Package ‘tidySummarized Experiment’

July 10, 2025
Type Package

Title Brings SummarizedExperiment to the Tidyverse
Version 1.18.1

Description The tidySummarizedExperiment package provides a set of tools for creating and
manipulating tidy data representations of SummarizedExperiment objects. SummarizedExperi-
ment
is a widely used data structure in bioinformatics for storing high-throughput genomic data,
such as gene expression or DNA sequencing data.

The tidySummarizedExperiment package introduces a tidy framework for working with Summa-
rizedExperiment objects.

It allows users to convert their data into a tidy format, where each observation is a row

and each variable is a column. This tidy representation simplifies data manipulation,

integration with other tidyverse packages, and enables seamless integration with the broader
ecosystem of tidy tools for data analysis.

License GPL-3
Depends R (>=4.3.0), SummarizedExperiment, ttservice (>= 0.4.0)

Imports dplyr, tibble (>= 3.0.4), magrittr, tidyr, ggplot2, rlang,
purrr, lifecycle, methods, utils, S4Vectors, tidyselect,
ellipsis, vctrs, pillar, stringr, cli, fansi, stats, pkgconfig

Suggests BiocStyle, testthat, knitr, markdown, rmarkdown, plotly
VignetteBuilder knitr

RdMacros lifecycle

Biarch true

biocViews AssayDomain, Infrastructure, RNASeq, DifferentialExpression,
GeneExpression, Normalization, Clustering, QualityControl,
Sequencing, Transcription, Transcriptomics

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

LazyDataCompression xz

URL https://github.com/stemangiola/tidySummarizedExperiment

BugReports https://github.com/stemangiola/tidySummarizedExperiment/issues
git_url https://git.bioconductor.org/packages/tidySummarizedExperiment

git_branch RELEASE_3_21

git_last_commit 310dab9

git_last commit_date 2025-05-08

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Stefano Mangiola [aut, cre]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

Contents
as_tibble L e 3
bINd_rows e e e 5
COUNL . . o vt v i e e e e e e e e e e e 6
distinCt e e e e e 7
EXITACE o o e e e e e e e e e e e e e e 8
filter e e 9
formatting e e e e 11
full_join 12
geplot . . L 15
group_by . .o e e 16
group_split 18
INNET_JOIN o o o it e e e e e e e e e e e e e e e e 19
left_join e 22
MULALE ot o s e e e e e e e e e e e e e e e e e 25
mutate_features e e e e e e e e e e e e e e 27
mutate_samples e e e e 27
NESE . . o o e e e e e e e e e e e e 28
pasillao 29
pivot_longer 30
PIVOL_WIdEr e e e e 32
plot_ly . . . e 35
Pull o e e e 38
TENAIME & v v v v e 39
right_join L 40
TOWWISE . o v v v v o e e e e e e e e e e e e e e e e e e e 43
sample_n 44
] 45
select e e e e 46
SEPATALE e e e e e e e e e e e e e e e 50
Slice . . . L e e e 52

SUMMATIISE & & v v v v v o v e e e e e e e e e e e e e e e e 53

https://github.com/stemangiola/tidySummarizedExperiment
https://github.com/stemangiola/tidySummarizedExperiment/issues

as_tibble 3

tbl_format_header e 55
HAY . . . e e 56
UNIEE . . . o o e e e s 56
10101) 57
o>%0 . . . 60
Index 61
as_tibble Coerce lists, matrices, and more to data frames
Description

as_tibble() turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class tbl_df. This is in contrast with tibble (), which builds a tibble from individual
columns. as_tibble() isto tibble() as base::as.data.frame() is to base: :data.frame().

as_tibble() is an S3 generic, with methods for:
* data.frame: Thin wrapper around the 1ist method that implements tibble’s treatment of
rownames.
* matrix, poly, ts, table
* Default: Other inputs are first coerced with base: :as.data. frame().
as_tibble_row() converts a vector to a tibble with one row. If the input is a list, all elements must
have size one.

as_tibble_col() converts a vector to a tibble with one column.

Usage
S3 method for class 'SummarizedExperiment'
as_tibble(
X,
.name_repair = c("check_unique”, "unique"”, "universal”, "minimal"),
rownames = pkgconfig::get_config(”tibble: :rownames”, NULL)
)
Arguments
X A data frame, list, matrix, or other object that could reasonably be coerced to a

tibble.
Unused, for extensibility.
.name_repair Treatment of problematic column names:

* "minimal”: No name repair or checks, beyond basic existence,
* "unique”: Make sure names are unique and not empty,
* "check_unique": (default value), no name repair, but check they are unique,

4 as_tibble

e "universal”: Make the names unique and syntactic

* a function: apply custom name repair (e.g., .name_repair = make.names
for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function()

This argument is passed on as repair to vctrs: :vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

rownames How to treat existing row names of a data frame or matrix:

e NULL: remove row names. This is the default.
* NA: keep row names.

* A string: the name of a new column. Existing rownames are transferred
into this column and the row.names attribute is deleted. No name repair is
applied to the new column name, even if x already contains a column of that
name. Use as_tibble(rownames_to_column(...)) to safeguard against
this case.

Read more in rownames.

Value

tibble

Row names

The default behavior is to silently remove row names.
New code should explicitly convert row names to a new column using the rownames argument.

4

For existing code that relies on the retention of row names, call pkgconfig: :set_config(”tibble: : rownames’
=NA) in your script or in your package’s .onLoad() function.

Life cycle

Using as_tibble () for vectors is superseded as of version 3.0.0, prefer the more expressive as_tibble_row()
and as_tibble_col () variants for new code.

See Also
tibble() constructs a tibble from individual columns. enframe () converts a named vector to a tib-

ble with a column of names and column of values. Name repair is implemented using vctrs: : vec_as_names().

Examples

tidySummarizedExperiment::pasilla %>%
as_tibble()

tidySummarizedExperiment::pasilla %>%
as_tibble(.subset=-c(condition, type))

bind _rows 5

bind_rows Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

Usage

S3 method for class 'SummarizedExperiment'’
bind_rows(..., .id = NULL, add.cell.ids = NULL)

S3 method for class 'SummarizedExperiment'’
bind_cols(..., .id = NULL)

S3 method for class 'RangedSummarizedExperiment'
bind_cols(..., .id = NULL)

Arguments

Data frames to combine.

Each argument can either be a data frame, a list that could be a data frame, or a
list of data frames.

When row-binding, columns are matched by name, and any missing columns
will be filled with NA.

When column-binding, rows are matched by position, so all data frames must
have the same number of rows. To match by value, not position, see mutate-
joins.

.id Data frame identifier.

When ‘.id‘ is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
‘bind_rows()‘. When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

add.cell.ids Appends the corresponding values to

Details

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

The output of ‘bind_rows() will contain a column if that column appears in any of the inputs.

6 count

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df*,
or ‘grouped_df*.

Examples

data(se)
ttservice: :bind_rows(se, se)

se_bind <- se |> select(dex, albut)
se |> ttservice::bind_cols(se_bind)

count Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables: df %>% count(a,
b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n=n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n =n()). Supply wt to
perform weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count() and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.

