Package ‘snapcount’

July 10, 2025

Type Package

Title R/Bioconductor Package for interfacing with Snaptron for rapid
querying of expression counts

Version 1.20.0

Description snapcount is a client interface to the Snaptron webservices
which support querying by gene name or genomic region.
Results include raw expression counts derived from alignment of RNA-seq samples
and/or various summarized measures of expression across one or more regions/genes
per-sample (e.g. percent spliced in).

Depends R (>=4.0.0)

Imports R6, httr, rlang, purrr, jsonlite, assertthat, data.table,
Matrix, magrittr, methods, stringr, stats, [Ranges,
GenomicRanges, SummarizedExperiment

Suggests BiocManager, bit64, covr, knitcitations, knitr (>= 1.6),
devtools, BiocStyle (>=2.5.19), rmarkdown (>= 0.9.5), testthat
>=2.1.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData False

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE, roclets = ¢(* “rd", * *namespace",
*“collate"))

URL https://github.com/langmead-1ab/snapcount

BugReports https://github.com/langmead-1lab/snapcount/issues

biocViews Coverage, GeneExpression, RNASeq, Sequencing, Software,
Datalmport

VignetteBuilder knitr

ByteCompile true

git_url https://git.bioconductor.org/packages/snapcount
git_branch RELEASE_3_21

https://github.com/langmead-lab/snapcount
https://github.com/langmead-lab/snapcount/issues

snapcount-package

git_last_commit 6887f2c
git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-07-09

Author Rone Charles [aut, cre]

Maintainer Rone Charles <rcharle8@jh.edu>

Contents
snapcount-package L e e 2
Compilation o e e e e e e 3
Coordinates i e e e e e e e 4
from_url e 4
get_column_filters 5
get_compilation e 6
get_coordinate_modifier 6
GELTEZIONS . .« v vt v i e 7
get_row_filters L 8
get_SidS e e 8
junction_inclusion_ratioo 9
JUNCHON_INEErSeCtion v v v o it e e e e e e e e e e 10
JUNCHION_UNION oL e e e 11
percent_spliced_in 12
QueryBuilder 13
QUETY_JX « v v e 14
shared_sample_counts L e 15
tissue_specificity e 16
uri_of_last_successful_request 17

Index 18

snapcount-package snapcount: an R package for interfacing with Snaptron
Description

snapcount is a client interface to the Snaptron webservice which supports querying by gene name
or genomic region.

Details

Results include raw expression counts derived from alignment of RNA-seq samples and/or various
summarized measures of expression across one or more regions/genes per-sample (e.g. percent
spliced in).

To learn more about snapcount, check out the vignette: browseVignettes(package = "snapcount”)

Compilation 3

Package options

snapcount.host Change the host that snapcount uses when connecting to Snaptron. Default:
snaptron.cs. jhu.edu

snapcount.port Change the port that snapcount uses when connecting to Snaptron. Default: 80

Author(s)

Maintainer: Rone Charles <rcharle8@jh.edu>

See Also
Useful links:

* https://github.com/langmead-1lab/snapcount
* Report bugs at https://github.com/langmead-1lab/snapcount/issues

Compilation Enum for Snaptron compilations

Description
The variants for this enum will be populated dynamically after the package has been loaded. If the
package cannot connect to the internet the variants will default to:

Usage

Compilation

Format

An object of class environment of length 21.

Details

* gtex
* tcga
e srav2

¢ Sra

See Also

http://snaptron.cs. jhu.edu/data.html for more information about Snaptron compilations.

Examples

gb <- QueryBuilder(compilation = Compilation$gtex, regions = "KCNIP4")
query_jx(ab)

https://github.com/langmead-lab/snapcount
https://github.com/langmead-lab/snapcount/issues
http://snaptron.cs.jhu.edu/data.html

4 from_url

Coordinates Enum for Snaptron Coordinate modifiers

Description

Enum for Snaptron Coordinate modifiers

Usage

Coordinates

Format

An object of class environment of length 4.

