). Note that we do not need to specify a value
for minScore, because it is automatically set based on the size of the InvertedIndex.

> hits <- SearchIndex(pattern,
index,
perPatternLimit=100,
processors=1)

==

Time difference of 7.45 secs

> dim(hits)

[1] 1917 4

> head(hits)

Pattern Subject Score Position
1 1 6 468.4091 1, 12, 1....
2 2 2 901.9045 1, 394,
3 3 3 390.1394 3, 67, 1....
4 4 6 278.6762 18, 22,
5 5 3 1224.8793 1, 539,
6 6 6 1206.7279 1, 538,

The result of our search is a data.frame with four columns: Pattern (index in pattern), Subject (index in
subject), Score, and Position (of k-mer matches). The Position column is optional and can be disabled by setting
scoreOnly to TRUE. We can take a closer look at the number of hits per protein, their scores, and locations (Fig. 2):

4

> layout(matrix(1:4, nrow=2))
> hist(hits$Score,

breaks=100, xlab="Score", main="Distribution of scores")
> plot(NA, xlim=c(0, max(width(subject))), ylim=c(1, 6),

xlab="Genome position", ylab="Genome frame",
main="Location of k-mer matches")

> segments(sapply(hits$Position, `[`, i=3), # third row
hits$Subject,
sapply(hits$Position, `[`, i=4), # fourth row
hits$Subject)

> plot(hits$Score,
sapply(hits$Position, function(x) sum(x[2,] - x[1,] + 1)),
xlab="Score", ylab="Sum of k-mer matches",
main="Matches versus score", log="xy")

> plot(table(tabulate(hits$Pattern, nbins=length(pattern))),
xlab="Hits per pattern sequence", ylab="Frequency",
main="Number of hits per query")

Distribution of scores

Score

F
re

qu
en

cy

0 1000 2000 3000 4000

0
50

10
0

15
0

20
0

0 100000 200000 300000

1
2

3
4

5
6

Location of k−mer matches

Genome position

G
en

om
e

fr
am

e

20 50 200 1000 5000

20
50

20
0

50
0

20
00 Matches versus score

Score

S
um

 o
f k

−
m

er
 m

at
ch

es

0
50

0
10

00
15

00

Number of hits per query

Hits per pattern sequence

F
re

qu
en

cy

0 1 2 3 4 6

Figure 2: Summary of hits found between a set of proteins and the genome’s 6-frame translation.

5

The calculated Score for each search hit is defined by the negative log-odds of observing the hit by chance. We
see that most scores were near zero, but there were many high scoring hits. Hits tended to be clustered along specific
frames of the genome, with some genome regions devoid of hits. Also, most pattern (protein) sequences were found at
zero or one location in the genome. As expected, a hit’s score is correlated with the length of k-mer matches, although
greater separation between matches lowers the score. One protein was found many times more than all the others. We
can easily figure out which protein was found the most times:

> w <- which.max(tabulate(hits$Pattern))
> hits[hits$Pattern == w,]

Pattern Subject Score Position
823 1065 1 25.27856 43, 51,
824 1065 2 45.04873 27, 31,
825 1065 3 46.61342 43, 50,
826 1065 4 47.26039 27, 31,
827 1065 5 18.74354 43, 50,
828 1065 6 30.13226 153, 158....

> names(pattern)[w]

[1] "Q9Z8Q8|Root;7;4;2;11;metN"

Likely these hits are to multiple paralogous genes on the genome, as can be seen by the wide distribution of
scores.

4 Aligning the search hits between pattern and subject
So far, we’ve identified the location and score of search hits without alignment. Aligning the hits would provide us
with their local start and stop boundaries, percent identity, and the locations of any insertions or deletions. Thankfully,
alignment is elementary once we’ve completed our search.