Usage
S3 method for class 'SummarizedExperiment'
count(
X,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)
)
Arguments
X A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).
<data-masking> Variables to group by.
wt <data-masking> Frequency weights. Can be NULL or a variable:

o If NULL (the default), counts the number of rows in each group.

distinct 7

* If a variable, computes sum(wt) for each group.
sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to group_by ().

For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).

[Deprecated] For add_count(): deprecated since it can’t actually affect the
output.

Value
An object of the same type as .data. count() and add_count() group transiently, so the output

has the same groups as the input.

Examples

data(se)
se |> count(dex)

distinct Keep distinct/unique rows

Description

Keep only unique/distinct rows from a data frame. This is similar to unique.data.frame() but
considerably faster.

Usage

S3 method for class 'SummarizedExperiment'
distinct(.data, ..., .keep_all = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

<data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.

.keep_all If TRUE, keep all variables in .data. If a combination of . . . is not distinct, this
keeps the first row of values.

8 extract

Value
An object of the same type as .data. The output has the following properties:

* Rows are a subset of the input but appear in the same order.

* Columns are not modified if . . . is empty or . keep_all is TRUE. Otherwise, distinct () first
calls mutate() to create new columns.

* Groups are not modified.

* Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

data(pasilla)
pasilla |> distinct(.sample)

extract Extract a character column into multiple columns using regular ex-
pression groups

Description

[Superseded]

extract() has been superseded in favour of separate_wider_regex() because it has a more
polished API and better handling of problems. Superseded functions will not go away, but will only
receive critical bug fixes.

Given a regular expression with capturing groups, extract() turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

Usage

S3 method for class 'SummarizedExperiment'
extract(

data,

col,

into,

regex = "([[:alnum:]J+)",

remove = TRUE,

convert = FALSE,

filter

Arguments

data
col

into

regex

remove

convert

Value

A data frame.
<tidy-select> Column to expand.

Names of new variables to create as character vector. Use NA to omit the variable
in the output.

A string representing a regular expression used to extract the desired values.
There should be one group (defined by ()) for each element of into.

If TRUE, remove input column from output data frame.

If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.

NB: this will cause string "NA"s to be converted to NAs.

Additional arguments passed on to methods.

tidySummarizedExperiment

See Also

separate() to split up by a separator.

Examples

tidySummarizedExperiment::pasilla |>
extract(type, into="sequencing", regex="([a-z]*)_end"”, convert=TRUE)

filter

Keep rows that match a condition

Description

The filter () function is used to subset a data frame, retaining all rows that satisfy your conditions.
To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition
evaluates to NA the row will be dropped, unlike base subsetting with [.

Usage

S3 method for class 'SummarizedExperiment'

filter(.data,

., .preserve = FALSE)

10 filter

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.
<data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Details
The filter() function is used to subset the rows of .data, applying the expressions in ... to

the column values to determine which rows should be retained. It can be applied to both grouped
and ungrouped data (see group_by () and ungroup()). However, dplyr is not yet smart enough to
optimise the filtering operation on grouped datasets that do not need grouped calculations. For this
reason, filtering is often considerably faster on ungrouped data.

Value

An object of the same type as .data. The output has the following properties:

* Rows are a subset of the input, but appear in the same order.
* Columns are not modified.
* The number of groups may be reduced (if . preserve is not TRUE).

 Data frame attributes are preserved.

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to
filter the data:

o ==, >, >=etc
* & [, !, xor()
* is.na()

e between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

formatting 11

starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

In the ungrouped version, filter () compares the value of mass in each row to the global average
(taken over the whole data set), keeping only the rows with mass greater than this global average.
In contrast, the grouped version calculates the average mass separately for each gender group, and
keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples
data(pasilla)
pasilla |> filter(.sample == "untrti1")

Learn more in ?dplyr_tidy_eval

formatting Printing tibbles

Description
One of the main features of the tb1_df class is the printing:

* Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns.

 Tibble reveals the type of each column, which keeps the user informed about whether a
variable is, e.g., <chr> or <fct> (character versus factor). See vignette("types") for an
overview of common type abbreviations.

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments

like n and width. More persistent control is available by setting the options described in pil-
lar::pillar_options. See also vignette("digits") for a comparison to base options, and vignette("numbers")
that showcases num() and char () for creating columns with custom formatting options.

As of tibble 3.1.0, printing is handled entirely by the pillar package. If you implement a package
that extends tibble, the printed output can be customized in various ways. See vignette("extending”,
package = "pillar") for details, and pillar::pillar_options for options that control the display in
the console.

12 full_join

Usage
S3 method for class 'SummarizedExperiment'
print(x, ..., n = NULL, width = NULL, n_extra = NULL)
Arguments
X Object to format or print.

Passed on to tbl_format_setup().

n Number of rows to show. If NULL, the default, will print all rows if less than
the print_max option. Otherwise, will print as many rows as specified by the
print_min option.

width Width of text output to generate. This defaults to NULL, which means use the
width option.

n_extra Number of extra columns to print abbreviated information for, if the width is too
small for the entire tibble. If NULL, the default, will print information about at
most tibble.max_extra_cols extra columns.

Value

Prints a message to the console describing the contents of the tidySummarizedExperiment.

Examples

data(pasilla)
print(pasilla)

full_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:
e A left_join() keeps all observations in Xx.
* Aright_join() keeps all observations in y.
e A full_join() keeps all observations in x and y.

full_join 13

Usage
S3 method for class 'SummarizedExperiment'’
full_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
Arguments
X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
by A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a ==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of

variable names to join by. For example, by = c("a", "b") joins x$a to y$a and

x$b to y$b. If variable names differ between x and y, use a named character

vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().
copy If x and y are not from the same data source, and copy is TRUE, then y will be

copied into the same src as x. This allows you to join tables across srcs, but it is

a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

14 full_join

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

o If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.
This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships

are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one"” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.
e left_join(): no methods found.
e right_join(): no methods found.
e full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

ggplot 15
Examples
data(pasilla)

tt <- pasilla
tt |> full_join(tibble::tibble(condition="treated”, dose=10))

ggplot Create a new ggplot from a tidyseurat

Description

ggplot () initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Usage
S3 method for class 'SummarizedExperiment'
ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())
Arguments
data Default dataset to use for plot. If not already a data.frame, will be converted to
one by fortify(). If not specified, must be supplied in each layer added to the
plot.
mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-

plied in each layer added to the plot.
Other arguments passed on to methods. Not currently used.

environment [Deprecated] Used prior to tidy evaluation.

Details
ggplot() is used to construct the initial plot object, and is almost always followed by a plus sign
(+) to add components to the plot.

There are three common patterns used to invoke ggplot():

e ggplot(data = df, mapping = aes(x, y, other aesthetics))

e ggplot(data =df)

* ggplot()
The first pattern is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used when adding a layer using data from another data frame.

The second pattern specifies the default data frame to use for the plot, but no aesthetics are defined
up front. This is useful when one data frame is used predominantly for the plot, but the aesthetics
vary from one layer to another.

16 group_by

The third pattern initializes a skeleton ggplot object, which is fleshed out as layers are added. This
is useful when multiple data frames are used to produce different layers, as is often the case in
complex graphics.