Fields

Exact Return junctions whose start and end coordinates match the boundaries of the region re-
quested.

Within Return junctions whose start and end coordinates are within the boundaries of the region
requested.

StartIsExactOrWithin Return junctions whose start coordinate matches, or is within, the bound-
aries of the region requested.

EndIsExactOrWithin Return junctions whose end coordinate matches, or is within, the boundaries
of the region requested.

Examples

gb <- QueryBuilder(compilation = "gtex", regions = "CD99")
gb <- set_coordinate_modifier(gb, Coordinates$Exact)
ab

from_url Constructs a QueryBuilder object from the given url

Description

Constructs a QueryBuilder object from the given url

Usage

from_url(url)

get_column_filters 5

Arguments
url a well-formed url preferably obtained from a call to the uri_of_last_successful_request
function
Value

Returns a QueryBuilder object with attributes set from the parsed url.

Examples

sb <= from_url("http://snaptron.cs. jhu.edu/gtex/snaptron?regions=CD99")
get_regions(sb)
get_compilation(sb)

get_column_filters Get or set sample-related contraints for query

Description

Get or set sample-related contraints for query

Usage

get_column_filters(qgb)

set_column_filters(gb, ...)
Arguments
gb a QueryBuilder object constructed using the QueryBuilder function

one or more boolean predicates as either strings or unevaluated expressions

Value

get_column_filters returns the current filters as a list of strings. set_column_filters returns a
new QueryBuilder object with the column filters set to the value of column_filters.

Examples

gb <- QueryBuilder(compilation = "gtex”, regions = "CD99")
column filters set using a string

gb <- set_column_filters(gb, "SMTS == Brain")
get_column_filters(gb)

column filters set using unevaluated expression

gb <- set_column_filters(gb, SMTS == "Spleen")
get_column_filters(qgb)

6 get_coordinate_modifier

get_compilation Get or set query compilation

Description

Get or set query compilation

Usage

get_compilation(gb)

set_compilation(gb, compilation)

Arguments
gb A QueryBuilder object constructed using the QueryBuilder function.
compilation A single string containing the name of the Snaptron data source. Any variant of
the Compilation enum can also be passed as an argument.
Value

get_compilation returns the current compilation as string. set_compilation returns a new
QueryBuilder object with the compilation set to the value of compilation.

Examples

gb <- QueryBuilder(compilation = "gtex”, regions = "CD99")
get_compilation(gb)

gb <- set_compilation(gb, Compilation$tcga)
get_compilation(gb)

get_coordinate_modifier
Get or set coordinate modifiers for the query.

Description

Get or set coordinate modifiers for the query.

Usage

get_coordinate_modifier(gb)

set_coordinate_modifier(qgb, coordinate_modifier)

get_regions 7

Arguments

gb a QueryBuilder object constructed using the QueryBuilder function.
coordinate_modifier
any of the variants of the Coordinates enum.

Value

get_coordinate_modifier returns the current coodinate modifier as a string. set_coordinate_modifier
returns a new QueryBuilder object with the coordinate modifier set to the value of coordinate_modifier.

Examples

gb <- QueryBuilder(compilation = "gtex"”, regions = "CD99")
gb <- set_coordinate_modifier(gb, Coordinates$Within)
get_coordinate_modifier(gb)

get_regions Get or set query regions

Description

Get or set query regions

Usage

get_regions(qgb)

set_regions(gb, regions)

Arguments
gb A QueryBuilder object constructed using the QueryBuilder function.
regions Either a list of 1 more HUGO gene names as strings e.g. "BRCA1" or a Granges
class object containing one or more geneomic intervals (e.g. "chr1:1-1000").
Value

get_regions returns the current regions as a list of strings. set_regions returns a new QueryBuilder
object with the regions set to the value of regions.

