Package ‘crumblr’

July 9, 2025
Type Package
Title Count ratio uncertainty modeling base linear regression
Version 1.0.0
Date 2025-03-11

Description Crumblr enables analysis of count ratio data using precision weighted lin-
ear (mixed) models. It uses an asymptotic normal approximation of the variance follow-
ing the centered log ration transform (CLR) that is widely used in compositional data analy-
sis. Crumblr provides a fast, flexible alternative to GLMs and GLMM's while retain-
ing high power and controlling the false positive rate.

VignetteBuilder knitr
License Artistic-2.0
Encoding UTF-8

URL https://DiseaseNeurogenomics.github.io/crumblr

BugReports https://github.com/DiseaseNeurogenomics/crumblr/issues

Suggests BiocStyle, RUnit, knitr, rmarkdown, dreamlet, muscat,
ExperimentHub, scater, HMP, reshape?2, glue, tidyverse,
BiocGenerics, compositions

biocViews RNASeq, GeneExpression, DifferentialExpression, BatchEffect,
QualityControl, SingleCell, Regression, Epigenetics,
FunctionalGenomics, Transcriptomics, Normalization, Clustering,
DimensionReduction, Preprocessing, Software

Depends R (>=4.4.0), ggplot2, methods

Imports Rdpack, viridis, tidytree, variancePartition (>= 1.36.3),
SingleCellExperiment, ggtree, dplyr, stats, MASS, Rfast

RoxygenNote 7.3.2

RdMacros Rdpack

LazyData false

NeedsCompilation no

git_url https://git.bioconductor.org/packages/crumblr
git_branch RELEASE_3_21

https://DiseaseNeurogenomics.github.io/crumblr
https://github.com/DiseaseNeurogenomics/crumblr/issues

crumblr-package

git_last_commit 586680
git_last_commit_date 2025-04-15

Repository Bioconductor 3.21
Date/Publication 2025-07-09

Author Gabriel Hoffman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0957-0224>)

Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

Contents
crumblr-package L. e 2
buildClusterTree e 3
Clr o e e e 4
clrlnv . . L e e e 5
crumblr 6
diffTree e e e e 8
dmn_mle e 10
IENCellCounts e e e e 11
logFrac e e 12
meanSdPIot e e e e 13
plotForest L 15
plotScatterDensity e e e e 16
plotTreeTest e 16
plotTreeTestBeta e 17
standardize L L e e e e e e e 19
treeTest e e e e 20

Index 22

crumblr-package crumblr
Description

Crumblr enables analysis of count ratio data using precision weighted linear (mixed) models. It

uses
form

an asymptotic normal approximation of the variance following the centered log ration trans-
(CLR) that is widely used in compositional data analysis. Crumblr provides a fast, flexible

alternative to GLMs and GLMM’s while retaining high power and controlling the false positive rate.

Value

none

https://orcid.org/0000-0002-0957-0224

buildClusterTree 3

buildClusterTree Perform hierarchical clustering on reducedDim

Description

Perform hierarchical clustering dimension reduction from single cell expression data

Usage

buildClusterTree(
sce,
reduction,
labelCol,
method.dist = c("cosine”, "euclidean”, "maximum”, "manhattan”, "canberra”, "binary”,
"minkowski"),
method.hclust = c("complete”, "ward.D"”, "ward.D2")

)
Arguments
sce SingleCellExperiment object
reduction field of reducedDims(sce) to use
labelCol column in SingleCellExperiment storing cell type annotations

method.dist method for dist(..,method=method.dist)

method.hclust method for hclust(..,method=method.hclust)

Value

hierarchical clustering computed by hclust()

Examples
library(muscat)
data(example_sce)

hcl_test = buildClusterTree(example_sce, "TSNE", "cluster_id")

4 clr

clr Centered log ratio transform

Description

Compute the centered log ratio (CLR) transform of a count matrix.

Usage

clr(counts, pseudocount = 0.5)

Arguments
counts count data with samples as rows and variables are columns
pseudocount added to counts to avoid issues with zeros

Details

The CLR of a vector x of counts in D categories is defined as clr(x) = log(x) - mean(log(x)).
For details see van den Boogaart and Tolosana-Delgado (2013).
Value

matrix of CLR transformed counts

References
Van den Boogaart, K. Gerald, and Raimon Tolosana-Delgado. Analyzing compositional data with
R. Vol. 122. Berlin: Springer, 2013.