> aligned <- AlignPairs(pattern=pattern,
subject=subject,
pairs=hits,
processors=1)

==

Time difference of 0.47 secs

> head(aligned)

Pattern PatternStart PatternEnd Subject SubjectStart SubjectEnd Matches
1 1 1 227 6 108250 108476 222
2 2 1 394 2 148163 148556 394
3 3 1 195 3 141952 142146 173
4 4 13 435 6 268926 269346 222
5 5 1 539 3 68143 68681 539
6 6 1 544 6 304850 305393 544

Mismatches AlignmentLength Score PatternGapPosition PatternGapLength
1 5 227 1350.159
2 0 394 2432.598
3 22 195 1153.484
4 199 423 1485.138
5 0 539 3385.075
6 0 544 3125.491

6

SubjectGapPosition SubjectGapLength
1
2
3
4 218, 372 1, 1
5
6

The AlignPairs function returns a data.frame containing the Pattern (i.e., pattern index), Subject (i.e.,
subject index), their start and end positions, the number of matched and mismatched positions, the alignment length
and its score, as well as the location of any gaps in the pattern or subject. We can use this information to calculate a
percent identity, which can be defined a couple of different ways (Fig. 3).

7

> PID1 <- aligned$Matches/(aligned$Matches + aligned$Mismatches)
> PID2 <- aligned$Matches/aligned$AlignmentLength
> layout(matrix(1:4, ncol=2))
> plot(hits$Score, PID2,

xlab="Hit score",
ylab="Matches / (Aligned length)")

> plot(hits$Score, aligned$Score,
xlab="Hit score",
ylab="Aligned score")

> plot(aligned$Score, PID1,
xlab="Aligned score",
ylab="Matches / (Matches + Mismatches)")

> plot(PID1, PID2,
xlab="Matches / (Matches + Mismatches)",
ylab="Matches / (Aligned length)")

0 1000 2000 3000 4000

0.
2

0.
4

0.
6

0.
8

1.
0

Hit score

M
at

ch
es

 /
(A

lig
ne

d
le

ng
th

)

0 1000 2000 3000 4000

0
20

00
60

00
10

00
0

Hit score

A
lig

ne
d

sc
or

e

0 2000 6000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

Aligned score

M
at

ch
es

 /
(M

at
ch

es
 +

 M
is

m
at

ch
es

)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Matches / (Matches + Mismatches)

M
at

ch
es

 /
(A

lig
ne

d
le

ng
th

)

Figure 3: Scatterplots of different scores and methods of formulating percent identity.

8

By default, AlignPairs gives us everything we need to align the sequences except the alignments them-
selves. If needed, we can easily request the alignments be included in the output.

> alignments <- AlignPairs(pattern=pattern,
subject=subject,
pairs=hits,
type="both",
processors=1)

==

Time difference of 0.48 secs

> patterns <- alignments[[2]]
> subjects <- alignments[[3]]
> c(patterns[1], subjects[1]) # view the first pairwise alignment

AAStringSet object of length 2:
width seq

[1] 227 MAGPKHVLLVSEHWDLFFQTKELLNPEEYRCTIG...GAYGSRIVTLRGVGYLFSDDGDKKFSQQDTKLS
[2] 227 MAGPKHVLLVSENWDLFFQTKELLNPEEYRCTIG...GAYGSRIVTLRGVGYLFSDDGDKKFSQQDTKLS

5 Controlling for false discoveries
SearchIndex returns hits with scores above minScore. However, it is often useful to compute an expect value
(E-value) representing the number of times we expect to see a hit at least as high scoring in a database of the same
size. A lesser known fact is that E-values are a function of the substitution matrix, gapOpening penalty, gapExtension
penalty, and other search parameters, so E-values must be empirically determined.

Parameters for determining E-values are typically pre-estimated on an independent database. However, it is
intuitive that the composition of the target database might have an effect on the E-values. For this reason, reported
E-values are often biased and miscalibrated across different programs [1]. It is therefore preferable to develop an
approach for calibrating E-values on the specific target database that is being searched. Below are two alternative
approaches to controlling for false discoveries in sequence search.