Examples

gb <- QueryBuilder(compilation = "gtex", regions = "CD99")
get_regions(gb)

gb <- set_regions(gb, "chr1:1-1000")

get_regions(gb)

gb <- set_regions(gb, GenomicRanges::GRanges("chr1”, "1-1000"))
get_regions(gb)

8 get_sids

get_row_filters Get or set range-related contraints for query

Description

Get or set range-related contraints for query

Usage

get_row_filters(gb)

set_row_filters(gb, ...)
Arguments
gb a QueryBuilder object constructed using the QueryBuilder function.

one or more boolean predicates as either strings or unevaluated expressions.

Value

get_row_filters returns the current row filters as list of strings. set_row_filters returns a new
QueryBuilder object with the row filters set to the value of row_filters.

Examples

gb <- QueryBuilder(compilation = "gtex", regions = "CD99")
row filters set as a string

gb <- set_row_filters(gb, "strand == +")
get_row_filters(gb)

row filters set using unevaluated expression

gb <- set_row_filters(qgb, strand == "+"
get_row_filters(qb)

get_sids Get or set query sample ids

Description

Get or set query sample ids

Usage
get_sids(gb)

set_sids(gb, sids)

Jjunction_inclusion_ratio 9

Arguments
gb a QueryBuilder object constructed using the QueryBuilder function.
sids a vector or 1 or more whole numbers to filter results on.

Value

get_sids returns the current sample ids as a vector of integers. set_sids returns a new QueryBuilder
object with the sample ids set to the value of sids.

Examples

gb <- QueryBuilder(compilation = "gtex”, regions = "CD99")
gb <- set_sids(gb, c(1, 2, 3))
get_sids(gb)

junction_inclusion_ratio
Relative measure of splice variant usage similar to PSI that allows for
2 arbitrarily defined groups of junctions (not limited to cassette exons).

Description
Calculates a coverage summary statistic per sample of the normalized coverage difference between
two sets of separate junctions defined by at least two basic queries and organized into two groups.
Usage

junction_inclusion_ratio(groupl, group2, group_names = NULL)

Arguments

groupl, group2 Each group is a list of 1 or more QueryBuilder objects

group_names Optional vector of strings representing the group names

Details

The summary statistic is as follows: If the coverage of the first group is "A" and the second is "B":
JIR(A,B)=(A - B) / (A+B+1)

This is calculated for every sample that occurs in one or the other (or both) groups results.

Value

A DataFrame of samples, with their JIR score and metadata, which had > 0 coverage in at least one
resulting row in at least one of the groups

10 junction_intersection

Examples

sb1 <- QueryBuilder(compilation = "srav2", regions = "chr2:29446395-30142858")
sb1 <- set_coordinate_modifier(sb1, Coordinates$Within)
sb1 <- set_row_filters(sb1, strand == "-")

sb2 <- QueryBuilder(compilation = "srav2", regions = "chr2:29416789-29446394")
sb2 <- set_coordinate_modifier(sb2, Coordinates$Within)

sb2 <- set_row_filters(sb2, strand == "-")

junction_inclusion_ratio(list(sb1), list(sb2))

junction_intersection Get the intersection of junctions from 2 or more compilations which
are on the same reference

Description

This function operates similar to the junction_union() function, i.e it is cross compilation and
merging of the same junction from multiple compilations will be handled exactly the same way.
But instead of every junction which appears in at least one compilation, only the junctions which
appear in every compilation will be returned.

Usage

junction_intersection(...)

Arguments

One or more QueryBuilder objects

Value

A RangedSummarizedExperiment of junctions common across compilations

See Also

junction_union()

Examples

Using query builder wrappers

sb1 <- QueryBuilder(compilation = "gtex"”, regions = "chr1:1879786-1879786")
sb1 <- set_coordinate_modifier(sb1, Coordinates$EndIsExactOrWithin)

sb1 <- set_row_filters(sb1, strand == "-")

sb2 <- QueryBuilder(compilation = "tcga”, regions = "chr1:1879786-1879786")
sb2 <- set_coordinate_modifier(sb2, Coordinates$EndIsExactOrWithin)

sb2 <- set_row_filters(sb2, strand == "-")

junction_intersection(sb1, sb2)

junction_union 11

junction_union Get the union of junctions from 2 or more compilations which are on

the same reference

Description

This function queries 2 or more compilations which are on the same reference version (e.g. hg38)
and merges the resulting junctions into a single output table, unioning the sample coverage columns
and the snaptron_id (jx ID) columns (the latter delimiter will be ":"). All sample IDs will be disjoint
between compilations.

