Package 'mbQTL'

July 10, 2025

Description mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial)

We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to

and variant, SNP, SNV (host) relationship, correlation, regression studies.

show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats. License MIT + file LICENSE **Encoding UTF-8 Depends** R (>= 4.3.0) DeploySubPath mbQTL biocViews SNP, Microbiome, WholeGenome, Metagenomics, StatisticalMethod, Regression **Roxygen** list(markdown = TRUE) RoxygenNote 7.2.1 Imports MatrixEQTL, dplyr, ggplot2, readxl, stringr, tidyr, metagenomeSeq, pheatmap, broom, graphics, stats, methods Suggests knitr, rmarkdown, BiocStyle VignetteBuilder knitr URL ``https://github.com/Mercedeh66/mbQTL'' **BugReport** ``https://github.com/Mercedeh66/mbQTL/issues" git_url https://git.bioconductor.org/packages/mbQTL git_branch RELEASE_3_21 git_last_commit 226f80d git_last_commit_date 2025-04-15 Repository Bioconductor 3.21

Title mbQTL: A package for SNP-Taxa mGWAS analysis

Type Package

Version 1.8.0

2 mbQTL-package

Date/Publication 2025-07-09

Author Mercedeh Movassagh [aut, cre] (ORCID:

<https://orcid.org/0000-0001-7690-0230>),

Steven Schiff [aut], Joseph N Paulson [aut]

Maintainer Mercedeh Movassagh <mercedeh.movassagh@yale.edu>

Contents

Index		14
	taxaSnpCor	12
	SnpFile	12
	RegSnp	
	qqPlotLm	11
	prepareCorData	10
	microbeAbund	10
	metagenomeSeqToMbqtl	9
	metagenomeSeqObj	9
	mbQtlCorHeatmap	8
	logRegSnpsTaxa	7
	logitPlotSnpTaxa	ϵ
	linearTaxaSnp	5
	histPvalueLm	5
	CovFile	4
	coringTaxa	4
	binarizeMicrobe	3
	allToAllProduct	3
	mbQTL-package	2

mbQTL-package

title mbQTL is a package for microbial QTL/GWAS Analysis

Description

This package provides statistical methods for identifying significant relationships between microbial/taxa and genetic SNP signatures. We use three models 1) linear regression between all taxa-snp. Main function is linearTaxaSnp(). 2) Correlation analysis between taxa-snp across all taxa and snps. Main function is taxaSnpCor() and 3) Logistic regression analysis between each taxa and each snp simultaneously or for a specific cases. Main function is logRegSnpsTaxa().

Author(s)

Maintainer: Mercedeh Movassagh <mercedeh.movassagh@yale.edu> (ORCID) Authors:

- Steven Schiff
- · Joseph N Paulson

allToAllProduct 3

See Also

The package vignette can be accessed with vignette("mbQTL").

allToAllProduct creates a dataframe of snp and taxa correlations

Description

This internal function takes the original snp dataframe and returns a long parsed snp dataframe

Usage

```
allToAllProduct(SnpFile, microbeAbund, rsID = NULL)
```

Arguments

SnpFile the snp file (rownames is sample number and colnames is the snps)

microbeAbund he taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

rsID Default is NULL and will run across the who dataset unless specific rsID/SNP/chr_region

is specified

Value

A dataframe of correlations between snps and taxa

Examples

```
data(microbeAbund)
data(SnpFile)
x <- allToAllProduct(SnpFile, microbeAbund, "chr1.171282963_T")</pre>
```

 $\begin{array}{ll} \mbox{binarizeMicrobe} & \mbox{binarizeS microbe abundace file based on user's} \\ & \mbox{cutoff} \end{array}$

Description

This function creates a dataframe output produces a formatted dataframe prepared.

```
binarizeMicrobe(microbeAbund, cutoff = NULL, selectmicrobe = NULL)
```

4 CovFile

Arguments

microbeAbund the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

cutoff cutoff at which the user chose to call taxa positive or negative across samples

(should be a numeric value for normalized or count values).

selectmicrobe default is and all taxa are considered at the same time, if the user is interested in

a specific pathogen use name of the pathogen for example "Haemophilus".

