Package ‘amplican’

July 9, 2025

Type Package
Title Automated analysis of CRISPR experiments

Description "amplican® performs alignment of the amplicon reads, normalizes
gathered data, calculates multiple statistics (e.g. cut rates, frameshifts)
and presents results in form of aggregated reports. Data and statistics can
be broken down by experiments, barcodes, user defined groups, guides and
amplicons allowing for quick identification of potential problems.

Version 1.30.0
URL https://github.com/valenlab/amplican

BugReports https://github.com/valenlab/amplican/issues
biocViews ImmunoOncology, Technology, Alignment, gPCR, CRISPR
License GPL-3

LinkingTo Rcpp

Depends R (>= 3.5.0), methods, BiocGenerics (>= 0.22.0), Biostrings
(>=2.44.2), pwalign, data.table (>= 1.10.4-3)

Imports Rcpp, utils (>=3.4.1), S4Vectors (>= 0.14.3), ShortRead (>=
1.34.0), IRanges (>= 2.10.2), GenomicRanges (>= 1.28.4),
GenomelnfoDb (>= 1.12.2), BiocParallel (>= 1.10.1), gtable (>=
0.2.0), gridExtra (>= 2.2.1), ggplot2 (>= 3.3.4), ggthemes (>=
3.4.0), waffle (>=0.7.0), stringr (>= 1.2.0), stats (>=
3.4.1), matrixStats (>= 0.52.2), Matrix (>= 1.2-10), dplyr (>=
0.7.2), rmarkdown (>= 1.6), knitr (>= 1.16), cluster (>= 2.1.4)

RoxygenNote 7.3.1
Suggests testthat, BiocStyle, GenomicAlignments

Collate 'helpers_general.R' 'AlignmentsExperimentSet-class.R’
'"ReppExports.R' 'helpers_rmd.R' 'amplicanReport.R’
'helpers_directory.R' 'helpers_warnings.R' 'helpers_filters.R’
'helpers_alignment.R' 'amplicanAlign.R' 'amplican.R’
'amplicanFilter.R' 'amplicanNormalize.R' 'amplicanSummarize.R'
'egforce_bezier.R' 'helpers_plots.R'

VignetteBuilder knitr

https://github.com/valenlab/amplican
https://github.com/valenlab/amplican/issues

2 Contents

Encoding UTF-8

git_url https://git.bioconductor.org/packages/amplican
git_branch RELEASE_3_21

git_last commit blfccSe

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Kornel Labun [aut],
Eivind Valen [cph, cre]

Maintainer Eivind Valen <eivind.valen@gmail.com>

Contents
AlignmentsExperimentSet-class L L 4
alphabetQuality 7
amplican 8
amplicanAlign. 8
amplicanConsensust e e e e e e e e e e 11
amplicanFilter 12
amplicanMap 13
amplicanNormalize 14
amplicanOverlap 15
amplicanPipeline L L 16
amplicanPipelineConservative 19
amplicanReport 23
amplicanSummarize L e 24
amplican_print_reads e 25
assignedCount e 26
barcodeData 26
barcodeData<- L e 27
checkConfigFile e 28
checkFileWriteAccess it i 28
checkPrimers 29
checkTarget e e 29
cigarsToOEvents e 30
comb_along e 31
CUMSUMW .« « vt v v e ettt e e e e e e e e e e e e e e 31
decode L e 32
defGR e 32
experimentData e e 33
experimentData<- e 34
extractEventso 34
findEOP e 35
findLQR 36

Contents

Index

3

flipRanges e e e e 38
fwdReads 38
fwdReads<- 39
fwdReadsType e 39
fwdReadsType<- e 40
GEOM_DEZIT L e e e e e e e 40
getEventInfo 44
getEVents L e e 44
get_left_primer 45
get_right_primer 46
GELLSEQ « v v e e e e e e e e e e e e e e e e e e 46
goodAvgQuality e e e 47
goodBaseQuality 47
1s_hdr Strict e 48
lookupAlignment e 48
makeAlignment 49
metaplot_deletions L. 51
metaplot_insertions 52
metaplot_mismatches 53
pairToEvents L 54
plot_amplicon e e e e e e 54
PIOL_CULS L e e e e e 55
plot_deletions 56
plot_height 57
plot_heterogeneity 58
PlOt_INSErtions e e e e e e e 59
plot_mismatches 60
plot_variants e e e e e e e e e 61
readCounts L. e 63
readCounts<-o e e e 63
1eVCOMD o o o e e e e 64
rveReads 64
rveReads<- L 65
rveReadsType L 65
rveReadsType<- e 66
unassignedCount Lol 67
unassignedData L 67
unassignedData<- L. 68
UPPETGIOUPS . v v v v v o e 68
writeAlignmentso 69
70

4 AlignmentsExperimentSet-class

AlignmentsExperimentSet-class
An S4 class to represent alignments from multiple experiments

Description

Class AlignmentsExperimentSet holds data from multiple alignments for many experiments. Al-
lows to examine alignments in great detail.

Usage

AlignmentsExperimentSet(...)

S4 method for signature 'AlignmentsExperimentSet'
length(x)

S4 method for signature 'AlignmentsExperimentSet'
fwdReads (x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
fwdReads(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
rveReads (x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
rveReads(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
fwdReadsType (x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
fwdReadsType(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
rveReadsType(x)

S4 replacement method for signature 'AlignmentsExperimentSet'
rveReadsType(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
unassignedData(x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
unassignedData(x) <- value

S4 method for signature 'AlignmentsExperimentSet'

AlignmentsExperimentSet-class

readCounts(x)

S4 replacement method for signature 'AlignmentsExperimentSet'
readCounts(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
experimentData(x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
experimentData(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
barcodeData(x)

S4 replacement method for signature 'AlignmentsExperimentSet'’
barcodeData(x) <- value

S4 method for signature 'AlignmentsExperimentSet'
unassignedCount(x)

S4 method for signature 'AlignmentsExperimentSet'
assignedCount(x)

S4 method for signature 'AlignmentsExperimentSet'
names(x)

S4 method for signature 'AlignmentsExperimentSet'
c(x, ...)

S4 method for signature 'AlignmentsExperimentSet,numeric,missing,missing'’
x[i, j, ..., drop = TRUE]

S3 method for class 'AlignmentsExperimentSet'
as.list(x, ...)

S4 method for signature 'AlignmentsExperimentSet'
x$name

S4 method for signature 'AlignmentsExperimentSet'
writeAlignments(x, file = "", aln_format = "txt")

S4 method for signature 'AlignmentsExperimentSet'
lookupAlignment(x, ID, read_id = 1)

S4 method for signature 'AlignmentsExperimentSet'
extractEvents(object, use_parallel = FALSE)

6 AlignmentsExperimentSet-class

Arguments
pass any number of AlignmentsExperimentSet objects, make sure experiment
IDs can be unique after merging
X, object (AlignmentsExperimentSet)
value Represents assignment values for setter methods.

i, j, name, drop (numeric, missing, character, missing) AlignmentsExperimentSet object can be
subsetted using names of the experiments eg. x$name or x[i], resulting in
AlignmentsExperimentSet object that has only one experiment. During this sub-
setting, values of unassignedData and barcodeData are dropped.

file (connection or string) Destination file. When empty, defaults to standard output.
aln_format ("txt" or "fasta") Specifies format of the file.