Usage

junction_union(...)

Arguments

Details

One or more QueryBuilder objects

Union is based on the following fields (combined into a comparison key):

group
chromosome
start

end

strand

The goal is to have a single list of junctions where every junction occurs in at least one compilation
and if a junction occurs in > 1 compilations it still only has a single row representing all the samples
across compilations that it appears in. Sample aggregate statistics will be recalculated for junctions
which are merged across all samples from all compilations:

Value

sample_count
coverage_sum
coverage_avg

coverage_median

A RangedSummarizedExperiment of junctions appearing in at least one compilation

See Also

junction_intersection()

12 percent_spliced_in

Examples

Using query builder wrappers

sb1 <- QueryBuilder(compilation = "gtex"”, regions = "chr1:1879786-1879786")
sb1 <- set_coordinate_modifier(sb1, Coordinates$EndIsExactOrWithin)

sb1 <- set_row_filters(sb1, strand == "-")

sb2 <- QueryBuilder(compilation = "tcga”, regions = "chr1:1879786-1879786")
sb2 <- set_coordinate_modifier(sb2, Coordinates$EndIsExactOrWithin)

sb2 <- set_row_filters(sb2, strand == "-")

junction_union(sb1, sb2)

percent_spliced_in Relative measure of splice variant usage, limited currently to cassette
exon splice variants

Description

Similar to the JIR, this calculates Percent Spliced In (PSI) statistics for the definition of 2 different
groups: inclusion and exclusion. Currently this function only supports the cassette exon use case.

Usage

percent_spliced_in(
inclusion_groupl,
inclusion_group2,
exclusion_group,
min_count = 20,
group_names = NULL

Arguments

inclusion_group1, inclusion_group2, exclusion_group
Where each is a list of 1 or more QueryBuilder objects

min_count minimum total count (denominator) required to not be assigned -1
group_names Optional vector of strings representing the group names
Details

Inclusion typically defines 2 basic queries, one for the junction preceding the cassette exon, and the
second for the junction following the cassette exon. The exclusion group contains one basic query
which defines the junction which skips the cassette exon.

The PSI itself is implemented as:

PSI(inclusion1, inclusion2, exclusion) =mean(inclusionl, inclusion2) / (mean(inclusioni,
inclusion2) + exclusion)

where each term denotes the coverage of junctions that resulted from the basic queries in that group
in the current sample.

QueryBuilder 13

Value

A DataFrame of samples, with their PSI score and metadata, which had > 0 coverage in at least one
resulting row in at least one of the groups

Examples

in1 <- QueryBuilder(compilation = "srav2", regions = "chr1:94468008-94472172")
in1 <- set_coordinate_modifier(in1, Coordinates$Exact)
in1 <- set_row_filters(in1, strand == "+"

in2 <- QueryBuilder(compilation = "srav2", regions = "chr1:94468008-94472172")
in2 <- set_coordinate_modifier(in2, Coordinates$Exact)
in2 <- set_row_filters(in2, strand == "+"

ex <- QueryBuilder(compilation = "srav2", regions = "chr1:94468008-94475142")
ex <- set_coordinate_modifier(ex, Coordinates$Exact)

ex <- set_row_filters(ex, strand == "+"

percent_spliced_in(list(in1), list(in2), list(ex))

QueryBuilder Construct a QueryBuilder object given a compilation and one or re-
gions.

Description

Construct a QueryBuilder object given a compilation and one or regions.