Value

A data frame of microbial abundance.

coringTaxa

coringTaxa creates correlation dataframe for taxa

Description

This function creates an output correlation data frame for all microbial taxa (or other organisms such as viral or parasitic taxa)

Usage

coringTaxa(microbeAbund)

Arguments

microbeAbund the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

Value

A data frame of correlations between taxa

Examples

```
data(microbeAbund)
x <- coringTaxa(microbeAbund)</pre>
```

CovFile

mbQTL "CovFile"

Description

The "CovFile" is the covariate file for linear regression option of taxa and snp association. The covariance file is generated randomly by assigning sex and site of collection to the samples.) rownames are covariate and colnames samples.

histPvalueLm 5

histPvalueLm	histPvalueLm a histogram of Taxa and SNP linear regression analy-
	sis. This function creates a histogram object of all SNPs with all taxa
	Linear regression analysis p values.

Description

histPvalueLm a histogram of Taxa and SNP linear regression analysis. This function creates a histogram object of all SNPs with all taxa Linear regression analysis p values.

Usage

```
histPvalueLm(LinearAnalysisTaxaSNP)
```

Arguments

```
LinearAnalysisTaxaSNP
```

the data frame result created from the linearTaxaSnp() function.

Value

A histogram object of p values observed from taxa and SNP Linear Regression analysis.

Examples

```
data(microbeAbund)
data(microbeAbund)
data(SnpFile)
data(CovFile)
LinearAnalysisTaxaSNPFile <- linearTaxaSnp(microbeAbund, SnpFile, Covariate = CovFile)
x <- histPvalueLm(LinearAnalysisTaxaSNPFile)</pre>
```

linearTaxaSnp	linearTaxaSnp Performs linear regression analysis between taxa and
	SNPs and returns concordance statistics

Description

This function creates a dataframe output from the results all snps with all taxa linear regression analysis of all snps in the dataset. The result is a dataframe with P values and FDRs of all regressions. MatrixeQTL core functions are utilized to achieve this. Note the main functions used are Matrix_eQTL_engine() assuming linear regression with or without a covariate file.

```
linearTaxaSnp(microbeAbund, SnpFile, Covariate = NULL)
```

6 logitPlotSnpTaxa

Arguments

microbeAbund the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

SnpFile the snp dataframe (values 0,1,2 indicating zygosity), rownames sample names

and colnames snp names.

Covariate default is NULL, hence assumed non-existent. If covariates are available they

need to be formatted in the CovFile format, that is colnames are sample numbers matching samples in the microbe abundance and snp file and row names are the

co-variates names (such as sex, disease etc).

Value

A data frame which is a result of Linear Regression of all snp, taxa relationships, with P values and P value corrected values.

Examples

```
data(microbeAbund)
data(SnpFile)
data(CovFile)
x <- linearTaxaSnp(microbeAbund, SnpFile, Covariate = CovFile)</pre>
```

logitPlotSnpTaxa

logitPlotSnpTaxa produces bar plots for counts of ref vs alt vs het allells for particular rsID taxa combinations

Description

This function creates a dataframe output produces a formatted dataframe prepared.

```
logitPlotSnpTaxa(
  microbeAbund,
  SnpFile,
  selectmicrobe = NULL,
  rsID,
  ref = NULL,
  alt = NULL,
  color = NULL,
  cutoff = NULL
)
```

logRegSnpsTaxa 7

Arguments

microbeAbund	original microbe abundance file (colnames microbe, rownames= sample IDs)
SnpFile	original snp file with $(0,1,2\ \text{values}\ \text{for}\ \text{ref},\ \text{het},\ \text{alt}\ \text{genotypes}),\ \text{colnames}\ \text{SNP}$ names, rownames, sample IDs.
selectmicrobe	name of the microbe of interest (for example individual significant microbes associate with a snp).
rsID	name of the snp of interest (for example individual significant snps associated with a microbe)
ref	the name of reference genotype for example "GG"
alt	the name of snp (variant) genotype for example "AA"
het	the name of hetrozygote genotype for example "GA"
color	the default is NULL and the color is set to c("#ffaa1e", "#87365b").
cutoff	cutoff at which we call microbe present or absent

Value

A bar ggplot comparing the counts of ref vs alt vs het genotype

Examples

```
data(microbeAbund)
data(SnpFile)
x <- logitPlotSnpTaxa(microbeAbund, SnpFile,
    selectmicrobe = "Neisseria", rsID = "chr2.241072116_A",
    ref = NULL, alt = NULL, het = NULL, color = NULL, cutoff = NULL)</pre>
```

Description

This function creates a dataframe output from the results of either a unique taxa and all snps or all taxa and all snps in the dataset. The result is a dataframe with P values and FDRs of all regressions.

```
logRegSnpsTaxa(microbeAbund, SnpFile, cutoff = NULL, selectmicrobe = NULL)
```

8 mbQtlCorHeatmap

Arguments

microbeAbund the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

SnpFile the snp dataframe (values 0,1,2 indicating zygosity), rownames sample names

and colnames snp names.

cutoff default is NULL, hence anything above cutoff is considered positive, the cut-

off at which the specific or all taxa are considered positive for the pathogen (1

indicates positive and 0 negative).

selectmicrobe default is and all taxa are considered at the same time, if the user is interested in

a specific pathogen use name of the pathogen for example "Haemophilus".