See Also

compositions::clr()

Examples

set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

number of total counts
countsTotal <- 300

number of samples
n_samples <- 5

simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))
rownames(info) <- paste@("sample_", 1:n_samples)

clrlnv 5

simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste@(”cat_", 1:length(prob))

-

rownames (counts) <- paste@("”sample_", 1:n_samples)

centered log ratio
clr(counts)

clrinv Inverse of Centered log ratio transform

Description

Compute the inverse centered log ratio (CLR) transform of a count matrix.

Usage

clrIinv(x)

Arguments

X CLR transform values

Details

Given the CLR transformed values, compute the original fractions

Value

matrix of fractions

References
Van den Boogaart, K. Gerald, and Raimon Tolosana-Delgado. Analyzing compositional data with
R. Vol. 122. Berlin: Springer, 2013.

See Also

compositions::clrinv()

Examples

set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

number of total counts
countsTotal <- 300

6 crumblr

number of samples
n_samples <- 5

simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))
rownames(info) <- paste@("sample_", 1:n_samples)

simulate counts from multinomial

counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste@("cat_", 1:length(prob))
rownames(counts) <- paste@("sample_", 1:n_samples)

Fractions
counts / rowSums(counts)

centered log ratio, with zero pseudocount
clr(counts, @)

recover fractions from CLR transformed values
clrinv(clr(counts, 0))

crumblr Count ratio uncertainty modeling based linear regression

Description

Count ratio uncertainty modeling based linear regression (crumblr) returns CLR-transformed counts
and observation-level inverse-variance weights for use in weighted linear models.

Usage

crumblr(
counts,
pseudocount = 0.5,
method = c("clr"”, "clr_2class"),
tau = 1,
max.ratio = 5,
quant = 0.05

[

S4 method for signature 'matrix
crumblr(

counts,

pseudocount = 0.5,

method = c("clr”, "clr_2class"),

tau = 1,

max.ratio = 5,

quant = 0.05

crumblr 7

)
S4 method for signature 'data.frame'
crumblr(
counts,
pseudocount = 0.5,
method = c("clr”, "clr_2class”),
tau = 1,
max.ratio = 5,
quant = 0.05
)
Arguments
counts count data with samples as rows and variables are columns
pseudocount added to counts to avoid issues with zeros
method "clr"” computes standard centered log ratio and precision weights based on the
delta approximation. "clr_2class"” computes the c1r () transform for category
i using 2 classes: 1) counts in category i, and 2) counts _not_ in category i.
tau overdispersion parameter for Dirichlet multinomial. If NULL, estimate from ob-
served counts.
max.ratio regularize estimates of the weights to have a maximum ratio of max.ratio be-
tween the maximum and quant quantile value
quant quantile value used for max.ratio
Details

Evaluate the centered log ratio (CLR) transform of the count matrix, and the asymptotic theoretical
variances of each transformed observation. The asymptotic normal approximation is increasingly
accurate for small overdispersion 7, large total counts C, and large proportions p, but shows good
agreement with the empirical results in most situations. In practice, it is often reasonable to assume
a sufficient number of counts before a variable is included in an analysis anyway. But the feasibility
of this assumption is up to the user to determine.

Given the array p storing proportions for one sample across all categories, the delta approximation
uses the term 1/p. This can be unstable for small values of p, and the estimated variances can be
sensitive to small changes in the proportions. To address this, the "clr_2class"” method computes
the clr() transform for category i using 2 classes: 1) counts in category i, and 2) counts _not_ in
category i. Since class (2) now sums counts across all other categories, the small proportions are
avoided and the variance estimates are more stable.

For real data, the asymptotic variance formula can give weights that vary substantially across sam-
ples and give very high weights for a subset of samples. In order to address this, we regularize the
weights to reduce the variation in the weights to have a maximum ratio of max.ratio between the
maximum and quant quantile value.

Value

An EList object with the following components:

8 diffTree

E: numeric matrix of CLR transformed counts

weights: numeric matrix of observation-level inverse-variance weights

See Also

limma: :voom(), variancePartition: :dream()

Examples

set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

number of total counts
countsTotal <- 300

number of samples
n_samples <- 100

simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))
rownames(info) <- paste@("sample_", 1:n_samples)

simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste@("cat_", 1:length(prob))

—

rownames(counts) <- paste@("sample_", 1:n_samples)

run crumblr on counts
cobj <- crumblr(counts)

run standard variancePartition analysis on crumblr results
library(variancePartition)

fit <- dream(cobj, ~Age, info)
fit <- eBayes(fit)

topTable(fit, coef = "Age"”, sort.by = "none")

diffTree Compare difference in estimates between two trees

Description
Compare difference in coefficient estimates between two trees. For node i, the test evaluates
treel[i] - tree2[i] = 0.