Usage

QueryBuilder(compilation, regions)

Arguments
compilation A single string containing the name of the Snaptron data source. Any variant of
the Compilation enum can also be passed an argument.
regions Either a list of 1 more HUGO gene names as strings e.g. "BRCA1" or a Granges
class object containing one or more geneomic intervals (e.g. "chr1:1-1000").
Value

A QueryBuilder object.

14 query_jx

Examples

contruct a query builder for GTEX data source and BRAC1 gene
gb <- QueryBuilder(compilation = Compilation$gtex, regions = "BRCA1")

contruct a query builder for TCGA data source and chromosome region
gb <- QueryBuilder(compilation = "tcga", regions = "chr1:1-1000")

construct a query builder for TCGA data source using GRanges object
library(GenomicRanges)
gb <- QueryBuilder(compilation = "tcga", regions = GRanges("chr1”, "1-1000"))

query_jx Query Junctions/Genes/Exons

Description

Given one or more gene names or genomic range intervals it will return a list of O or more genes,
junctions, or exons (depending on which query form is used) which overlap the ranges.

Usage

query_jx(sb, return_rse = TRUE, split_by_region = FALSE)

query_gene(sb, return_rse = TRUE, split_by_region = FALSE)

query_exon(sb, return_rse = TRUE, split_by_region = FALSE)
Arguments
sb A SnaptronQueryBuilder object
return_rse Should the query data be returned as a simple data frame or converted to a

RangedSummarizedExperiment.
split_by_region
By default the results from multiple queries will be returned in a RangedSummarizedExperiment
object with a rowData entry for each, labeling each result row according to the
query it resulted from. However, if this is set to TRUE, the result will be a list of
RangedSummarizedExperiment objects, one per original interval/gene. This lat-
ter option may be useful, but it requires a separate copy of the sample metadata
for each original interval/gene.

Value

Functions will return either a RangedSummarizedExperiment or data.table depending on whether
the return_rse parameter is set to TRUE or FALSE.

shared_sample_counts 15

Examples

Contruct a QueryBuilder object

gb <- QueryBuilder(compilation = "gtex”, regions = "chr1:1-100000")
gb <- set_row_filters(gb, samples_count >= 20)

query_jx(gb)

gb <- set_row_filters(gb, NULL)
gb <- set_column_filters(gb, SMTS == "Brain")
query_gene(gb)

shared_sample_counts Shared Sample Count (SSC): counts total number of samples in which
2 different junctions both occur in.

Description

This produces a list of user-specified groups and the read coverage of the junctions in all the samples
which were shared across all the basic queries occurring in each group.

Usage
shared_sample_counts(..., group_names = NULL)
Arguments
One or more lists of QueryBuilder objects
group_names Optional vector of character strings representing group names
Details

Example: User defines a single group of junctions "GroupA" made up of 2 separate regions (two
basic queries).

An SSC query will return a single line for GroupA which will have the total number of samples
which had at least one junction which was returned from both basic queries. It will also report a
summary statistic of the total number of groups which had one or more samples that were shared
across the basic queries, in this case it would be 1. Also, it will report the number of groups which
had at least one shared sample and which had matching junctions (from the query) which were fully
annotated.

This function can be used to determine how much cross-sample support there is for a particular
junction configuration (typically a cassette exon).

Value

A DataFrame of results based on the list of groups passed in via "group_names". Each group
is reported with the # of unique samples which occurred in all of its defined set of related basic
queries (e.g. two inclusion basic queries in a cassette exon scenario).

16 tissue_specificity

Examples

gl <- QueryBuilder(compilation = "gtex", regions = "chr1:1879786-1879786")
gl <- set_coordinate_modifier(gl, Coordinates$EndIsExactOrWithin)
gl <- set_row_filters(gl, strand == "-")

g2 <- QueryBuilder(compilation = "gtex”, regions = "chr1:1879903-1879903")
g2 <- set_coordinate_modifier(g2, Coordinates$StartIsExactOrWithin)

g2 <- set_row_filters(g2, strand == "-")

ssc<-shared_sample_counts(list(gl, g2))

tissue_specificity Tissue Specificity (TS): produces a list of samples with their tissues
marked which either contain queried junctions (1) or not (0); can be
used as input to significance testing methods such as Kruskal-Wallis
to look for tissue enrichment (currently only works for the GTEx com-
pilation).