Value

A data frame which is a result of Logistic regression products of individual snp, taxa relationships, with P values and P value corrected values (FDR, Bonferroni).

Examples

```
data(microbeAbund)
data(SnpFile)
x <- logRegSnpsTaxa(microbeAbund, SnpFile, selectmicrobe = c("Haemophilus"))</pre>
```

mbQtlCorHeatmap

mbQtlCorHeatmap for making heatmap for snp, taxa rho values

Description

This function produces a log heatmap +1 of the correlation rho values across snp, taxa datasets

Usage

```
mbQtlCorHeatmap(final_var_long, labels_col = NULL, ...)
```

Arguments

final_var_long the long data frame of rho values created by the taxaSnpCor() function.

labels_col set to NULL ass default if TRUE, labels will appear on the heatmap.

... all other parameters for pheatmap.

Value

A data frame of correlations between taxa

9 metagenomeSeqObj

Examples

```
data(microbeAbund)
data(SnpFile)
for_all_rsids <- allToAllProduct(SnpFile, microbeAbund)</pre>
correlationMicrobes <- coringTaxa(microbeAbund)</pre>
taxaSnpCor(for_all_rsids, correlationMicrobes)
final_var_long <- taxaSnpCor(for_all_rsids, correlationMicrobes, probs = c(0.0001, 0.9999))</pre>
x <- mbQtlCorHeatmap(final_var_long)</pre>
```

metagenomeSeqObj

mbQTL "metagenomeSeqObj" MRexperiment object format of the "microbeAbund" file.

"MetagenomSeqObj"

is an

Description

mbQTL "metagenomeSeqObj"

"MetagenomSeqObj" is an MRexperiment object format of the "microbeAbund" file.

metagenomeSeqToMbqtl %

> Written Mercedeh Movassagh bv Rhrefmailto:mercedeh@ds.dfci.harvard.edumercedeh@ds.dfci.harvard.edu, January 2023

metagenomeSeqToMbqtl Converts metagenomeSeq obj to compatible taxa dataframe

Description

This function takes and MRexperiement class object transforms it and makes the result dataframe compatible with mbQTL taxa input file

Usage

```
metagenomeSeqToMbqtl(meta_glom, norm, log, aggregate_taxa = NULL)
```

Arguments

meta_glom MRexperiement class obj from metagenomeSeq package.

A logical indicating whether or not to return normalized counts. norm

TRUE/FALSE whether or not to log2 transform scale. log

aggregate_taxa it is recommended that the normalization occurs at taxa level (default NULL)

however, if the user chooses to aggregate on the phyla/family/Genus or Species

level before normalization they have the option.

10 prepareCorData

Value

A data frame of normalized/not normalized counts compatible with mbQTL.

Examples

File	
------	--

Description

This is the microbial Abudnance file generated from 16s it is either this file or the "metaGenomeSeqObj". The "microbiomeAbund" file is a randomly generated file format for total microbe presence (number of reads)(parasite/viral transcripts) for specific species. This could be generated from select taxa results from biom() or MRexperiment objects as long as the samples are colnames and taxa are rownames.

prepareCorData prepareCor tion file.	Data prpares and joins snp-taxa and taxa-taxa correla-
--------------------------------------	--

Description

This function creates a dataframe output produces a formatted dataframe prepared.

Usage

```
prepareCorData(microbeAbund, SnpFile, cutoff = NULL, selectmicrobe = NULL)
```

Arguments

microbeAbund	the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)
SnpFile	the snp dataframe (values 0,1,2 indicating zygosity), rownames sample names and colnames snp names.
cutoff	default is NULL, hence anything above cutoff is considered positive, the cut- off at which the specific or all taxa are considered positive for the pathogen (1 indicates positive and 0 negative).
selectmicrobe	default is and all taxa are considered at the same time, if the user is interested in a specific pathogen use name of the pathogen for example "Haemophilus".