1D (string) Experiment Identifier

read_id (numeric) Read Identifier. Reads are sorted by frequency. Defaults to 1, most

abundant read.

use_parallel (boolean) When using extractEvents you can use multicore back-end through
register as this is very slow function (despite vectorization).

Value

depending on the function used

Slots

fwdReads, rveReads (list) Named list where each element is of class PairwiseAlignmentsSingleSubject.
Names correspond to the experiment ID. Contains alignments of reads against amplicons.

fwdReadsType, rveReadsType (list) Named list where each element is of logical vector, so far
TRUE corresponds to HDR events. Names correspond to the experiment ID. Contains type of
read - HDR/NHEJ.

readCounts (list) Named list where each element is numeric vector that describes how many reads
are compressed into unique representation before alignment in fwdReads and/or rveReads.

unassignedData (data.frame) Contains reads that failed to be assigned to any of the experiments.
Alignment of forward against reverse reads may give hint whether these reads are compro-
mised in any way.

experimentData (data.frame) Expands on configuration file and provides information about cut
rates, frameshifts, PRIMER DIMER detection etc. Each row corresponds to experiment ID.

barcodeData (data.frame) Information that is gathered on the barcode level is gathered in this
data.frame, mainly quality filtering statistics.

View alignments

Write out all alignments in "fasta" or "txt" format.:
writeAlignments(x, file="", aln_format = "txt")

Write out human readable alignments for given experiment and read_id.:
lookupAlignment(x, ID, read_id=1)

alphabetQuality

Coercion based on events

Coerce to data. frame compatible with GRanges .:
as.data.frame(x)

Examples

exampleAlignments <- pwalign::pairwiseAlignment(
Biostrings: :DNAStringSet(c("ACTGACTG”, "CGACGACG")), "ACGTACGTACGT")
new("AlignmentsExperimentSet"”,
fwdReads = 1list(ID_1 = exampleAlignments, ID_2 = exampleAlignments),
rveReads = list(ID_1 = exampleAlignments, ID_2 = exampleAlignments),
fwdReadsType = list(ID_1 = c(FALSE, FALSE), ID_2 = c(FALSE, FALSE)),
rveReadsType = 1list(ID_1 = c(FALSE, FALSE), ID_2 = c(FALSE, FALSE)),
readCounts = list(ID_1 = c(2, 20), ID_2 = c(30, 100)),
unassignedData = NULL,
experimentData = data.frame(ID = c("ID_1", "ID_2"),
Barcode = c("B1", "B1"),
whatever = c(50, 100)),
barcodeData = data.frame(Barcode = "B1"”, statisticl = 100))
Coercion
extractEvents(AlignmentsExperimentSet())
GenomicRanges: :GRanges(extractEvents(AlignmentsExperimentSet()))

alphabetQuality This filters out sequences which have nonstandard nucleotides.

Description

This filters out sequences which have nonstandard nucleotides.

Usage

alphabetQuality(reads, batch_size = 1e+07)

Arguments
reads (ShortRead object) Loaded reads from fastq.
batch_size (numeric) How many reads to process at a time.
Value

(boolean) Logical vector with the valid rows as TRUE.

8 amplicanAlign

amplican Automated analysis of CRISPR experiments.

Description

Main goals:

1. Flexible pipeline for analysis of the CRISPR Mi-Seq or Hi-Seq data.
. Compatible with GRanges and data.table style.

2

3. Precise quantification of mutation rates.

4. Prepare automatic reports as .Rmd files that are flexible and open for manipulation.
5

. Provide specialized plots for deletions, insertions, mismatches, variants, heterogeneity of the
reads.

Details

To learn more about amplican, start with the vignettes: browseVignettes(package = "amplican”)

Author(s)

Maintainer: Eivind Valen <eivind.valen@gmail.com> [copyright holder]

Authors:

* Kornel Labun <kornel.labun@gmail.com>

See Also

Useful links:

e https://github.com/valenlab/amplican
* Report bugs at https://github.com/valenlab/amplican/issues

amplicanAlign Align reads to amplicons.

Description

amplicanAlign takes a configuration files, fastq reads and output directory to prepare alignments
and summary. It uses global Needleman-Wunsch algorithm with parameters optimized for CRISPR
experiment. After alignments, object of AlignmentsExperimentSet is returned that allows for
coercion into GRanges (plus is for forward and minus for reverse reads). It is also possible to
output alignments in other, additional formats.

https://github.com/valenlab/amplican
https://github.com/valenlab/amplican/issues

amplicanAlign

Usage

amplicanAlign(
config,
fastqg_folder,
use_parallel
average_quali
min_quality =

= FALSE,

ty = 30,
20,

filter_n = FALSE,

batch_size =

1e+06,

scoring_matrix = Biostrings::nucleotideSubstitutionMatrix(match =5, mismatch = -4,

baseOnly =
gap_opening =
gap_extension

FALSE, type = "DNA"),
25,
:@,

fastgfiles = 0.5,

primer_mismat
donor_mismatc
donor_strict

Arguments

config

fastg_folder

use_parallel
average_quality

min_quality

filter_n

batch_size

scoring_matrix
gap_opening
gap_extension

fastqfiles

ch =0,
h =3,

= FALSE

(string) The path to your configuration file. For example: system.file("extdata”,
"config.txt", package = "amplican”). Configuration file can contain addi-
tional columns, but first 11 columns have to follow the example config specifi-
cation.

(string) Path to FASTQ files. If not specified, FASTQ files should be in the same
directory as config file.

(boolean) Set to TRUE, if you have registered multicore back-end.

(numeric) The FASTQ file have a quality for each nucleotide, depending on se-
quencing technology there exist many formats. This package uses readFastq to

parse the reads. If the average quality of the reads fall below value of average_quality
then sequence is filtered. Default is O.

(numeric) Similar as in average_quality, but depicts the minimum quality for
ALL nucleotides in given read. If one of nucleotides has quality BELLOW
min_quality, then the sequence is filtered. Default is 20.

(boolean) Whether to filter out reads containing N base.

(numeric) How many reads to analyze at a time? Needed for filtering of large
fastq files.

(matrix) Default is "NUC44’. Pass desired matrix using nucleotideSubstitutionMatrix.
(numeric) The opening gap score.
(numeric) The gap extension score.