Usage

diffTree(treel, tree2)

diffTree 9

Arguments
treel object of type treedata from treeTest()
tree2 object of type treedata from treeTest()
Details

When a fixed effect test is performed at each node using treeTest () withmethod = "FE.empirical”
or method = "FE", a coefficient estimate and standard error are estimated for each node based on
the children. This function performs a two-sample z-test to test if a given coefficient from treel is
significantly different from the corresponding coefficient in tree2.

Value

a comparison of the coefficient estimates at each node

Examples

library(variancePartition)

Load cell counts, clustering and metadata
from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

Simulate a factor with 2 levels called DiseaseRand

set.seed(123)

info$DiseaseRand <- sample(LETTERS[seq(2)], nrow(info), replace = TRUE)
info$DiseaseRand <- factor(info$DiseaseRand, LETTERS[seq(2)1)

Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

Perform multivariate test across the hierarchy
resl <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

Perform same test, but on DiseaseRand

fit2 <- dream(cobj, ~DiseaseRand, info)

fit2 <- eBayes(fit2)

res2 <- treeTest(fit2, cobj, hcl, coef = "DiseaseRandB")

Compare the coefficient estimates at each node

Test if resl - res2 is significantly different from zero
resDiff <- diffTree(resl1, res2)

resDiff

plotTreeTest(resDiff)

10 dmn_mle

plotTreeTestBeta(resDiff)

dmn_mle MLE for Dirichlet Multinomial

Description

MLE for Dirichlet Multinomial

Usage
dmn_mle(counts, ...)
Arguments
counts matrix with rows as samples and columns as categories
additional arguments passed to optim()
Details

Maximize Dirichlet Multinomial (DMN) log-likelihood with optim() using log likelihood func-
tion and its gradient. This method uses a second round of optimization to estimate the scale of «
parameters, which is necessary for accurate estimation of overdispersion metric.

The covariance between counts in each category from DMN distributed data is n(diag(p)—pp™) (1+
p*(n—1)) for n total counts, and vector of proportions p, where p? = 1/(ag+1) and ag = Y, ;.
The count data is overdispersed by a factor of 1 + p?(n — 1) compared to a multinomial (MN)
distribution. As ag increases, the DMN converges to the MN.

See https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution#Matrix_notation

Value

list storing alpha parameter estimates, logLik, and details about convergence

alpha estimated alpha parameters

overdispersion Overdispersion value 1 + p?(n — 1) compared to multinomial
loglLik value of function

scale scaling of o parameters computed in a second optimization step

evals number of function evaluations in step 1

convergence convergence details from step 1

See Also

Other functions also estimate DMN parameters. MGLM: :MGLMfit() and dirmult::dirmult() give
good parameter estimates but are slower. Rfast: :dirimultinom.mle() often fails to converge

https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution#Matrix_notation

IFNCellCounts 11

Examples

library(HMP)
set.seed(1)

n_samples <- 1000
n_counts <- 5000
alpha <- c(500, 1000, 2000)

Dirichlet.multinomial
counts <- Dirichlet.multinomial(rep(n_counts, n_samples), alpha)

fit <- dmn_mle(counts)
fit

overdispersion: true value
a0 <- sum(alpha)

rhoSq <- 1/ (a@ + 1)

1 + rhoSq * (n_counts - 1)

multinomial, so overdispersion is 1
counts <- t(rmultinom(n_samples, n_counts, prob = alpha / sum(alpha)))

dmn_mle(counts)
#
#

IFNCellCounts Cell counts following interferon treatment

Description

Counts are from single cell RNA-seq data from treated and untreated samples from Kang, et al
(2018).

Usage

data(IFNCellCounts)
info
df_cellCounts

hcl

12 logFrac

Format

* info is metadata for each sample
» df_cellCounts data.frame of counts for each sample
* hcl cluster of cell types based on pseudobulk expression
An object of class data. frame with 16 rows and 4 columns.
An object of class matrix (inherits from array) with 16 rows and 8 columns.

An object of class hclust of length 7.