The data = and mapping = specifications in the arguments are optional (and are often omitted in
practice), so long as the data and the mapping values are passed into the function in the right order.
In the examples below, however, they are left in place for clarity.

Value

ggplot

See Also

The first steps chapter of the online ggplot2 book.

Examples

library(ggplot2)

data(pasilla)

pasilla %>%
ggplot(aes(.sample, counts)) +
geom_boxplot()

group_by Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing tbl
and converts it into a grouped tbl where operations are performed "by group". ungroup () removes

grouping.

Usage

S3 method for class 'SummarizedExperiment'’

group_by(.data, ..., .add = FALSE, .drop = group_by_drop_default(.data))
Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

In group_by (), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate () step before the group_by (). Compu-
tations are not allowed in nest_by (). In ungroup(), variables to remove from
the grouping.

https://ggplot2-book.org/getting-started

group_by 17

.add When FALSE, the default, group_by () will override existing groups. To add to
the existing groups, use .add = TRUE.

This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

Value

A grouped data frame with class grouped_df, unless the combination of . . . and add yields a empty
set of grouping columns, in which case a tibble will be returned.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e group_by(): no methods found.

e ungroup(): no methods found.

Ordering

Currently, group_by() internally orders the groups in ascending order. This results in ordered
output from functions that aggregate groups, such as summarise().

When used as grouping columns, character vectors are ordered in the C locale for performance
and reproducibility across R sessions. If the resulting ordering of your grouped operation matters
and is dependent on the locale, you should follow up the grouped operation with an explicit call to
arrange() and set the .locale argument. For example:

data %>%
group_by(chr) %>%
summarise(avg = mean(x)) %>%
arrange(chr, .locale = "en")

This is often useful as a preliminary step before generating content intended for humans, such as an
HTML table.

Legacy behavior:

Prior to dplyr 1.1.0, character vector grouping columns were ordered in the system locale. If you
need to temporarily revert to this behavior, you can set the global option dplyr.legacy_locale
to TRUE, but this should be used sparingly and you should expect this option to be removed in a
future version of dplyr. It is better to update existing code to explicitly call arrange(.locale =
) instead. Note that setting dplyr.legacy_locale will also force calls to arrange() to use the
system locale.

18 group_split

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

data(pasilla)
pasilla |> group_by(.sample)

group_split Split data frame by groups

Description

[Experimental]

group_split() works like base: :split() but:

* It uses the grouping structure from group_by () and therefore is subject to the data mask

* It does not name the elements of the list based on the grouping as this only works well for
a single character grouping variable. Instead, use group_keys() to access a data frame that
defines the groups.

group_split() is primarily designed to work with grouped data frames. You can pass . . . to group
and split an ungrouped data frame, but this is generally not very useful as you want have easy access
to the group metadata.

Usage
S3 method for class 'SummarizedExperiment'’
group_split(.tbl, ..., .keep = TRUE)
Arguments
.tbl A tbl.
If .tbl is an ungrouped data frame, a grouping specification, forwarded to
group_by ().
.keep Should the grouping columns be kept?

Value

A list of tibbles. Each tibble contains the rows of . tb1 for the associated group and all the columns,
including the grouping variables. Note that this returns a list_of which is slightly stricter than a
simple list but is useful for representing lists where every element has the same type.

inner_join 19

Lifecycle

group_split() is not stable because you can achieve very similar results by manipulating the
nested column returned from tidyr::nest(.by =). That also retains the group keys all within a
single data structure. group_split() may be deprecated in the future.

See Also

Other grouping functions: group_by (), group_map(), group_nest(), group_trim()

Examples

data(pasilla, package = "tidySummarizedExperiment")
pasilla |> group_split(condition)

pasilla |> group_split(counts > @)

pasilla |> group_split(condition, counts > @)

inner_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:

e A left_join() keeps all observations in x.
* Aright_join() keeps all observations in y.

e A full_join() keeps all observations in x and y.

Usage

S3 method for class 'SummarizedExperiment'
inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

20 inner_join

Arguments

X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a ==b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

o If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

inner_join 21

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships
are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods
These functions are generics, which means that packages can provide implementations (methods)

for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.

left_join(): no methods found.

e right_join(): no methods found.

full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

22 left_join

Examples

data(pasilla)

tt <- pasilla

tt |> inner_join(tt [|>
distinct(condition) |>
mutate(new_column=1:2) |>
slice(1))

left_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:

The three outer joins keep observations that appear in at least one of the data frames:
e A left_join() keeps all observations in Xx.
e Aright_join() keeps all observations in y.
e A full_join() keeps all observations in x and y.

Usage
S3 method for class 'SummarizedExperiment'
left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
Arguments
X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.
by A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, x_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a ==b) will match x$a to y$b.

left_join

copy

suffix

Value

23

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

* The rows are affect by the join type.

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.
full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

* If keep = FALSE, output columns included in by are coerced to their common type between x

and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships

24

left_join

are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one"” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.
e left_join(): no methods found.

e right_join(): no methods found.

full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

Examples

data(pasilla)

tt <- pasilla

tt |> left_join(tt |>
distinct(condition) |>
mutate(new_column=1:2))

mutate 25

mutate Create, modify, and delete columns

Description

mutate() creates new columns that are functions of existing variables. It can also modify (if the
name is the same as an existing column) and delete columns (by setting their value to NULL).

Usage
S3 method for class 'SummarizedExperiment'
mutate(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

<data-masking> Name-value pairs. The name gives the name of the column in
the output.

The value can be:

* A vector of length 1, which will be recycled to the correct length.

* A vector the same length as the current group (or the whole data frame if
ungrouped).
¢ NULL, to remove the column.

* A data frame or tibble, to create multiple columns in the output.

Value

An object of the same type as .data. The output has the following properties:

* Columns from . data will be preserved according to the . keep argument.

* Existing columns that are modified by . .. will always be returned in their original location.
* New columns created through . .. will be placed according to the .before and . after argu-
ments.

* The number of rows is not affected.
* Columns given the value NULL will be removed.
* Groups will be recomputed if a grouping variable is mutated.

 Data frame attributes are preserved.

26 mutate

Useful mutate functions

* +, -, log(), etc., for their usual mathematical meanings
lead(), lag()

e dense_rank(), min_rank(), percent_rank(), row_number(), cume_dist(), ntile()

e cumsum(), cummean(), cummin(), cummax(), cumany (), cumall ()
* na_if (), coalesce()

e if_else(), recode(), case_when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped mutate:

starwars %>%
select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>%
select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

The former normalises mass by the global average whereas the latter normalises by the averages
within species levels.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

Methods available in currently loaded packages: no methods found.

See Also

Other single table verbs: rename(), slice(), summarise()

Examples

data(pasilla)
pasilla |> mutate(logcounts=log2(counts))

mutate_features 27

mutate_features Mutate features

Description

Allows mutate call on features (rowData) of a SummarizedExperiment

Usage
mutate_features(.data, ...)
Arguments
.data a SummarizedExperiment
extra arguments passed to dplyr::mutate
Value

a SummarizedExperiment with modified rowData

mutate_samples Mutate samples

Description

Allows mutate call on samples (colData) of a SummarizedExperiment

Usage
mutate_samples(.data, ...)
Arguments
.data a SummarizedExperiment
extra arguments passed to dplyr::mutate
Value

a SummarizedExperiment with modified colData

28 nest

nest Nest rows into a list-column of data frames

Description

Nesting creates a list-column of data frames; unnesting flattens it back out into regular columns.
Nesting is implicitly a summarising operation: you get one row for each group defined by the non-
nested columns. This is useful in conjunction with other summaries that work with whole datasets,
most notably models.