(numeric) Normally you want to use both FASTQ files. But in some special
cases, you may want to use only the forward file, or only the reverse file. Possi-
ble options:

10 amplicanAlign

¢ 0 Use both FASTQ files.

* 0.5 Use both FASTQ files, but only for one of the reads (forward or reverse)
is required to have primer perfectly matched to sequence - eg. use when re-
verse reads are trimmed of primers, but forward reads have forward primer
in the sequence.

¢ 1 Use only the forward FASTQ file.
* 2 Use only the reverse FASTQ file.

primer_mismatch
(numeric) Decide how many mismatches are allowed during primer matching
of the reads, that groups reads by experiments. When primer_mismatch = @ no
mismatches are allowed, which can increase number of unasssigned read.

donor_mismatch (numeric) How many events of length 1 (mismatches, deletions and insertions of
length 1) are allowed when aligning toward the donor template. This parameter
is only used when donor template is specified. The higher the parameter the
less strict will be algorithm accepting read as HDR. Set to O if only perfect
alignments to the donor template marked as HDR, unadvised due to error rate
of the sequencers.

donor_strict (logical) Applies more strict algorithm for HDR detection. Only these reads that
have all of the donor events will count as HDR. Tolerates ‘donor_mismatch*
level of noise, but no indels are allowed. Use this when your reads should span
over the whole window of the donor events. Might be more time consuming.

Value

(AlignmentsExperimentSet) Check AlignmentsExperimentSet class for details. You can use
lookupAlignment to examine alignments visually.

See Also

Other analysis steps: amplicanConsensus(), amplicanFilter(), amplicanMap(), amplicanNormalize(),
amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

Examples

path to example config file

config <- system.file("extdata”, "config.csv"”, package = "amplican")
path to example fastq files

fastq_folder <- system.file("extdata”, package = "amplican")

aln <- amplicanAlign(config, fastqg_folder)

aln

amplicanConsensus 11

amplicanConsensus Extract consensus out of forward and reverse events.

Description

When forward and reverse reads are in agreement on the events (eg. deletion) amplicanConsensus
will mark forward event as TRUE indicating that he represents consensus. In cases where forward
and reverse read agree only partially, for example, they share the same start of the deletion, but they
have different end amplicanConsensus will pick the version of read with higher alignment score,
in situation where both of the reads overlap expected cut site, otherwise both events will be rejected
and marked FALSE. When there are events only on one of the strands they will be rejected.

Usage
amplicanConsensus(aln, cfgT, overlaps = "overlaps”, promiscuous = TRUE)
Arguments
aln (data.frame) Contains relevant events in GRanges style.
cfgT (data.frame) Should be table containing at least positions of primers in the am-
plicons and their identifiers
overlaps (character) Specifies which metadata column of aln indicates which events are
overlapping expected cut site.
promiscuous (boolean) Allows to relax consensus rules. When TRUE will allow Indels that
are not confirmed by the other strand (when both are used).
Details

In situation where you have only forward or only reverse reads don’t use this function and assign
all TRUE to all of your events.

Consensus out of the forward + reverse reads is required for amplicanSummary, and amplicanConsensus
requires amplicanOverlap.

Value
(bolean vector) Where TRUE means that given event represents consensus out of forward and re-
verse reads.

See Also

Other analysis steps: amplicanAlign(), amplicanFilter(), amplicanMap(), amplicanNormalize(),
amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

12 amplicanFilter

Examples

file_path <- system.file("test_data”, "test_aln.csv”, package = "amplican")
aln <- data.table::fread(file_path)
cfgT <- data.table::fread(

system.file("test_data”, "test_cfg.csv”, package = "amplican"))
all(aln$consensus == amplicanConsensus(aln, cfgT))

amplicanFilter Filter Events Overlapping Primers, PRIMER DIMERS and Low Align-
ment Score Events.

Description

Very often alignments return deletions that are not real deletions, but rather artifact of incomplete
reads eg.:

ACTGAAAAA------- <- this "deletion” should be filtered
ACTG----ACTGACTG

We call them Events Overlapping Primers and filter them together with reads that are potentially
PRIMER DIMERS. This filter will also remove all events coming from reads with low alignment
score - potential Off-targets.

Usage
amplicanFilter(aln, cfgT, PRIMER_DIMER)

Arguments
aln (data.frame) Should contain events from alignments in GRanges style with columns
eg. seqnames, width, start, end.
cfgT (data.frame) Needs columns Forward_Primer, ReversePrimer and Amplicon.

PRIMER_DIMER (numeric) Value specifying buffer for PRIMER DIMER detection. For a given
read it will be recognized as PRIMER DIMER when alignment will introduce
gap of size bigger than:
length of amplicon - (lengths of PRIMERS + PRIMER_DIMER value)

Value

(aln) Reduced by events classified as PRIMER DIMER or overlapping primers.

See Also
findPD and findEOP

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanMap(), amplicanNormalize(),
amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

amplicanMap 13

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"raw_events.csv", package = "amplican")
aln <- data.table::fread(file_path)
cfgT <- data.table::fread(
system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican"))
amplicanFilter(aln, cfgT, 30)

amplicanMap Map events to their respective relative coordinates specified with UP-
PER case.

Description

Translate coordinates of GRanges events so that they can be relative to the amplicon. As point zero
we assume first left sided UPPER case letter in the amplicon. Be weary that events for amplicons
without expected cut sites are filtered. Don’t use this function, if you don’t have expected cut sites
specified and don’t use any of the metaplots.

Usage

amplicanMap(aln, cfgT)

Arguments
aln (data.frame) List of events to map to the relative coordinates.
cfgT (data.frame) config table

Value

(GRanges) Same as events, but the coordinates are relative to the expected cut sites.

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(),amplicanFilter(), amplicanNormalize(),
amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),

amplicanSummarize()
Examples
example config
config <- read.csv(system.file("extdata”, "config.csv",
package = "amplican”))

example events
events <- read.csv(system.file("extdata”, "results”, "alignments”,
"raw_events.csv"”, package = "amplican”))

14 amplicanNormalize

make events relative to the UPPER case
amplicanMap(events, config)

amplicanNormalize Remove events that can be found in Controls.

Description

This function can adjust events for small differences between known annotations (amplicon se-
quences) and real DNA of the strain that was sequenced. Events from the control are grouped by
add and their frequencies are calculated in respect to number of total reads in that groups. In next
step events from the control are filtered according to min_freq, all events below are treated as se-
quencing errors and rejected. Finally, all events that can be found in treatment group that find their
exact match (by non skipped columns) in control group are removed. All events from control group
are returned back.