Value

A data frame which is a result of Logistic regression products of individual snp, taxa relationships, with P values and P value corrected values.

qqPlotLm 11

qqPlotLm	qqPlotLm creates QQ-Plot of all SNPs with all taxa Linear regression analysis This function creates QQ-Plot object of all SNPs with all taxa
	Linear regression analysis of expected versus observed P values

Description

qqPlotLm creates QQ-Plot of all SNPs with all taxa Linear regression analysis This function creates QQ-Plot object of all SNPs with all taxa Linear regression analysis of expected versus observed P values

Usage

```
qqPlotLm(microbeAbund, SnpFile, Covariate = NULL)
```

Arguments

microbeAbund the taxa abundance dataframe (rownames sample names and colnames taxa Genus/species/family)

SnpFile the snp dataframe (values 0,1,2 indicating zygosity), rownames sample names

and colnames snp names.

Covariate default is NULL, hence assumed non-existent. If covariates are available they

need to be formatted in the CovFile format, that is colnames are sample numbers matching samples in the microbe abundance and snp file and row names are the

covariates names (such as sex, disease etc).

Value

A QQplot object of expected versus obsestved taxa and SNP Linear Regression analysis

Examples

```
data(microbeAbund)
data(SnpFile)
data(CovFile)
x <- qqPlotLm(microbeAbund, SnpFile, Covariate = CovFile)</pre>
```

Description

This internal function takes the original snp dataframe and retruns a long parsed snp dataframe

12 taxaSnpCor

Usage

```
RegSnp(SnpFile, microbeAbund)
```

Arguments

SnpFile the snp file (rownames is sample number and colnames is the snps)

microbeAbund the microbial abundance file (rownames is sample number and colnames is the

microbe)

Value

A long parsed datframe of snps

SnpFile mbQTL "SnpFile"

Description

The "SnpFile" is randomly generated from GATK (Van der Auwera GA & O'Connor BD. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). O'Reilly Media) snp calls followed by plink (Purcell S, et al. (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics) processing and it needs to be in (0,1,2) format representing the zygosity of the snps.

taxaSnpCor for estimation of the rho value between snp, taxa correlations across datasets

Description

This function produces a log heatmap +1 of the correlation rho values across snp, taxa dataframe.

Usage

```
taxaSnpCor(for_all_rsids, correlationMicrobes, probs = NULL)
```

Arguments

for_all_rsids A dataframe result of correlation analysis between the snps and taxa dataframe,

an output of allToAllProduct() function.

correlationMicrobes

A dataframe of correlation between coringTaxa() function.

probs Default is NULL if other that all rho values are wanted the value can be subseted

using c(x,y).

taxaSnpCor 13

Value

A data frame of correlations between taxa

Examples

```
data(microbeAbund)
data(SnpFile)

for_all_rsids <- allToAllProduct(SnpFile, microbeAbund)
correlationMicrobes <- coringTaxa(microbeAbund)
x <- taxaSnpCor(for_all_rsids, correlationMicrobes)</pre>
```

Index

* metagenomeSeq
${\sf metagenomeSeqToMbqtl}, 9$
* normalization
${\sf metagenomeSeqToMbqtl}, 9$
* parsed
RegSnp, 11
* plot
histPvalueLm, 5
qqPlotLm, 11
* regression
linearTaxaSnp,5
* rho
mbQtlCorHeatmap, 8
taxaSnpCor, 12
* snptaxa
allToAllProduct, 3
* snp
histPvalueLm, 5
linearTaxaSnp, 5
logRegSnpsTaxa, 7
qqPlotLm, 11
RegSnp, 11
* taxa
coringTaxa, 4
histPvalueLm, 5
linearTaxaSnp, 5
logRegSnpsTaxa,7 qqPlotLm,11
qqr10tLiii, 11
allToAllProduct, 3
binarizeMicrobe, 3
coringTaxa, 4
CovFile, 4
histPvalueLm, 5
IIIStrvatuelii, 3
linearTaxaSnp,5
logitPlotSnpTaxa, 6
logRegSnpsTaxa, 7

INDEX 15

```
mbQTL (mbQTL-package), 2
mbQTL-package, 2
mbQtlCorHeatmap, 8
metagenomeSeqObj, 9
metagenomeSeqToMbqtl, 9
microbeAbund, 10
prepareCorData, 10
qqPlotLm, 11
RegSnp, 11
SnpFile, 12
taxaSnpCor, 12
```