Learn more in vignette("nest").

Usage
S3 method for class 'SummarizedExperiment'’
nest(.data, ..., .names_sep = NULL)
Arguments
.data A data frame.

<tidy-select> Columns to nest; these will appear in the inner data frames.
Specified using name-variable pairs of the form new_col = c(col1, col2, col3).
The right hand side can be any valid tidyselect expression.

If not supplied, then . . . is derived as all columns noft selected by .by, and will
use the column name from . key.

[Deprecated]: previously you could write df %>% nest(x, y, z). Convert to
df %>% nest(data=c(x, y, 2)).

.names_sep If NULL, the default, the inner names will come from the former outer names. If
a string, the new inner names will use the outer names with names_sep auto-
matically stripped. This makes names_sep roughly symmetric between nesting
and unnesting.

Details
If neither ... nor .by are supplied, nest() will nest all variables, and will use the column name
supplied through . key.

Value

tidySummarizedExperiment_nested

New syntax

tidyr 1.0.0 introduced a new syntax for nest() and unnest() that’s designed to be more similar
to other functions. Converting to the new syntax should be straightforward (guided by the message
you’ll receive) but if you just need to run an old analysis, you can easily revert to the previous
behaviour using nest_legacy() and unnest_legacy() as follows:

pasilla 29

library(tidyr)
nest <- nest_legacy
unnest <- unnest_legacy

Grouped data frames

df %>% nest(data = c(x, y)) specifies the columns to be nested; i.e. the columns that will appear
in the inner data frame. df %>% nest(.by =c(x, y)) specifies the columns to nest by; i.e. the
columns that will remain in the outer data frame. An alternative way to achieve the latter is to
nest() a grouped data frame created by dplyr: :group_by(). The grouping variables remain in
the outer data frame and the others are nested. The result preserves the grouping of the input.

Variables supplied to nest () will override grouping variables so that df %>% group_by(x, y) %>%
nest(data = !z) will be equivalent to df %>% nest(data = !z).

You can’t supply .by with a grouped data frame, as the groups already represent what you are
nesting by.

Examples

tidySummarizedExperiment: :pasilla |>
nest(data=-condition)

pasilla Read counts of RNA-seq samples of Pasilla knock-down by Brooks et
al.

Description

A SummarizedExperiment dataset containing the transcriptome information for Drosophila Melanogaster.

Usage

data(pasilla)

Format

containing 14599 features and 7 biological replicates.

Source

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

30 pivot_longer

pivot_longer Pivot data from wide to long

Description

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is pivot_wider ()

Learn more in vignette("pivot").

Usage

S3 method for class 'SummarizedExperiment'’
pivot_longer(

data,
cols,
-
cols_vary = "fastest”,
names_to = "name”,

names_prefix = NULL,

names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique”,
values_to = "value”,
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL

)
Arguments
data A data frame to pivot.
cols <tidy-select> Columns to pivot into longer format.
Additional arguments passed on to methods.
cols_vary When pivoting cols into longer format, how should the output rows be arranged
relative to their original row number?

* "fastest"”, the default, keeps individual rows from cols close together in
the output. This often produces intuitively ordered output when you have at
least one key column from data that is not involved in the pivoting process.

* "slowest"” keeps individual columns from cols close together in the out-
put. This often produces intuitively ordered output when you utilize all of
the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create from the

information stored in the column names of data specified by cols.

pivot_longer

names_prefix

31

e If length O, or if NULL is supplied, no columns will be created.

* If length 1, a single column will be created which will contain the column
names specified by cols.

o Iflength >1, multiple columns will be created. In this case, one of names_sep
or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

— NA will discard the corresponding component of the column name.

— ".value" indicates that the corresponding component of the column
name defines the name of the output column containing the cell values,
overriding values_to entirely.

A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern

If names_to contains multiple values, these arguments control how the column
name is broken up.

names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).

names_pattern takes the same specification as extract (), a regular expression
containing matching groups (()).

If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes, values_ptypes

names_transform,

names_repair

values_to

Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer () or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.
values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.

If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

What happens if the output has invalid column names? The default, "check_unique”
is to error if the columns are duplicated. Use "minimal” to allow duplicates

in the output, or "unique” to de-duplicated by adding numeric suffixes. See
vctrs: :vec_as_names() for more options.

A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this

32 pivot_wider

value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

Details

pivot_longer() is an updated approach to gather (), designed to be both simpler to use and to
handle more use cases. We recommend you use pivot_longer() for new code; gather() isn’t
going away but is no longer under active development.

Value

tidySummarizedExperiment

Examples

See vignette("pivot"”) for examples and explanation
library(dplyr)
tidySummarizedExperiment::pasilla %>%
pivot_longer(c(condition, type),
names_to="name", values_to="value")

pivot_wider Pivot data from long to wide

Description

pivot_wider() "widens" data, increasing the number of columns and decreasing the number of
rows. The inverse transformation is pivot_longer ().

Learn more in vignette("pivot").

Usage

S3 method for class 'SummarizedExperiment'
pivot_wider(

data,

id_cols = NULL,

id_expand = FALSE,

names_from = name,

names_prefix = ""

names_sep = "_",

names_glue = NULL,

pivot_wider 33

names_sort = FALSE,

names_vary = "fastest"”,
names_expand = FALSE,
names_repair = "check_unique”,

values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL

)
Arguments

data A data frame to pivot.
Additional arguments passed on to methods.

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_fromand values_from.

id_expand Should the values in the id_cols columns be expanded by expand() before piv-

oting? This results in more rows, the output will contain a complete expansion
of all possible values in id_cols. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the row values corresponding to
the expanded id_cols will be sorted.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple unique val-
ues, and multiple values_from columns are provided, in what order should the
resulting column names be combined?

» "fastest"” varies names_from values fastest, resulting in a column naming

scheme of the form: valuel_namel, valuel_name2, value2_namel, value2_name2.
This is the default.

34 pivot_wider

* "slowest" varies names_from values slowest, resulting in a column nam-
ing scheme of the form: valuel_name1, value2_namel, valuel_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by expand() before
pivoting? This results in more columns, the output will contain column names
corresponding to a complete expansion of all possible values in names_from.
Implicit factor levels that aren’t represented in the data will become explicit.
Additionally, the column names will be sorted, identical to what names_sort
would produce.

names_repair Whathappens if the output has invalid column names? The default, "check_unique”
is to error if the columns are duplicated. Use "minimal” to allow duplicates
in the output, or "unique” to de-duplicated by adding numeric suffixes. See
vctrs: :vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.

This can be a named list if you want to apply different aggregations to different
values_from columns.

unused_fn Optionally, a function applied to summarize the values from the unused columns
(i.e. columns not identified by id_cols, names_from, or values_from).
The default drops all unused columns from the result.