Usage

amplicanNormalize(
aln,
cfgT,
add = c("guideRNA", "Group"),
skip = c("counts”, "score"”, "seqnames”, "read_id", "strand", "overlaps”, "consensus"),
min_freq = 0.01

)
Arguments
aln (data.frame) Contains events from alignments.
cfgT (data.frame) Config table with information about experiments.
add (character vector) Columns from cfgT that should be included in event table for
normalization matching. Defaults to c("guideRNA", "Group") , which means
that only those events created by the same guideRNA in the same Group will be
removed if found in Control.
skip (character vector) Specifies which columns of aln to skip.
min_freq (numeric) All events from control group below this frequency will be not in-
cluded in filtering. Use this to filter out background noise and sequencing errors.
Value

(data.frame) Same as aln, but events are normalized. Events from Control are not changed. Addi-
tionally columns from add are added to the data.frame.

amplicanOverlap 15

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

Examples

aln <- data.frame(segnames = 1:5, start = 1, end = 2, width = 2,
counts = 101:105)
cfgT <- data.frame(ID = 1:5, guideRNA = rep("ACTG", 5),
Reads_Filtered = c(2, 2, 3, 3, 4),
Group = c("A", "A", "B", "B", "B"),
Control = c(TRUE, FALSE, TRUE, FALSE, FALSE))
all events are same as in the control group, therefore are filtered out
events from control groups stay
amplicanNormalize(aln, cfgT)
events that are different from control group are preserved
aln[2, "start"] <- 3
amplicanNormalize(aln, cfgT)

amplicanOverlap Check which events overlap expected cut sites.

Description

To determine which deletions, insertions and mismatches (events) are probably created by CRISPR
we check whether they overlap expected cut sites. Expected cut sites should be specified in UPPER
CASE letters in the amplicon sequences.

Usage

amplicanOverlap(aln, cfgT, cut_buffer = 5, relative = FALSE)

Arguments
aln (data.frame) Contains relevant events in GRanges style.
cfgT (data.frame) Contains amplicon sequences.
cut_buffer (numeric) Number of bases that should expand 5° and 3’ of the specified ex-
pected cut sites.
relative (boolean) Sets whether events are relative to the position of the target site.
Value

(bolean vector) Where TRUE means that given event overlaps cut site.

16 amplicanPipeline

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanNormalize(), amplicanPipeline(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

Examples

file_path <- system.file("test_data”, "test_aln.csv”, package = "amplican")
aln <- data.table::fread(file_path)
cfgT <- data.table::fread(

system.file("test_data”, "test_cfg.csv”, package = "amplican"))
all(aln$overlaps == amplicanOverlap(aln, cfgT))

amplicanPipeline Wraps main package functionality into one function.

Description

amplicanPipeline is convenient wrapper around all functionality of the package with the most ro-
bust settings. It will generate all results in the result_folder and also knit prepared reports into
‘reports’ folder.

Usage

amplicanPipeline(
config,
fastqg_folder,
results_folder,
knit_reports = TRUE,
write_alignments_format = "None",
average_quality = 30,
min_quality = 0,
filter_n = FALSE,
batch_size = 1e+07,
use_parallel = FALSE,
scoring_matrix = Biostrings::nucleotideSubstitutionMatrix(match =5, mismatch = -4,
baseOnly = FALSE, type = "DNA"),
gap_opening = 25,
gap_extension = 0,
fastgfiles = 0.5,
primer_mismatch = 2,
donor_mismatch = 3,
donor_strict = FALSE,
PRIMER_DIMER 30,
event_filter = TRUE,
cut_buffer = 5,

amplicanPipeline 17

promiscuous_consensus = TRUE,
normalize = c("guideRNA", "Group"”),
min_freq = min_freq_default,
continue = TRUE

Arguments

config (string) The path to your configuration file. For example: system.file("extdata”,
"config.txt"”, package = "amplican”). Configuration file can contain addi-
tional columns, but first 11 columns have to follow the example config specifi-
cation.

fastq_folder (string) Path to FASTQ files. If not specified, FASTQ files should be in the same
directory as config file.

results_folder (string) Where do you want to store results? The package will create files in that
folder so make sure you have writing permissions.

knit_reports (boolean) whether function should "knit" all reports automatically for you (it is
time consuming, be patient), when false reports will be prepared, but not knitted

write_alignments_format
(character vector) Whether amplicanPipeline should write alignments results
to separate files. Alignments are also always saved as .rds object of AlignmentsExperimentSet
class. Possible options are:

» "fasta" outputs alignments in fasta format where header indicates experi-
ment ID, read id and number of reads

* "txt" simple format, read information followed by forward read and ampli-
con sequence followed by reverse read with its amplicon sequence eg.:

ID: ID_1 Count: 7
ACTGAAAAA-—-—--—-
ACTG----- ACTGACTG

—————— G-ACTG
ACTGACTGACTG

* "None" Don’t write any alignments to files.

» c("fasta", "txt") There are also possible combinations of above formats, pass
a vector to get alignments in multiple formats.

average_quality
(numeric) The FASTQ file have a quality for each nucleotide, depending on se-
quencing technology there exist many formats. This package uses readFastq to
parse the reads. If the average quality of the reads fall below value of average_quality
then sequence is filtered. Default is O.

min_quality (numeric) Similar as in average_quality, but depicts the minimum quality for
ALL nucleotides in given read. If one of nucleotides has quality BELLOW
min_quality, then the sequence is filtered. Default is 20.

filter_n (boolean) Whether to filter out reads containing N base.

18

amplicanPipeline

batch_size (numeric) How many reads to analyze at a time? Needed for filtering of large
fastq files.

use_parallel (boolean) Set to TRUE, if you have registered multicore back-end.

scoring_matrix (matrix) Defaultis ’NUC44’. Pass desired matrix using nucleotideSubstitutionMatrix.
gap_opening (numeric) The opening gap score.

gap_extension (numeric) The gap extension score.

fastqgfiles (numeric) Normally you want to use both FASTQ files. But in some special
cases, you may want to use only the forward file, or only the reverse file. Possi-
ble options:

* 0 Use both FASTQ files.

* 0.5 Use both FASTQ files, but only for one of the reads (forward or reverse)
is required to have primer perfectly matched to sequence - eg. use when re-
verse reads are trimmed of primers, but forward reads have forward primer
in the sequence.

¢ 1 Use only the forward FASTQ file.

e 2 Use only the reverse FASTQ file.

primer_mismatch
(numeric) Decide how many mismatches are allowed during primer matching
of the reads, that groups reads by experiments. When primer_mismatch = @ no
mismatches are allowed, which can increase number of unasssigned read.

donor_mismatch (numeric) How many events of length 1 (mismatches, deletions and insertions of
length 1) are allowed when aligning toward the donor template. This parameter
is only used when donor template is specified. The higher the parameter the
less strict will be algorithm accepting read as HDR. Set to O if only perfect
alignments to the donor template marked as HDR, unadvised due to error rate
of the sequencers.

donor_strict (logical) Applies more strict algorithm for HDR detection. Only these reads that
have all of the donor events will count as HDR. Tolerates ‘donor_mismatch*
level of noise, but no indels are allowed. Use this when your reads should span
over the whole window of the donor events. Might be more time consuming.