5.1 Option 1: Calibrating an expect value (E-value) from hit scores
There are two straightforward ways to calibrate E-values: (1) create an equivalent database of random sequences with
matched composition to the input, or (2) search for the reverse of the sequences under the assumption that reverse hits
are unexpected (i.e., false positives). The second approach is more conservative, because we will find more hits than
expected if its underlying assumption is not true. Here, we will try the second approach:

> revhits <- SearchIndex(reverse(pattern), # reverse the query
index, # keep the same target database
minScore=10, # set low to get many hits
processors=1)

==

Time difference of 7.02 secs

> dim(revhits)

[1] 14 4

Next, our goal is to fit the distribution of background scores (i.e., reverse hits), which is reasonably well-
modeled by an exponential distribution. We will bin the reverse hits’ scores into intervals of one score unit between

9

10 and 100. Then we will use the fact that the integral of e−rate∗x (with respect to x) is e−rate∗x to estimate the
number of background hits at each score cutoff. Note how there is an outlying point that violated the assumption
reversed sequences should not have strong hits (Fig. 4). We can use the sum of absolute error (L1 norm) rather than
the sum of squared error (L2 norm) to make the fit more robust to outliers. We will perform the fit in log-space to
emphasize points across many orders of magnitude.

10

> X <- 10:100 # score bins
> Y <- tabulate(.bincode(revhits$Score, X), length(X) - 1)
> Y <- Y/length(pattern) # average per query
> w <- which(Y > 0) # needed to fit in log-space
> plot(X[w], Y[w],

log="y",
xlab="Score",
ylab="Average false positives per query")

> fit <- function(rate) # integrate from bin start to end
sum(abs((log((exp(-X[w]*rate) -

exp(-X[w + 1]*rate))*length(subject)) -
log(Y[w]))))

> o <- optimize(fit, c(0.01, 2)) # optimize rate
> lines(X[-length(X)], (exp(-X[-length(X)]*o$minimum) -

exp(-(X[-1])*o$minimum))*length(subject))
> rate <- o$minimum
> print(rate)

[1] 0.5117453

10 12 14 16 18 20 22 24

5e
−

04
1e

−
03

2e
−

03

Score

A
ve

ra
ge

 fa
ls

e
po

si
tiv

es
 p

er
 q

ue
ry

Figure 4: Fitting an exponential distribution to the score background.
11

Now that we’ve optimized the rate parameter, it is feasible to convert our original scores into E-values. We
are interested in the number of false positive hits expected across all queries at every value of Score. This differs
from the standard definition of E-value, which is defined on a per query basis. However, since we are performing
multiple queries it is preferable to apply a multiple testing correction for the number of searches. We can convert our
original scores to E-values, as well as define score thresholds for a given number of acceptable false positives across
all pattern sequences:

> # convert each Score to an E-value
> Evalue <- exp(-rate*hits$Score)*length(subject)*length(pattern)
> # determine minimum Score for up to 1 false positive hit expected
> log(1/length(subject)/length(pattern))/-rate

[1] 18.78787

As can be seen, for this particular combination of dataset and parameters, a score threshold of 22 is sufficient
to only permit one combined false positive across all queries. Since E-value is a function of the dataset’s size and
the specific search parameters, you should calibrate the E-value for each set of searches performed. Once you have
calibrated the rate, it is straightforward to find only those hits that are statistically significant:

> # determine minimum Score for 0.05 (total) false positive hits expected
> threshold <- log(0.05/length(subject)/length(pattern))/-rate
> hits <- hits[hits$Score > threshold,]
> dim(hits)

[1] 1816 4

5.2 Option 2: The knockoff approach for limiting false discoveries
An alternative and simpler approach to limiting false discoveries is to use the results on knockoffs to limit the false
discovery rate. To use the reverse hits for this purpose, we will rank the combined set of results and allow any hits
above a pre-determined false discovery rate.