References

Kang, Hyun Min, et al. "Multiplexed droplet single-cell RNA-sequencing using natural genetic
variation." Nature Biotechnology 36.1 (2018): 89-94.

logFrac Log fractions and precision weights

Description
Compute log fractions and precision weights from matrix of ¢ ounts, where columns are variables
and rows are samples

Usage

logFrac(counts, pseudocount = 0.5, max.ratio = 5, quant = 0.05)

Arguments
counts count data with samples as rows and variables are columns
pseudocount added to counts to avoid issues with zeros
max.ratio regularize estimates of the weights to have a maximum ratio of max.ratio be-
tween the maximum and quant quantile value
quant quantile value used for max.ratio
Details

For real data, the asymptotic variance formula can give weights that vary substantially across sam-
ples and give very high weights for a subset of samples. In order to address this, we regularize the
weights to reduce the variation in the weights to have a maximum ratio of max.ratio between the
maximum and quant quantile value.

Value

An EList object with the following components:

E: numeric matrix of log transformed counts

weights: numeric matrix of observation-level inverse-variance weights

meanSdPlot

See Also

limma: :voom(), variancePartition: :dream()

Examples

set probability of each category
prob <- ¢c(0.1, 0.2, 0.3, 0.5)

number of total counts
countsTotal <- 300

number of samples
n_samples <- 100

simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))

n

rownames (info) <- paste@("sample_", 1:n_samples)

simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste@("cat_", 1:length(prob))

rownames(counts) <- paste@("sample 1:n_samples)

n

-

run logFrac on counts
cobj <- logFrac(counts)

run standard variancePartition analysis on crumblr results
library(variancePartition)

fit <- dream(cobj, ~ Age, info)
fit <- eBayes(fit)

topTable(fit, coef = "Age", sort.by = "none”)

meanSdPlot Plot row standard deviations versus rank of row means

Description

Diagnositic plot for homoscedasticity across variables

Usage

meanSdPlot (x)

Arguments

X data matrix

14 meanSdPlot

Details

Plot the sd versus rank mean of each row like vsn: :meanSdPlot. Also show the coefficient of
variation of the variances. A lower value indicates stronger variance stabilization

Value

ggplot2 object

See Also

vsn: :meanSdPlot

Examples

set probability of each category
prob <- runif(300)

number of samples
n_samples <- 1000

number of counts
nCounts <- 3000

simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = nCounts, prob = prob))
colnames(counts) <- paste@(”cat_", 1:length(prob))

-

rownames (counts) <- paste@("sample_", 1:n_samples)

keep categories with at least 5 counts in at least 10 samples
keep <- colSums(counts > 5) > 10

run crumblr on counts
cobj <- crumblr(counts[, keep], max.ratio = 10)

Plot for CLR
For each sample, plot rank of mean vs sd
figl <- meanSdPlot(cobj$E) + ggtitle("CLR")

run crumblr::standardize()
df_std <- standardize(cobj)

Standardized crumblr
fig2 <- meanSdPlot(df_std) + ggtitle(”Standardized crumblr™)

Standardizing the crumblr results better stabilizes
the variances across variables
figl | fig2

plotForest

15

plotForest Forest plot

Description

Forest plot

Forest plot of effect size estimates at the leaves of the tree

Usage

plotForest(x, ...)

S4 method for signature 'treedata’

plotForest(x, ..., hide = FALSE)
Arguments
X result from treeTest()

other arguments

hide hide rownames and legend

Value

ggplot2 object

Examples

library(variancePartition)

Load cell counts, clustering and metadata
from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim”)

Plot log fold changes from coef
plotForest(res)

16

plotTreeTest

plotScatterDensity Scatter plot with 2D density using viridis colors

Description

Scatter plot with 2D density using viridis colors

Usage

plotScatterDensity(x, y, size = 1)

Arguments

X the x-coordinates of points in the plot
y the y-coordinates of points in the plot

size size of point

Value

ggplot2 object

Examples

simulate data
M <- Rfast::rmvnorm(1000, mu = c(@, @), sigma = diag(1, 2))

create 2D density plot
plotScatterDensity(M[, 1], M[, 2])

plotTreeTest Plot tree with results from multivariate testing

Description

Plot tree with results from multivariate testing

Usage
plotTreeTest(
tree,
low = "grey90",
mid = "red”,

high = "darkred”,
xmax.scale = 1.5

plotTreeTestBeta 17

Arguments

tree phylo object storing tree

low low color on gradient

mid mid color on gradient

high high color on gradient

xmax.scale expand the x-axis by this factor so leaf labels fit in the plot
Value

ggplot2 object
Examples

library(variancePartition)

Load cell counts, clustering and metadata
from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)

fit <- eBayes(fit)

Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

Plot hierarchy and testing results
plotTreeTest(res)