PRIMER_DIMER (numeric) Value specifying buffer for PRIMER DIMER detection. For a given
read it will be recognized as PRIMER DIMER when alignment will introduce
gap of size bigger than:
length of amplicon - (lengths of PRIMERS + PRIMER_DIMER value)

event_filter (logical) Whether detection of offtarget reads, should be enabled.

cut_buffer The number of bases by which extend expected cut sites (specified as UPPER
case letters in the amplicon) in 5° and 3’ directions.

promiscuous_consensus
(boolean) Whether rules of amplicanConsensus should be promiscuous. When
promiscuous, we allow indels that have no confirmation on the other strand.

normalize (character vector) If column ’Control’ in config table has all FALSE/O values
then normalization is skipped. Otherwise, normalization is strict, which means
events that are found in ’Control” TRUE group will be removed in ’Control’
FALSE group. This parameter by default uses columns ’guideRNA’ and *Group’

amplicanPipelineConservative 19

to impose additional restrictions on normalized events eg. only events created
by the same ’guideRNA’ in the same ’Group’ will be normalized.

min_freq (numeric) All events below this frequency are treated as sequencing errors and
rejected. This parameter is used during normalization through amplicanNormalize.

continue (boolean) Default TRUE, decides whether to continue failed ampliCan runs. In
case of FALSE, all contents in ‘results‘ folder will be removed.

Value

(invisible) results_folder path

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanNormalize(), amplicanOverlap(), amplicanPipelineConservative(), amplicanReport(),
amplicanSummarize()

Examples

path to example config file

config <- system.file("extdata”, "config.csv”, package = "amplican")
path to example fastq files

fastg_folder <- system.file("extdata”, package = "amplican”)

output folder

results_folder <- tempdir()

#full analysis, not knitting files automatically
amplicanPipeline(config, fastq_folder, results_folder, knit_reports = FALSE)

amplicanPipelineConservative
Wraps main package functionality into one function.

Description

amplicanPipelinelndexHopping is identical as amplicanPipeline except that default min_freq thresh-
old is set to 0.15. Setting this threshold higher will decrease risks of inadequate normalization in

cases of potential Index Hopping, potentially decreasing precision of true editing rate calling. In-

dex Hopping can be mitigated with use of unique dual indexing pooling combinations. However,

in cases when you might expect Index Hopping to occur you should use this function instead of

amplicanPipeline.

20 amplicanPipelineConservative

Usage

amplicanPipelineConservative(
config,
fastqg_folder,
results_folder,
knit_reports = TRUE,
write_alignments_format = "None”,
average_quality = 30,
min_quality = 0,
filter_n = FALSE,
batch_size = 1e+07,
use_parallel = FALSE,
scoring_matrix = Biostrings::nucleotideSubstitutionMatrix(match = 5, mismatch = -4,

baseOnly = FALSE, type = "DNA"),

gap_opening = 25,
gap_extension = 0,
fastgfiles = 0.5,
primer_mismatch = 2,
donor_mismatch = 3,
donor_strict = FALSE,
PRIMER_DIMER 30,
event_filter = TRUE,
cut_buffer = 5,
promiscuous_consensus = TRUE,
normalize = c("guideRNA", "Group"),
min_freq = min_freq_default,
continue = TRUE

Arguments

config (string) The path to your configuration file. For example: system.file("extdata”,
"config.txt"”, package = "amplican”). Configuration file can contain addi-
tional columns, but first 11 columns have to follow the example config specifi-
cation.

fastq_folder (string) Path to FASTQ files. If not specified, FASTQ files should be in the same
directory as config file.

results_folder (string) Where do you want to store results? The package will create files in that
folder so make sure you have writing permissions.

knit_reports (boolean) whether function should "knit" all reports automatically for you (it is
time consuming, be patient), when false reports will be prepared, but not knitted
write_alignments_format

(character vector) Whether amplicanPipeline should write alignments results
to separate files. Alignments are also always saved as .rds object of AlignmentsExperimentSet
class. Possible options are:

» "fasta" outputs alignments in fasta format where header indicates experi-
ment ID, read id and number of reads

amplicanPipelineConservative 21

average_quality

min_quality

filter_n

batch_size

use_parallel
scoring_matrix
gap_opening
gap_extension

fastgfiles

primer_mismatch

donor_mismatch

* "txt" simple format, read information followed by forward read and ampli-
con sequence followed by reverse read with its amplicon sequence eg.:

ID: ID_1 Count: 7
ACTGAAAAA--———-—--
ACTG----- ACTGACTG

—————— G-ACTG
ACTGACTGACTG
* "None" Don’t write any alignments to files.

* c("fasta", "txt") There are also possible combinations of above formats, pass
a vector to get alignments in multiple formats.

(numeric) The FASTQ file have a quality for each nucleotide, depending on se-
quencing technology there exist many formats. This package uses readFastq to

parse the reads. If the average quality of the reads fall below value of average_quality
then sequence is filtered. Default is O.

(numeric) Similar as in average_quality, but depicts the minimum quality for
ALL nucleotides in given read. If one of nucleotides has quality BELLOW
min_quality, then the sequence is filtered. Default is 20.

(boolean) Whether to filter out reads containing N base.

(numeric) How many reads to analyze at a time? Needed for filtering of large
fastq files.

(boolean) Set to TRUE, if you have registered multicore back-end.

(matrix) Default is 'NUC44’. Pass desired matrix using nucleotideSubstitutionMatrix.
(numeric) The opening gap score.

(numeric) The gap extension score.

(numeric) Normally you want to use both FASTQ files. But in some special
cases, you may want to use only the forward file, or only the reverse file. Possi-
ble options:

¢ 0 Use both FASTQ files.

* 0.5 Use both FASTQ files, but only for one of the reads (forward or reverse)
is required to have primer perfectly matched to sequence - eg. use when re-
verse reads are trimmed of primers, but forward reads have forward primer
in the sequence.

¢ 1 Use only the forward FASTQ file.
* 2 Use only the reverse FASTQ file.

(numeric) Decide how many mismatches are allowed during primer matching
of the reads, that groups reads by experiments. When primer_mismatch = @ no
mismatches are allowed, which can increase number of unasssigned read.

(numeric) How many events of length 1 (mismatches, deletions and insertions of
length 1) are allowed when aligning toward the donor template. This parameter
is only used when donor template is specified. The higher the parameter the

22 amplicanPipelineConservative

less strict will be algorithm accepting read as HDR. Set to O if only perfect
alignments to the donor template marked as HDR, unadvised due to error rate
of the sequencers.

donor_strict (logical) Applies more strict algorithm for HDR detection. Only these reads that
have all of the donor events will count as HDR. Tolerates ‘donor_mismatch*
level of noise, but no indels are allowed. Use this when your reads should span
over the whole window of the donor events. Might be more time consuming.