This can be a named list if you want to apply different aggregations to different
unused columns.

id_cols must be supplied for unused_fn to be useful, since otherwise all un-
specified columns will be considered id_cols.

This is similar to grouping by the id_cols then summarizing the unused columns
using unused_fn.

Details

pivot_wider() is an updated approach to spread(), designed to be both simpler to use and to
handle more use cases. We recommend you use pivot_wider() for new code; spread() isn’t
going away but is no longer under active development.

Value

tidySummarizedExperiment

See Also

pivot_wider_spec() to pivot "by hand" with a data frame that defines a pivoting specification.

plot_ly 35

Examples

See vignette("pivot"”) for examples and explanation

library(dplyr)

tidySummarizedExperiment: :pasilla %>%
pivot_wider(names_from=feature, values_from=counts)

plot_ly Initiate a plotly visualization

Description

This function maps R objects to plotly.js, an (MIT licensed) web-based interactive charting library.
It provides abstractions for doing common things (e.g. mapping data values to fill colors (via color)
or creating animations (via frame)) and sets some different defaults to make the interface feel more
’R-like’ (i.e., closer to plot() and ggplot2: :gplot()).

Usage

S3 method for class 'tbl_df'
plot_ly(
data = data.frame(),

L

type

= NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,

stroke = NULL,
strokes = NULL,
alpha_stroke = 1,

size = NULL,
sizes = c(10, 100),
span = NULL,

spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,

split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"

)

S3 method for class 'SummarizedExperiment'’

https://plotly.com/javascript/

plot_ly(

data = data.frame(),

type

= NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,

stroke = NULL,
strokes = NULL,
alpha_stroke = 1,

size = NULL,
sizes = c(10, 100),
span = NULL,

spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,
split = NULL,
frame = NULL,
width = NULL,

plot_ly

height = NULL,

sourc

Arguments

data

type

name

color

colors

e

A data frame (optional) or crosstalk::SharedData object.

Arguments (i.e., attributes) passed along to the trace type. See schema() for
a list of acceptable attributes for a given trace type (by going to traces ->
type -> attributes). Note that attributes provided at this level may over-
ride other arguments (e.g. plot_ly(x=1:10, y=1:10, color =I("red"),
marker = list(color = "blue"))).

A character string specifying the trace type (e.g. "scatter”, "bar”, "box",
etc). If specified, it always creates a trace, otherwise

Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like split in that it creates one trace for
every unique value.

Values mapped to relevant ’fill-color’ attribute(s) (e.g. fillcolor, marker.color,
textfont.color, etc.). The mapping from data values to color codes may be con-
trolled using colors and alpha, or avoided altogether via I() (e.g., color =
I("red")). Any color understood by grDevices: :col2rgh() may be used in
this way.

Either a colorbrewer2.org palette name (e.g. "Y1OrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like colorRamp().

https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-color
https://plotly.com/r/reference/#scatter-textfont-color

plot_ly 37

alpha A number between 0 and 1 specifying the alpha channel applied to color. De-
faults to 0.5 when mapping to fillcolor and 1 otherwise.

stroke Similar to color, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., marker.line.color and line.color for filled polygons). If not specified, stroke
inherits from color.

strokes Similar to colors, but controls the stroke mapping.

alpha_stroke Similar to alpha, but applied to stroke.

size (Numeric) values mapped to relevant 'fill-size’ attribute(s) (e.g., marker.size,
textfont.size, and error_x.width). The mapping from data values to symbols may
be controlled using sizes, or avoided altogether via I() (e.g., size = 1(30)).

sizes A numeric vector of length 2 used to scale size to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., marker.line.width,
line.width for filled polygons, and error_x.thickness) The mapping from data
values to symbols may be controlled using spans, or avoided altogether via I()
(e.g., span = 1(30)).

spans A numeric vector of length 2 used to scale span to pixels.

symbol (Discrete) values mapped to marker.symbol. The mapping from data values to
symbols may be controlled using symbols, or avoided altogether via I() (e.g.,
symbol = I("pentagon”)). Any pch value or symbol name may be used in this

way.
symbols A character vector of pch values or symbol names.
linetype (Discrete) values mapped to line.dash. The mapping from data values to sym-

bols may be controlled using linetypes, or avoided altogether via I() (e.g.,
linetype = I("dash”)). Any 1ty (see par) value or dash name may be used in

this way.
linetypes A character vector of 1ty values or dash names
split (Discrete) values used to create multiple traces (one trace per value).
frame (Discrete) values used to create animation frames.
width Width in pixels (optional, defaults to automatic sizing).
height Height in pixels (optional, defaults to automatic sizing).
source a character string of length 1. Match the value of this string with the source

argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless type is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of add_trace() (or similar). A formula must always be used when
referencing column name(s) in data (e.g. plot_ly(mtcars, x =~wt)). Formulas are optional
when supplying values directly, but they do help inform default axis/scale titles (e.g., plot_ly(x =
mtcars$wt) vs plot_ly(x = ~mtcars$wt))

Value

plotly
plotly

https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-line-color
https://plotly.com/r/reference/#scatter-line-color
https://plotly.com/r/reference/#scatter-marker-size
https://plotly.com/r/reference/#scatter-textfont-size
https://plotly.com/r/reference/#scatter-error_x-width
https://plotly.com/r/reference/#scatter-marker-line-width
https://plotly.com/r/reference/#scatter-line-width
https://plotly.com/r/reference/#scatter-error_x-thickness
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash

38 pull

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

See Also

* For initializing a plotly-geo object: plot_geo()

* For initializing a plotly-mapbox object: plot_mapbox ()

* For translating a ggplot2 object to a plotly object: ggplotly()

* For modifying any plotly object: layout(), add_trace(), style()
* For linked brushing: highlight()

* For arranging multiple plots: subplot(), crosstalk: :bscols()

* For inspecting plotly objects: plotly_json()

* For quick, accurate, and searchable plotly.js reference: schema()

Examples

data(se)
se |>
plot_ly(x = ~counts)

data(se)
se |>
plot_ly(x = ~counts)

pull Extract a single column

Description

pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works with
remote data frames, and it can optionally name the output.

Usage

S3 method for class 'SummarizedExperiment'
pull(.data, var = -1, name = NULL, ...)

https://plotly-r.com/overview.html

rename 39

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

var A variable specified as:

* a literal variable name
* a positive integer, giving the position counting from the left
* anegative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column you’ve
created most recently).

This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

name An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

For use by methods.

Value

A vector the same size as .data.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

data(pasilla)
pasilla |> pull(feature)

rename Rename columns

Description
rename () changes the names of individual variables using new_name = old_name syntax; rename_with()
renames columns using a function.

Usage

S3 method for class 'SummarizedExperiment'
rename(.data, ...)

40 right_join

Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.
For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto . fn.
Value

An object of the same type as .data. The output has the following properties:

* Rows are not affected.
* Column names are changed; column order is preserved.
 Data frame attributes are preserved.

* Groups are updated to reflect new names.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: mutate(), slice(), summarise()

Examples

data(pasilla)
pasilla |> rename(cond=condition)

right_join Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.

The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

right_join 41

Outer joins:
The three outer joins keep observations that appear in at least one of the data frames:

* A left_join() keeps all observations in Xx.
* Aright_join() keeps all observations in y.
e A full_join() keeps all observations in x and y.