Extract results for first 3 nodes

res[1:3,]
plotTreeTestBeta Plot tree coefficients from multivariate testing
Description

Plot tree coefficients from multivariate testing at each node. Only applicable top fixed effect tests

18 plotTreeTestBeta

Usage
plotTreeTestBeta(
tree,
low = "blue”,
mid = "white”,
high = "red"”,
xmax.scale = 1.5
)
Arguments
tree phylo object storing tree
low low color on gradient
mid mid color on gradient
high high color on gradient
xmax.scale expand the x-axis by this factor so leaf labels fit in the plot
Value
ggplot2 object
Examples

library(variancePartition)

Load cell counts, clustering and metadata
from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim”)

Plot hierarchy, no tests are significant
plotTreeTestBeta(res)

standardize 19

standardize Standardize observations using precision weights

Description

Compute standardized observations by dividing the observed values by their standard deviations
based on the precision weights

Usage

standardize(x, ...)

S4 method for signature 'EList'

standardize(x, ...)
Arguments
X object storing data to be transformed

other arguments

Details
Weighted response by their standard deviation so that resulting values have approximately equal
sample variance. This is a key property that improves downstream PCA and clustering analysis.
Value

matrix of standardized values

Examples

set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

number of total counts
countsTotal <- 300

number of samples
n_samples <- 100

simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste@("cat_", 1:length(prob))

-

rownames (counts) <- paste@("”sample_", 1:n_samples)

run crumblr on counts
cobj <- crumblr(counts)

Standardize crumblr responses

20

treeTest

df_std <- standardize(cobj)

Perform PCA on student transformed data
pca <- prcomp(t(df_std))
df_pca <- as.data.frame(pca$x)

ggplot(df_pca, aes(PC1, PC2)) +

geom_point() +

theme_classic() +
theme(aspect.ratio = 1)

treeTest

Perform multivariate testing along a hierarchy

Description

Perform multivariate testing using mvTest () along the nodes of tree

Usage

treeTest(
fit,
obj,
hc,
coef,

method = c("FE.empirical”, "FE", "RE2C", "tstat”, "sidak", "fisher"),

shrink.cov

Arguments
fit
obj
hc
coef

method

shrink.cov

TRUE

MArrayLM object return by 1ImFit () or dream()
EList object returned by voom()

hierarchical clustering as an hclust object
name of coefficient to be extracted

statistical method used to perform multivariate test. See details. 'FE' is a fixed
effect test that models the covariance between coefficients. 'FE.empirical'’
use compute empirical p-values by sampling from the null distribution and fit-
ting with a gamma. 'RE2C' is a random effect test of heterogeneity of the es-
timated coefficients that models the covariance between coefficients, and also
incorporates a fixed effects test too. 'tstat' combines the t-statistics and mod-
els the covariance between coefficients. 'sidak' returns the smallest p-value
and accounting for the number of tests. 'fisher' combines the p-value using
Fisher’s method assuming independent tests.

shrink the covariance matrix between coefficients using the Schafer-Strimmer
method

treeTest 21

Details

See package remaCor for details about the remaCor: :RE2C() test, and see remaCor::LS() for
details about the fixed effect test. When only 1 feature is selected, the original t-statistic and p-
value are returned.

Value

object of type treedata storing results

See Also

variancePartition: :mvTest()

Examples

library(variancePartition)

Load cell counts, clustering and metadata
from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim”)

Plot hierarchy and testing results
plotTreeTest(res)

Extract results for first 3 nodes
res[1:3,]

Index

x datasets
IFNCellCounts, 11

buildClusterTree, 3

clr, 4

clrInv, 5

crumblr, 6
crumblr,data.frame-method (crumblr), 6
crumblr,matrix-method (crumblr), 6
crumblr-package, 2

df_cellCounts (IFNCellCounts), 11
diffTree, 8
dmn_mle, 10

hcl (IFNCellCounts), 11

IFNCellCounts, 11
info (IFNCellCounts), 11

logFrac, 12
meanSdPlot, 13

plotForest, 15

plotForest, treedata-method
(plotForest), 15

plotScatterDensity, 16

plotTreeTest, 16

plotTreeTestBeta, 17

standardize, 19
standardize,EList-method (standardize),
19

treeTest, 20

22

	crumblr-package
	buildClusterTree
	clr
	clrInv
	crumblr
	diffTree
	dmn_mle
	IFNCellCounts
	logFrac
	meanSdPlot
	plotForest
	plotScatterDensity
	plotTreeTest
	plotTreeTestBeta
	standardize
	treeTest
	Index