PRIMER_DIMER (numeric) Value specifying buffer for PRIMER DIMER detection. For a given
read it will be recognized as PRIMER DIMER when alignment will introduce
gap of size bigger than:
length of amplicon - (lengths of PRIMERS + PRIMER_DIMER value)

event_filter (logical) Whether detection of offtarget reads, should be enabled.

cut_buffer The number of bases by which extend expected cut sites (specified as UPPER
case letters in the amplicon) in 5° and 3’ directions.

promiscuous_consensus
(boolean) Whether rules of amplicanConsensus should be promiscuous. When
promiscuous, we allow indels that have no confirmation on the other strand.

normalize (character vector) If column ’Control’ in config table has all FALSE/O values
then normalization is skipped. Otherwise, normalization is strict, which means
events that are found in Control’ TRUE group will be removed in ’Control’
FALSE group. This parameter by default uses columns ’guideRNA’ and *Group’
to impose additional restrictions on normalized events eg. only events created
by the same ’guideRNA’ in the same ’Group’ will be normalized.

min_freq (numeric) All events below this frequency are treated as sequencing errors and
rejected. This parameter is used during normalization through amplicanNormalize.

continue (boolean) Default TRUE, decides whether to continue failed ampliCan runs. In
case of FALSE, all contents in ‘results‘ folder will be removed.

Details

result_folder and also knit prepared reports into 'reports’ folder.

Value

(invisible) results_folder path

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanNormalize(), amplicanOverlap(), amplicanPipeline(), amplicanReport(), amplicanSummarize()

amplicanReport

23

amplicanReport

Prepare reports as .Rmd files.

Description

amplicanReport takes a configuration file, fastq reads and output directory to prepare summaries as
an editable .Rmd file. You can specify whether you want to make summaries based on ID, Barcode,
Group or even guideRNA and Amplicon. This function automatically knits all reports after creation.
If you want to postpone knitting and edit reports, use .Rmd templates to create your own version of
reports instead of this function.

Usage

amplicanReport(

results_folder,

levels = c("id", "barcode", "group”, "guide"”, "amplicon”, "summary"),

report_files = c("id_report”, "barcode_report”, "group_report”, "guide_report”,
"amplicon_report”, "index"),

cut_buffer =
xlab_spacing
top = 5,

knit_reports

Arguments

results_folder

levels

report_files

cut_buffer

xlab_spacing

top

knit_reports

Value

5,

4,

= TRUE

(string) Folder containing results from the amplicanAlign function, do not
change names of the files.

(vector) Possible values are: "id", "barcode", "group", "guide", "amplicon",
"summary". You can also input more than one value eg. c("id", "barcode")
will create two separate reports for each level.

(vector) You can supply your own names of the files. For each of the levels there
has to be one file name. Files are created in current working directory by default.

(numeric) Default 5. A number of bases that is used around the specified cut
site.

(numeric) Default is 4. Spacing of the ticks on the x axis of plots.

(numeric) Default is 5. How many of the top most frequent unassigned reads to
report? It is only relevant when you used forward and reverse reads. We align
them to each other as we could not specify correct amplicon.

(boolean) Whether to knit reports automatically.

(string) Path to the folder with results.

24 amplicanSummarize

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanNormalize(), amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(),
amplicanSummarize()

Examples

results_folder <- tempdir()
amplicanReport(results_folder, report_files = file.path(results_folder,
c("id_report”,
"barcode_report”,
"group_report”,
"guide_report”,
"amplicon_report”,
"index")),
knit_reports = FALSE)

amplicanSummarize Summarize how many reads have frameshift and how many reads have
deletions.

Description

Before using this function make sure events are filtered to represent consensus with amplicanConsensus,
if you use both forward and reverse reads. If you want to calculate metrics over expected cut site,
filter events using amplicanOverlap.

Usage

amplicanSummarize(aln, cfgT)

Arguments
aln (data.frame) Contains events from the alignments.
cfgT (data.frame) Config file with the experiments details.
Details
Adds columns to cfgT:

* ReadsCut Count of reads with deletions overlapping expected cut site.

* Reads_Frameshifted Count of reads with frameshift overlapping expected cut site.

Value

(data.frame) As cfgT, but with extra columns.

amplican_print_reads 25

See Also

Other analysis steps: amplicanAlign(), amplicanConsensus(), amplicanFilter(), amplicanMap(),
amplicanNormalize(), amplicanOverlap(), amplicanPipeline(), amplicanPipelineConservative(),

amplicanReport()
Examples
file_path <- system.file("extdata”, "results”, "alignments",
"events_filtered_shifted_normalized.csv”,
package = "amplican")

aln <- data.table::fread(file_path)
cfgT <- data.table::fread(
system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican"))
amplicanSummarize(aln, cfgT)

amplican_print_reads Pretty print forward and reverse reads aligned to each other:

Description

Usefull and needed for barcode reports.

Usage

amplican_print_reads(forward, reverse)

Arguments
forward (character or vector of characters) Forward reads.
reverse (character or vector of characters) Will be reverse complemented before align-
ment.
Value

Vector with alignments ready to be printed.

Examples

load example data

unassigned_file <- system.file('extdata', 'results', ‘'alignments',
'unassigned_reads.csv', package = 'amplican')

unassigned <- data.table::setDF(data.table::fread(unassigned_file))

sort by frequency

unassigned <- unassigned[order(unassigned$BarcodeFrequency,
decreasing = TRUE),]

print alignment of most frequent unassigned reads

26 barcodeData

cat(amplican_print_reads(unassigned[1, 'Forward'],
unassigned[1, 'Reverse']),
sep = "\n")

assignedCount Get count of assigned reads.

Description

Get count of assigned reads.

Usage

assignedCount(x)

Arguments

X (AlignmentsExperimentSet)

Value

(numeric)

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

writeAlignments(aln, file.path(tempdir(), "aln.txt"))

barcodeData Barcode data.

Description

Get barcode data.frame with information on the barcode level.

Usage

barcodeData(x)

Arguments

X (AlignmentsExperimentSet)

barcodeData<-

Value

(data.tableOrNULL)

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds"”, package = "amplican")

aln <- readRDS(file_path)

barcodeData(aln)

27

barcodeData<- Barcode data.

Description

Set barcode data.frame with information on the barcode level.

Usage

barcodeData(x) <- value

Arguments
X (AlignmentsExperimentSet)
value (data.frame)

Value

(AlignmentsExperimentSet)

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

barcodeData(aln) <- barcodeData(aln) #replace with the same values as before

28 checkFileWriteAccess

checkConfigFile Pre-process a config file and checks that everything is in order.

Description

Its takes care of the following: No IDs are duplicated. Every combination of barcode, forward
primer and reverse primer is unique. Each barcode has unique forward reads file and reverse read
files. Checks that the read files exist with read access.