Usage

S3 method for class 'SummarizedExperiment'’
right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

Arguments

X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *x_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a ==b, ¢ ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a"”, "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c(”"x_a" ="y_a", "x_b" ="y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

» The rows are affect by the join type.

42

right_join

inner_join() returns matched x rows.

left_join() returns all x rows.

right_join() returns matched of x rows, followed by unmatched y rows.

full_join() returns all x rows, followed by unmatched y rows.

* Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

* If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

* If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

* A row in x matches multiple rows in y.

* A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships
are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one"” to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e inner_join(): no methods found.

rowwise 43

e left_join(): no methods found.
e right_join(): no methods found.

e full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

Examples

data(pasilla)

tt <- pasilla

tt |> right_join(tt [|>
distinct(condition) |>
mutate(new_column=1:2) |>
slice(1))

rowwise Group input by rows

Description

rowwise() allows you to compute on a data frame a row-at-a-time. This is most useful when a
vectorised function doesn’t exist.

Most dplyr verbs preserve row-wise grouping. The exception is summarise(), which return a
grouped_df. You can explicitly ungroup with ungroup() or as_tibble(), or convert to a grouped_df
with group_by ().

Usage
S3 method for class 'SummarizedExperiment'
rowwise(data, ...)

Arguments
data Input data frame.

<tidy-select> Variables to be preserved when calling summarise(). This is
typically a set of variables whose combination uniquely identify each row.

NB: unlike group_by() you can not create new variables here but instead you
can select multiple variables with (e.g.) everything().
Value

A row-wise data frame with class rowwise_df. Note that a rowwise_df is implicitly grouped by
row, but is not a grouped_df.

44 sample_n

List-columns

Because a rowwise has exactly one row per group it offers a small convenience for working with
list-columns. Normally, summarise() and mutate() extract a groups worth of data with [. But
when you index a list in this way, you get back another list. When you’re working with a rowwise
tibble, then dplyr will use [[instead of [to make your life a little easier.

See Also

nest_by() for a convenient way of creating rowwise data frames with nested data.

Examples

TODO

sample_n Sample n rows from a table

Description

[Superseded] sample_n() and sample_frac() have been superseded in favour of slice_sample().
While they will not be deprecated in the near future, retirement means that we will only perform
critical bug fixes, so we recommend moving to the newer alternative.

These functions were superseded because we realised it was more convenient to have two mutually
exclusive arguments to one function, rather than two separate functions. This also made it to clean
up a few other smaller design issues with sample_n()/sample_frac:

¢ The connection to slice() was not obvious.

* The name of the first argument, tbl, is inconsistent with other single table verbs which use
.data.

* The size argument uses tidy evaluation, which is surprising and undocumented.
* It was easier to remove the deprecated . env argument.

* ... was in a suboptimal position.

Usage

S3 method for class 'SummarizedExperiment'’
sample_n(tbl, size, replace = FALSE, weight = NULL, .env = NULL, ...)

S3 method for class 'SummarizedExperiment'
sample_frac(tbl, size = 1, replace = FALSE, weight = NULL, .env = NULL, ...)

se 45

Arguments
tbl A data.frame.
size <tidy-select>For sample_n(), the number of rows to select. For sample_frac(),
the fraction of rows to select. If tbl is grouped, size applies to each group.
replace Sample with or without replacement?
weight <tidy-select> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.
.env DEPRECATED.
ignored
Value

tidySummarizedExperiment

Examples

data(pasilla)
pasilla |> sample_n(50)
pasilla |> sample_frac(@.1)

se Read counts of RNA-seq samples derived from Pasilla knock-down by
Brooks et al.

Description

A SummarizedExperiment dataset containing the transcriptome information for Drosophila Melanogaster.

Usage

data(se)

Format

containing 14599 features and 7 biological replicates.

Source

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

46 select

select Keep or drop columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name (e.g. a: f selects all columns from a on the left to f
on the right) or type (e.g. where(is.numeric) selects all numeric columns).

Overview of selection features:
Tidyverse selections implement a dialect of R where operators make it easy to select variables:
* : for selecting a range of consecutive variables.
* | for taking the complement of a set of variables.
* &and | for selecting the intersection or the union of two sets of variables.
* c() for combining selections.
In addition, you can use selection helpers. Some helpers select specific columns:
e everything(): Matches all variables.
e last_col(): Select last variable, possibly with an offset.
e group_cols(): Select all grouping columns.
Other helpers select variables by matching patterns in their names:
e starts_with(): Starts with a prefix.
¢ ends_with(): Ends with a suffix.
e contains(): Contains a literal string.
* matches(): Matches a regular expression.
* num_range(): Matches a numerical range like x01, x02, x03.
Or from variables stored in a character vector:
e all_of(): Matches variable names in a character vector. All names must be present, other-
wise an out-of-bounds error is thrown.
e any_of (): Same as all_of (), except that no error is thrown for names that don’t exist.
Or using a predicate function:

* where(): Applies a function to all variables and selects those for which the function returns

TRUE.
Usage
S3 method for class 'SummarizedExperiment'’
select(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

<tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x:y can be used to select a range of variables.

select 47

Value
An object of the same type as .data. The output has the following properties:

* Rows are not affected.

e Output columns are a subset of input columns, potentially with a different order. Columns
will be renamed if new_name = old_name form is used.

 Data frame attributes are preserved.

* Groups are maintained; you can’t select off grouping variables.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

Here we show the usage for the basic selection operators. See the specific help pages to learn about
helpers like starts_with().

The selection language can be used in functions like dplyr: :select () or tidyr: :pivot_longer().
Let’s first attach the tidyverse:

library(tidyverse)

For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars %>% select(height)
#> # A tibble: 87 x 1

#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # 1 83 more rows

iris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6

#> Sepal.Width Petal.lLength Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9

#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7

48

select

#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # 1 146 more rows

Select multiple variables by separating them with commas. Note how the order of columns is
determined by the order of inputs:

starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass

#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136

#> # 1 83 more rows

Functions like tidyr::pivot_longer() don’t take variables with dots. In this case use c() to
select multiple variables:

iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5

#> Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # i 296 more rows
Operators::

The : operator selects a range of consecutive variables:

starwars %>% select(name:mass)
#> # A tibble: 87 x 3

#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136

#> # 1 83 more rows
The ! operator negates a selection:

starwars %>% select(!(name:mass))

#> # A tibble: 87 x 11

#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human

select

#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo

#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # 1 83 more rows

#> # i 3 more variables: films <list>, vehicles <list>, starships <list>

iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species

#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows

iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species

#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # 1 146 more rows

& and | take the intersection or the union of two selections:

iris %>% select(starts_with("Petal”) & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width

#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # i 146 more rows

iris %>% select(starts_with("Petal”) | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width

#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows

To take the difference between two selections, combine the & and ! operators:

50 separate

iris %>% select(starts_with("Petal”) & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length

#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # 1 146 more rows

See Also

Other single table verbs: arrange(), filter(),mutate(), reframe(), rename(), slice(), summarise()

Examples

data(pasilla)
pasilla |> select(.sample, .feature, counts)

separate Separate a character column into multiple columns with a regular ex-
pression or numeric locations

Description

[Superseded]

separate() has been superseded in favour of separate_wider_position() and separate_wider_delim()
because the two functions make the two uses more obvious, the API is more polished, and the han-

dling of problems is better. Superseded functions will not go away, but will only receive critical bug

fixes.