Description

Lists the number of samples labeled with a specific tissue type. Samples are filtered for ones which
have junctions across all the user-specified groups. That is, if a sample only appears in the results
of some of the groups (from their basic queries) it will be assigned a 0, otherwise if it is in all of the
groups’ results it will be assigned a 1. This is similar to the SSC high level query type, but doesn’t
sum the coverage.

Usage
tissue_specificity(..., group_names = NULL)
Arguments
One or more QueryBuilder objects
group_names Optional vector of strings representing the group names
Details

The samples are then grouped by their tissue type (e.g. Brain). This is useful for determining if
there’s an enrichment for a specific tissue in the set of junctions queried. Results from this can be
fed to a statistical test, such as the Kruskal-wallis non-parametric rank test. This query is limited
to GTEx only, due to the fact that GTEx is one of the few compilations that has consistent and
complete tissue metadata.

Value

A DataFrame of all samples in the compilation with either a O or 1 indicating their occurrence and
shared status (if > 1 group passed in). Occurrence here is if the sample has at least one result with >
0 coverage, and further, if > 1 group is passed in, then if it occurs in the results of all groups. Also
includes the sample tissue type and sample_id.

uri_of_last_successful_request 17

Examples

in1 <- QueryBuilder(compilation = "gtex", regions = "chr4:20763023-20763023")
in1 <- set_coordinate_modifier(in1, Coordinates$EndIsExactOrWithin)
in1 <- set_row_filters(inl, strand == "-")

in2 <- QueryBuilder(compilation = "gtex”, regions = "chr4:20763098-20763098")
in2 <- set_coordinate_modifier(in2, Coordinates$StartIsExactOrWithin)

in2 <- set_row_filters(in2, strand == "-")

tissue_specificity(list(inl, in2))

uri_of_last_successful_request
Return the URI of the last successful request to Snaptron

Description
This function can be paired with the from_url method from the QueryBuilder class, allowing users
to share sources of data from Snaptron.

Usage

uri_of_last_successful_request()

Value

URI of last successful request to Snaptron or NULL if there have not been any successful requests.

Examples

gb <- QueryBuilder(compilation = "gtex", regions = "CD99")
query_jx(gb)
uri_of_last_successful_request()

Index

x datasets
Compilation, 3
Coordinates, 4

Compilation, 3
Coordinates, 4,7

from_url, 4

get_column_filters, 5
get_compilation, 6
get_coordinate_modifier, 6
get_regions, 7
get_row_filters, 8
get_sids, 8

junction_inclusion_ratio, 9
junction_intersection, 10
junction_intersection(), 11
junction_union, 11
junction_union(), 10

percent_spliced_in, 12

query_exon (query_jx), 14
query_gene (query_jx), 14
query_jx, 14
QueryBuilder, 5-9, 13

set_column_filters
(get_column_filters), 5
set_compilation (get_compilation), 6
set_coordinate_modifier
(get_coordinate_modifier), 6
set_regions (get_regions), 7
set_row_filters (get_row_filters), 8
set_sids (get_sids), 8
shared_sample_counts, 15
snapcount (snapcount-package), 2
snapcount-package, 2

18

tissue_specificity, 16

uri_of_last_successful_request, 5, 17

	snapcount-package
	Compilation
	Coordinates
	from_url
	get_column_filters
	get_compilation
	get_coordinate_modifier
	get_regions
	get_row_filters
	get_sids
	junction_inclusion_ratio
	junction_intersection
	junction_union
	percent_spliced_in
	QueryBuilder
	query_jx
	shared_sample_counts
	tissue_specificity
	uri_of_last_successful_request
	Index