Usage

checkConfigFile(configTable, fastq_folder)

Arguments

configTable (data.frame) Config file.
fastg_folder (string) Path to fastq folder.

Value

(boolean) TRUE, If anything goes wrong stops and prints error.

checkFileWriteAccess Checks if the given directory exist and can be written to.

Description

Checks if the given directory exist and can be written to.

Usage

checkFileWriteAccess(filePath)

Arguments

filePath (string) A string the path to the file.

Value

(invisible) TRUE, Stop if no access.

checkPrimers 29

checkPrimers Checks if the forward and reverse primer are in the amplicon and
where they are located.

Description

Checks if the forward and reverse primer are in the amplicon and where they are located.

Usage

checkPrimers(configTable, fastqfiles)

Arguments

configTable (data.frame) A data frame of config file.

fastgfiles (numeric) Which primers are important.

Value

configTable (data.frame) A data frame of config file with additional fields for start locations of the
primers

checkTarget Checks if the guideRNA is in the amplicon.

Description

Checks if the guideRNA is in the amplicon.

Usage

checkTarget(configTable)

Arguments

configTable (data.frame) data frame of config file

Value

(boolean vector) Prints warning when some guides can’t be found.

30 cigarsToEvents

cigarsToEvents Transform extended CIGAR strings into GRanges.

Description

Transform extended CIGAR strings into GRanges representation with events of deletions, insertions
and mismatches.

Usage

cigarsToEvents(
cigars,
aln_pos_start,
query_seq,
ref,
read_id,
mapq,
segnames,
strands,
counts

Arguments

cigars (character) Extended CIGARS.
aln_pos_start (integer) Pos of CIGARS.

query_seq (character) Aligned query sequences.
ref (character) Reference sequences used for alignment.
read_id (numeric) Read id for assignment for each of the CIGARS.
mapq (numeric) Maping scores.
segnames (character) Names of the sequences, potentially ids of the reference sequences.
strands (character) Strands to assign.
counts (integer) Vector of cigar counts, if data collapsed.
Value

(GRanges) Same as events.

comb_along 31

comb_along Generate all combinations along string exchanging m characters at a
time with dictionary letters.

Description
Generate all combinations along string seq swapping m characters at a time with letters defined in
dictionary letters. Allows, for instance, to create a list of possible primers with two mismatches.
Usage
comb_along(seq, m = 2, letters = c("A", "C", "T", "G"))

Arguments

seq (character) input character to permutate

m (integer) number of elements to permutate at each step

letters (character vector) dictionary source for combinations of elements
Value

(character vector) all unique combinations of permutated string

Examples

comb_along("AC")
comb_along("AAA", 1)
comb_along ("AAA")
comb_along ("AAA", 3)
comb_along ("AAAAAAAAAA")

cumsumw Cumulative sum to calculate shift

Description

Cumulative sum to calculate shift

Usage

cumsumw (x)

Arguments

X (IRanges)

32 defGR

Value

(numeric vector)

decode Get codons for given string - translate

Description

Get codons for given string - translate

Usage
decode(x)

Arguments

X (string)

Value

(string) codons

defGR Helper to construct GRanges with additional metadata columns.

Description

Helper to construct GRanges with additional metadata columns.

Usage
defGR(
X,
1D,
score,
strand_info = "+",
type = "deletion”,
originally = ""
replacement = ""

experimentData

Arguments
X (IRanges) names(x) indicating read_id
ID (string)
score (numeric) scores from the alignments
strand_info (string) Either ’+’, °-’
type (string)
originally (string) Base pairs on the amplicon.
replacement (string) Base pairs on the read.

Value

(GRanges) Object with meta-data

33

experimentData Experiment data.

Description

Get experiment data.frame with information on the experiment level.

Usage
experimentData(x)
Arguments
X (AlignmentsExperimentSet)
Value
(data.frameOrNULL)
Examples
file_path <- system.file("extdata”, "results"”, "alignments”,

"AlignmentsExperimentSet.rds"”, package = "amplican"”)
aln <- readRDS(file_path)
experimentData(aln)

34 extractEvents

experimentData<- Experiment data.

Description

Set experiment data.frame with information on the experiment level.

Usage

experimentData(x) <- value

Arguments
X (AlignmentsExperimentSet)
value (data.frame)

Value

(AlignmentsExperimentSet)

Examples

file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican"”)

aln <- readRDS(file_path)

experimentData(aln) <- experimentData(aln) # replace with the same values

extractEvents Extract AlignmentsExperimentSet events into data.frame.

Description

Extracts events (insertions, deletions, mismatches) from alignments into data.frame. Can use mul-
tiple cores as process is quite slow. All events are relative towards forward strand. "-" in strand
column indicates which events were from reverse reads.

Usage

extractEvents(object, use_parallel = FALSE)

Arguments

object (AlignmentsExperimentSet)

use_parallel (boolean) Set to TRUE, if you have registered multicore back-end with register.

findEOP 35

Value

(data.frame) Compatible with GRanges style.

Examples
file_path <- system.file("extdata”, "results"”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican”)
aln <- readRDS(file_path)
extractEvents(aln)
findEOP Find Events Overlapping Primers.
Description

Very often alignments return deletions that are not real deletions, but rather artifact of incomplete
reads eg.:

ACTGAAAAA--—-——- <- this "deletion” should be filtered
ACTG----ACTGACTG

Usage

findEOP(aln, cfgT)

Arguments
aln (data.frame) Should contain events from alignments in GRanges style with columns
eg. seqnames, width, start, end.
cfgT (data.frame) Needs columns Forward_Primer, ReversePrimer and Amplicon.
Value

(logical vector) where TRUE indicates events that are overlapping primers

See Also

findPD findLQR
Other filters: findLQR(), findPD()

36 findLQR

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"raw_events.csv"”, package = "amplican")
aln <- data.table::fread(file_path)
cfgT <- data.table::fread(
system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican"))
findEOP(aln, cfgT)

findLQR Find Off-targets and Fragmented alignments from reads.

Description

Will try to detect off-targets and low quality alignments (outliers). It tries k-means clustering on
normalized number of events per read and read alignment score. If there are 3 clusters (decided
based on silhouette criterion) cluster with high event count and low alignment score will be marked
for filtering. When there is less than 1000 scores in aln it will filter nothing.

Usage
findLQR(aln)
Arguments
aln (data.frame) Should contain events from alignments in GRanges style with columns
eg. seqnames, width, start, end, score.
Value

(logical vector) where TRUE indicates events that are potential off-targets or low quality alignments.

See Also

findPD findEOP
Other filters: findEOP(), findPD()

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"raw_events.csv"”, package = "amplican")

aln <- data.table::fread(file_path)

aln <- aln[segnames == "ID_1"] # for first experiment

findLQR(aln)

findPD 37

findPD Find PRIMER DIMER reads.

Description

Use to filter reads that are most likely PRIMER DIMERS.