Given either a regular expression or a vector of character positions, separate() turns a single
character column into multiple columns.

Usage

S3 method for class 'SummarizedExperiment'’
separate(

data,

col,

into,

sep = "[*[:alnum:]]+",

remove = TRUE,

convert = FALSE,

extra = "warn",

fill = "warn”,

separate

Arguments

data
col

into

sep

remove

convert

extra

fill

Value

51

A data frame.
<tidy-select> Column to expand.

Names of new variables to create as character vector. Use NA to omit the variable
in the output.
Separator between columns.

If character, sep is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.

If numeric, sep is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of sep should be one less than into.

If TRUE, remove input column from output data frame.

If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.
If sep is a character vector, this controls what happens when there are too many
pieces. There are three valid options:

e "warn" (the default): emit a warning and drop extra values.

* "drop": drop any extra values without a warning.

* "merge”: only splits at most length(into) times
If sep is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:

e "warn" (the default): emit a warning and fill from the right

e "right”: fill with missing values on the right

» "left": fill with missing values on the left

Additional arguments passed on to methods.

tidySummarizedExperiment

See Also

unite(), the complement, extract() which uses regular expression capturing groups.

Examples

un <- tidySummarizedExperiment::pasilla |>
unite("group”, c(condition, type))
un |> separate(col=group, into=c("condition”, "type"))

52 slice

slice Subset rows using their positions

Description

slice() lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

e slice_head() and slice_tail() select the first or last rows.

* slice_sample() randomly selects rows.

e slice_min() and slice_max() select rows with the smallest or largest values of a variable.

If .datais a grouped_df, the operation will be performed on each group, so that (e.g.) slice_head(df,
n = 5) will select the first five rows in each group.

Usage
S3 method for class 'SummarizedExperiment'’
slice(.data, ..., .preserve = FALSE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

For slice(): <data-masking> Integer row values.

Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.

For slice_x(), these arguments are passed on to methods.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Details
Slice does not work with relational databases because they have no intrinsic notion of row order. If
you want to perform the equivalent operation, use filter () and row_number().

Value
An object of the same type as .data. The output has the following properties:

* Each row may appear 0, 1, or many times in the output.
* Columns are not modified.
* Groups are not modified.

 Data frame attributes are preserved.

summarise 53

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

e slice(): no methods found.

e slice_head(): no methods found.
e slice_tail(): no methods found.
e slice_min(): no methods found.
¢ slice_max(): no methods found.

e slice_sample(): no methods found.

See Also

Other single table verbs: mutate(), rename(), summarise()

Examples

data(pasilla)
pasilla |> slice(1)

summarise Summarise each group down to one row

Description

summarise() creates a new data frame. It returns one row for each combination of grouping vari-
ables; if there are no grouping variables, the output will have a single row summarising all observa-
tions in the input. It will contain one column for each grouping variable and one column for each
of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

Usage

S3 method for class 'SummarizedExperiment'’
summarise(.data, ...)

S3 method for class 'SummarizedExperiment'
summarize(.data, ...)

54 summarise

Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.
<data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:
* A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
¢ A data frame, to add multiple columns from a single expression.
[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.
Value

An object usually of the same type as .data.

* The rows come from the underlying group_keys().

* The columns are a combination of the grouping keys and the summary expressions that you
provide.

* The grouping structure is controlled by the .groups= argument, the output may be another
grouped_df, a tibble or a rowwise data frame.

* Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.

Useful functions

¢ Center: mean(), median()

e Spread: sd(), IQR(), mad()

* Range: min(), max(),

e Position: first(), last(), nth(),
e Count: n(), n_distinct()

* Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

tbl_format_header 55

See Also

Other single table verbs: mutate(), rename(), slice()

Examples

data(pasilla)
pasilla |> summarise(mean(counts))

tbl_format_header Format the header of a tibble

Description

[Experimental]

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_header () method is responsible for formatting the header of a tibble.

Override this method if you need to change the appearance of the entire header. If you only need to
change or extend the components shown in the header, override or extend tb1_sum() for your class
which is called by the default method.

Usage
S3 method for class 'tidySummarizedExperiment'
tbl_format_header(x, setup, ...)
Arguments
X A tibble-like object.
setup A setup object returned from tbl_format_setup().

These dots are for future extensions and must be empty.

Value

A character vector.

Examples

TODO

56

unite

tidy tidy for Seurat

Description

tidy for Seurat

Usage

tidy(object)

S3 method for class 'SummarizedExperiment'’
tidy(object)

S3 method for class 'RangedSummarizedExperiment'’

tidy(object)

Arguments

object A SummarizedExperiment object

Value

A tidyseurat object.

Examples

data(pasilla)
pasilla %>% tidy()

unite Unite multiple columns into one by pasting strings together

Description

Convenience function to paste together multiple columns into one.

Usage

S3 method for class 'SummarizedExperiment'
unite(data, col, ..., sep =

"_", remove = TRUE, na.rm

unnest 57

Arguments
data A data frame.
col The name of the new column, as a string or symbol.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang: :ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).
<tidy-select> Columns to unite
sep Separator to use between values.
remove If TRUE, remove input columns from output data frame.
na.rm If TRUE, missing values will be removed prior to uniting each value.
Value

tidySummarizedExperiment

See Also

separate(), the complement.

Examples

tidySummarizedExperiment: :pasilla |>
unite("group”, c(condition, type))

unnest Unnest a list-column of data frames into rows and columns

Description

Unnest expands a list-column containing data frames into rows and columns.

Usage

S3 method for class 'tidySummarizedExperiment_nested'
unnest(

data,

cols,

keep_empty = FALSE,

ptype = NULL,

names_sep = NULL,

names_repair = "check_unique”,
.drop,

58 unnest

.id,
.sep,
.preserve

)

unnest_summarized_experiment(
data,
cols,

keep_empty = FALSE,

ptype = NULL,
names_sep = NULL,
names_repair = "check_unique”,
.drop,
.id,
.sep,
.preserve
)
Arguments
data A data frame.
cols <tidy-select> List-columns to unnest.
When selecting multiple columns, values from the same row will be recycled to
their common size.
[Deprecated]: previously you could write df %>% unnest(x, y, z). Convert
to df %>% unnest(c(x, y, z)). If you previously created a new variable in
unnest () you’ll now need to do it explicitly with mutate(). Convert df %>%
unnest(y = fun(x, y, z)) todf %>% mutate(y = fun(x, y, z)) %>% unnest(y).
keep_empty By default, you get one row of output for each element of the list that you are
unchopping/unnesting. This means that if there’s a size-0 element (like NULL
or an empty data frame or vector), then that entire row will be dropped from
the output. If you want to preserve all rows, use keep_empty = TRUE to replace
size-0 elements with a single row of missing values.
ptype Optionally, a named list of column name-prototype pairs to coerce cols to, over-
riding the default that will be guessed from combining the individual values.
Alternatively, a single empty ptype can be supplied, which will be applied to all
cols.
names_sep If NULL, the default, the outer names will come from the inner names. If a

string, the outer names will be formed by pasting together the outer and the
inner column names, separated by names_sep.

names_repair Used to check that output data frame has valid names. Must be one of the
following options:
* "minimal": no name repair or checks, beyond basic existence,
* "unique": make sure names are unique and not empty,
* "check_unique": (the default), no name repair, but check they are unique,

unnest 59

e "universal": make the names unique and syntactic

* a function: apply custom name repair.