> FDR <- 0.001 # maximum allowed false discovery rate
> N <- nrow(hits)
> ranking <- order(c(hits$Score, revhits$Score), decreasing=TRUE)
> ranking <- ranking[cumprod(cumsum(ranking > N) <= seq_along(ranking)*FDR) == 1L]
> hits <- hits[sort(ranking[ranking <= N]),] # filtered hits
> nrow(hits) # number of search hits after controlling FDR

[1] 1816

6 Maximizing search sensitivity to find distant hits
We’ve already employed some strategies to improve search sensitivity: choosing a small value for k-mer length and
step size, searching amino acids rather than nucleotides, and masking low complexity regions and repeats. Although
k-mer search is very fast, sometimes k-mers alone are insufficient to find distant homologs. In these cases, search
sensitivity can be improved by providing the subject (target) sequences, which causes SearchIndex to extend
k-mer matches to their left and right. This is as simple as adding a single argument:

> # include the target sequences to increase search sensitivity
> hits <- SearchIndex(pattern,

index,
subject, # optional parameter
perPatternLimit=100,
processors=1)

12

==

Time difference of 259.27 secs

> dim(hits)

[1] 2760 4

> head(hits)

Pattern Subject Score Position
1 1 6 636.2766 1, 13, 1....
2 2 2 1156.7987 1, 394,
3 3 3 530.2673 1, 71, 1....
4 4 6 589.2361 13, 42,
5 5 3 1607.9917 1, 539,
6 6 6 1506.3808 1, 544,

We can see that search took longer when providing subject sequences, but the number of hits also increased.
The dropScore parameter, which controls the degree of extension, can be adjusted to balance sensitivity and speed. In
this manner, high sensitivity can be achieved by providing subject sequences in conjunction with a low value of
k-mer length and dropScore.

7 Mapping long reads to a genome
Read alignment is one of the most common bioinformatics tasks. The higher error rates of long read sequences inspired
new mapping approaches with greater error tolerance than traditional short read mapping algorithms. DECIPHER’s
search functions are well suited to locating the position of significant matches in a genome. As an example, we will try
mapping error-prone long reads to a genome. There are two ways to search both strands with nucleotide sequences: (1)
search the forward and reverse complement of the query (pattern) sequences with SearchIndex, or (2) build an inverted
index from the forward and reverse complement of the target (subject) sequences with IndexSeqs. The first approach
will usually have a lower memory footprint, but the second approach only requires a single call to SearchIndex.
Long reads could overlap with repeat-rich or low-complexity regions of the genome, so we will disable masking of
those regions.

> index <- IndexSeqs(genome,
K=11,
maskRepeats=FALSE,
maskLCRs=FALSE,
processors=1)

==

Time difference of 0.79 secs

> index

An InvertedIndex built with:

* Nucleotide sequences: 2

* Total k-mers: 2,085,018

* Alphabet: A, C, G, T

* K-mer size: 11

* Step size: 1

Here, we will use a set of simulated long reads with known mapping positions on the genome. We can see that
the header for each sequence contains the strand and starting location of the read on the genome.

13

> fas3 <- system.file("extdata",
"Simulated_ONT_Long_Reads.fas.gz",
package="DECIPHER")

> reads <- readDNAStringSet(fas3)
> head(names(reads))

[1] "186478" "283731" "1012724" "978503" "304154" "346391"

In this case, we are only interested in unambiguous mappings, so we will compare the top two hits for each
sequence to discard multi-mapped reads. We can subtract the score for the second best hit from the score for the top
hit to approximate how well a read mapped to a single location on the genome. Also, we will disable masking of the
reads in the same manner as we did for the genome above.