* tidyr_legacy: use the name repair from tidyr 0.8.

* aformula: a purrr-style anonymous function (see rlang: :as_function())

See vctrs: :vec_as_names() for more details on these terms and the strategies
used to enforce them.

.drop, .preserve

[Deprecated]: all list-columns are now preserved; If there are any that you don’t
want in the output use select() to remove them prior to unnesting.

.id [Deprecated]: convert df %>% unnest(x, .id = "id") todf %>% mutate(id = names(x)) %>% unnest

.sep [Deprecated]: use names_sep instead.

Value

tidySummarizedExperiment

New syntax

tidyr 1.0.0 introduced a new syntax for nest() and unnest() that’s designed to be more similar
to other functions. Converting to the new syntax should be straightforward (guided by the message
you’ll receive) but if you just need to run an old analysis, you can easily revert to the previous
behaviour using nest_legacy() and unnest_legacy() as follows:

library(tidyr)
nest <- nest_legacy
unnest <- unnest_legacy

See Also

Other rectangling: hoist(), unnest_longer(), unnest_wider()

Examples

tidySummarizedExperiment::pasilla |>
nest(data=-condition) |>
unnest(data)

tidySummarizedExperiment: :pasilla |>
nest(data=-condition) |>
unnest_summarized_experiment(data)

60

%>%

%>% Pipe operator

Description

See magrittr: :%>% for details.

Usage
lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Value

The result of calling rhs(1lhs).

Examples

library(magrittr)
1 %>% sum(2)

Index

+ datasets
pasilla, 29
se, 45

+ internal
%>%, 60

x single table verbs
mutate, 25
rename, 39
slice, 52
summarise, 53

+, 26

.onLoad(), 4

== 10

> 10

>=, 10

?join_by, 13, 20, 23,41

&, 10

%>%, 60, 60

add_trace(), 37, 38
all(), 54
all_of (), 46
animation, 35
any(), 54
any_of (), 46
arrange, 11, 50
arrange(), 17
as_tibble, 3
as_tibble(), 43

base::as.data.frame(), 3
base::data.frame(), 3
base::split(), I8
between(), 10

bind_cols (bind_rows), 5
bind_rows, 5

case_when(), 26
char(), 11
coalesce(), 26

61

contains(), 46

count, 6
cross_join, 14,21, 24,43
cross_join(), 13, 20, 23,41
crosstalk: :bscols(), 38
crosstalk: :SharedData, 36
cumall(), 26

cumany (), 26
cume_dist(), 26
cummax(), 26
cummean(), 26
cummin(), 26

cumsum(), 26

data.frame, 3
dense_rank(), 26
distinct, 7
dplyr::group_by(), 29

ends_with(), 46
enframe(), 4
event_data(), 37
everything(), 46
expand(), 33, 34
extract, 8
extract(), 31,51

filter, 9, 50
filter(), 52
first(), 54
formatting, 11
formula, 37
fortify(), 15
full_join, 12

gather(), 32
ggplot, 15
ggplot2::gplot(), 35

ggplotly(), 38
grDevices::col2rgb(), 36

62 INDEX

group_by, 16, 19 nest_by(), 44
group_by(), 7, 10, 18,43 nest_join, 14,21, 24,43
group_by_drop_default(), 17 nest_legacy(), 28, 59
group_cols(), 46 nth(), 54
group_keys(), 18, 54 ntile(), 26
group_map, 18, 19 num(), 11
group_nest, I8, 19 num_range(), 46
group_split, 18, 18
group_split(), I8 option, 12
group_trim, 18, 19
grouped_df, 17,43, 52, 54 par, 37

pasilla, 29
highlight(), 38 pch, 37
hoist, 59 percent_rank(), 26

pillar::pillar_options, /1]
pivot_longer, 30
pivot_longer(), 32
pivot_wider, 32

10, 36,37
if_else(), 26
inner_join, 19

¥QR()’54 pivot_wider(), 30

1s.naQ), 10 pivot_wider_spec(), 34

" plot(), 35

join_by(Q), 13, 20, 22, 23, 41 olot_geo(). 38

lag(), 26 plot_ly, 35

last(), 54 plot_mapbox (), 38

last_col(), 46 plotly_json(), 38

layout(), 38 poly, 3

lead(), 26 print (formatting), 11

left_join, 22 pull, 38

list_of, I8

log(), 26 quasiquotation, 39, 57

mad(), 54 recode(), 26

matches(), 46 reframe, 11, 50

matrix, 3 reframe(), 54

max (), 54 rename, 11, 26, 39, 50, 53, 55

mean(), 54 right_join, 40

median(), 54 rlang::as_function(), 4, 59

min(), 54 rlang::ensym(), 57

min_rank(), 26 row_number (), 26, 52

mutate, 11, 25, 40, 50, 53, 55 rownames, 3, 4

mutate(), 54 rowwise, 43, 54

mutate_features, 27

mutate_samples, 27 sample_frac (sample_n), 44
sample_n, 44

nQ, 54 schema(), 36, 38

n_distinct(), 54 sd(), 54

na_if (), 26 se, 45

near(), 10 select, 11, 46

nest, 28 separate, 50

INDEX

separate(), 9, 31, 57
separate_wider_delim(), 50
separate_wider_position(), 50
separate_wider_regex(), 8
slice, 11, 26, 40, 50, 52, 55
slice_head (slice), 52
slice_max (slice), 52
slice_min (slice), 52
slice_sample (slice), 52
slice_sample(), 44
slice_tail (slice), 52
spread(), 34
starts_with(), 46, 47
style(), 38

subplot(), 38
summarise, 11, 26, 40, 50, 53, 53
summarise(), 17,43

summarize (summarise), 53

table, 3

tbl_df, 3
tbl_format_header, 55
tbl_format_setup(), 12, 55
tbl_sum(), 55
tibble, 54
tibble(), 3, 4

tidy, 56
tidyr_legacy, 59

ts, 3
type.convert(), 9,51

ungroup(), 10,43

unique.data.frame(), 7

unite, 56

unite(), 51

unnest, 57

unnest_legacy(), 28, 59

unnest_longer, 59

unnest_summarized_experiment (unnest),
57

unnest_wider, 59

vctrs::vec_as_names(), 4, 31, 34, 59
where(), 46

xor(), 10

63

	as_tibble
	bind_rows
	count
	distinct
	extract
	filter
	formatting
	full_join
	ggplot
	group_by
	group_split
	inner_join
	left_join
	mutate
	mutate_features
	mutate_samples
	nest
	pasilla
	pivot_longer
	pivot_wider
	plot_ly
	pull
	rename
	right_join
	rowwise
	sample_n
	se
	select
	separate
	slice
	summarise
	tbl_format_header
	tidy
	unite
	unnest
	>
	Index