> maps <- SearchIndex(reads,
index,
perPatternLimit=2, # two hits per read
perSubjectLimit=0, # unlimited
maskRepeats=FALSE,
maskLCRs=FALSE,
processors=1)

==

Time difference of 0.29 secs

> dim(maps)

[1] 59 4

> head(maps)

Pattern Subject Score Position
1 1 1 3129.880 7, 19, 1....
2 2 1 5096.578 14, 30,
3 3 1 4568.316 1, 18, 1....
4 4 1 5411.576 14, 25,
5 5 1 15628.914 20, 33,
6 6 1 1104.886 45, 58,

> # when > 1 hit, subtract 2nd highest score from top hit
> o <- order(maps$Pattern, maps$Score, decreasing=TRUE)
> w <- which(duplicated(maps$Pattern[o]))
> maps$Score[o[w - 1]] <- maps$Score[o[w - 1]] - maps$Score[o[w]]
> maps <- maps[-o[w],] # remove 2nd best hits
> nrow(maps) == length(reads)

[1] TRUE

It is possible to see that all the simulated reads mapped to the first subject sequence, which was expected
because only reads on the forward strand were simulated. Now, it is possible to compare the predicted mapping
locations with the expected mapping locations. The “Position” column contains matrices with four rows giving the
start and end positions of anchors in the pattern and subject, respectively. The start of the predicted mapping location
can be calculated from the first column of the matrix and compared to the actual mapping location in the sequences
header. Since the genome is over a million nucleotides long, any read that maps near the expected position is a positive
result.

> pos <- sapply(maps$Position, function(x) x[3] - x[1] + 1)
> offset <- abs(pos - as.integer(names(reads)))
> table(offset)

14

offset
0 1 2 3 4 5 6 18 22054
9 19 14 4 3 2 2 1 1

> maps$Score[which.max(offset)]

[1] 0

All reads mapped to locations nearby the correct location except one, which was far from the actual mapping
location. This read had a mapping score of zero, because this read mapped equally well to multiple locations on the
genome. Our strategy of subtracting second best scores worked as intended to eliminate this multi-mapped read. In
practice, we would see reads mapped to both strands of the genome and we could use AlignPairs to obtain more
information if desired.

8 Recommended search settings
It is best to tune function parameters for your particular search task. Most default parameters can be left alone. Shown
below are recommended alternative settings for common use cases to serve as a starting point:

Function(s) Parameter Long read mapping Short read mapping Nucleotide search Protein search

IndexSeqs K 11 (10 to 12) 12 (11 to 13) 9 (8 to 10) 5 (4 to 6)
IndexSeqs maskRepeats FALSE FALSE
IndexSeqs maskLCRs FALSE FALSE
SearchIndex subject supply supply
SearchIndex perSubjectLimit 2 2 1 or more 1 or more
SearchIndex perPatternLimit 2 2 typically » 1 typically » 1

All processors NULL NULL NULL NULL

Note that none of these functions removes duplicate sequences. If your pattern or subject contain many similar
or identical sequences, reducing redundancy with unique or Clusterize may improve speed.

9 Session Information
All of the output in this vignette was produced under the following conditions:

• R version 4.5.0 RC (2025-04-04 r88126), x86_64-pc-linux-gnu

• Running under: Ubuntu 24.04.2 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.54.0, Biostrings 2.76.0, DECIPHER 3.4.0, GenomeInfoDb 1.44.0,
IRanges 2.42.0, S4Vectors 0.46.0, XVector 0.48.0, generics 0.1.3

• Loaded via a namespace (and not attached): DBI 1.2.3, GenomeInfoDbData 1.2.14, KernSmooth 2.23-26,
R6 2.6.1, UCSC.utils 1.4.0, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0

15

References
[1] Lu, Y. Y., Noble, W. S., & Keich, U. A BLAST from the past: revisiting blastp’s E-value. Bioinformatics, 40(12),

btae729. doi:10.1093/bioinformatics/btae729, 2024.

16

	Introduction
	Getting Started
	Startup
	Gathering the evidence

	Searching for hits between pattern and subject sequences
	Aligning the search hits between pattern and subject
	Controlling for false discoveries
	Option 1: Calibrating an expect value (E-value) from hit scores
	Option 2: The knockoff approach for limiting false discoveries

	Maximizing search sensitivity to find distant hits
	Mapping long reads to a genome
	Recommended search settings
	Session Information