Usage

findPD(aln, cfgT, PRIMER_DIMER = 30)

Arguments
aln (data.frame) Should contain events from alignments in GRanges style with columns
eg. seqnames, width, start, end.
cfgT (data.frame) Needs columns Forward_Primer, ReversePrimer and Amplicon.

PRIMER_DIMER (numeric) Value specifying buffer for PRIMER DIMER detection. For a given
read it will be recognized as PRIMER DIMER when alignment will introduce
gap of size bigger than:
length of amplicon - (lengths of PRIMERS + PRIMER_DIMER value)

Value

(logical) Where TRUE indicates event classified as PRIMER DIMER

See Also

findEOP findLQR
Other filters: findEOP(), findLQR()

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"raw_events.csv"”, package = "amplican")
aln <- data.table::fread(file_path)
cfgT <- data.table::fread(
system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican"))
findPD(aln, cfgT)

38 fwdReads

flipRanges Reverse complement events that have amplicons with direction 1.

Description

Reverse complement events that have amplicons with direction 1.

Usage
flipRanges(idR, cfgT)

Arguments

idR (data.frame) Loaded events.

cfgT (data.frame) Loaded configuration file.
Value

(data.frame) Returns input idR, but events for amplicons with direction 1 reverse complemented,
"+" and "-" swapped.

fwdReads Alignments for forward reads.

Description

Get alignments for forward reads.

Usage
fwdReads (x)

Arguments

X (AlignmentsExperimentSet)

Value

(listOrNULL) list with objects of PairwiseAlignmentsSingleSubject

Examples

file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

fwdReads(aln)

fwdReads<-

39

fwdReads<- Alignments for forward reads.

Description

Set alignments for forward reads.

Usage

fwdReads(x) <- value

Arguments

X (AlignmentsExperimentSet)

value (list) Named (experiment IDs) list with elements of
Value

(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.

Examples

file_path <- system.file("extdata”, "results"”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican"”)

aln <- readRDS(file_path)

fwdReads(aln) <- fwdReads(aln) # replace with the same values

fwdReadsType Type of forward reads.

Description

Get type of forward reads.

Usage
fwdReadsType (x)

Arguments

X (AlignmentsExperimentSet)

Value

(listOrNULL) list with objects of PairwiseAlignmentsSingleSubject

40 geom_bezier

Examples
file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican")
aln <- readRDS(file_path)
fwdReadsType(aln)
fwdReadsType<- Read type for forward reads.
Description

Set read type for forward reads.

Usage

fwdReadsType(x) <- value

Arguments

X (AlignmentsExperimentSet)

value (list) Named (experiment IDs) list with elements of
Value

(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

fwdReadsType(aln) <- fwdReadsType(aln) # replace with the same values

geom_bezier Create quadratic or cubic bezier curves [copied from ggforce]

Description

This set of functionality is copied from ggforce package due to dependency issues on Bioconductor
and is used internally (not exported) only. This set of geoms makes it possible to connect points
creating either quadratic or cubic beziers. bezier works by calculating points along the bezier and
connecting these to draw the curve.

geom_bezier

Usage

stat_bezier(
mapping = NULL,

data = NULL,
geom = "path”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,

n = 100,
inherit.aes = TRUE,

)

geom_bezier(
mapping = NULL,

data = NULL,

stat = "bezier”,
position = "identity",
arrow = NULL,

lineend = "butt”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
n = 100,

41

Arguments

mapping

data

geom

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

42

position

na.rm

show. legend

n

inherit.aes

geom_bezier

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

The number of points to create for each segment

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

geom_bezier

stat

arrow

lineend

Details

43

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

Arrow specification, as created by grid: :arrow().

Line end style (round, butt, square).

Input data is understood as a sequence of data points the first being the start point, then followed by
one or two control points and then the end point. More than 4 and less than 3 points per group will

throw an error.

Aesthetics

geom_link, geom_link2 and geom_lin0 understand the following aesthetics (required aesthetics are

in bold):

- kEgEE L kEyEE - color - linewidth - linetype - alpha - lineend

Computed variables

X,y The interpolated point coordinates

index The progression along the interpolation mapped between 0 and 1

Author(s)

Thomas Lin Pedersen

Examples

beziers <- data.frame(
x =c(1, 2, 3, 4, 4, 6, 6),
y =c(, 2,0, 0, 2,2, 0),
type = rep(c('cubic', 'quadratic'), c(3, 4)),
point = c('end', 'control', 'end', 'end', 'control', 'control', 'end')

)

help_lines <- data.frame(
x =c(1, 3, 4, 6),
xend = c(2, 2, 4, 6),

y =0,
yend = 2
)

ggplot2::ggplot() + ggplot2::geom_segment(

44 getEvents

ggplot2::aes(x = x, xend = xend, y =y, yend = yend),

data = help_lines,

arrow = ggplot2::arrow(length = ggplot2::unit(c(@, 0, 0.5, 0.5), 'cm')),

colour = 'grey') +

amplican:::geom_bezier(ggplot2::aes(x= x, y =y, group = type, linetype = type),
data = beziers) +

ggplot2::geom_point(ggplot2::aes(x = x, y =y, colour = point), data = beziers)

getEventInfo This function takes alignments and gives back the events coordinates.

Description

This function takes alignments and gives back the events coordinates.

Usage

getEventInfo(align, ID, ampl_shift, strand_info = "+"

Arguments
align (PairwiseAlignmentsSingleSubject)
ID (string)
ampl_shift (numeric vector) Shift events additionally by this value. PairwiseAlignmentsS-
ingleSubject returns truncated alignments.
strand_info (string) Either ’+’, ’-’ or default **’
ampl_len (numeric) Length of the amplicon (subject)
Value

(GRanges) Object with meta-data for insertion, deletion, mismatch

getEvents Transform aligned strings into GRanges representation of events.

Description

Transforms aligned strings into GRanges representation with events of deletions, insertions and
mismatches. Subject should come from one amplicon sequence, after alignment to many sequences
(patterns).

get_left_primer 45

Usage
getEvents(
pattern,
subject,
scores,
ID = "NA",
ampl_shift = 1L,
ampl_start = 1L,
strand_info = "+"
)
Arguments
pattern (character) Aligned pattern.
subject (character) Aligned subject.
scores (integer) Alignment scores of the pattern and subject.
ID (character) Will be used as seqnames of output GRanges.
ampl_shift (numeric) Possible shift of the amplicons.
ampl_start (numeric) Real amplicon starts. pairwiseAlignment clips alignments, there-
fore to output GRanges relative to the amplicon sequence (subject) ranges have
to be shifted.
strand_info (character) Strands to assign.
Value

(GRanges) Same as events.

get_left_primer left primer sequence

Description

left primer sequence

Usage

get_left_primer(config, id)

Arguments
config (data.frame) config table
id (vector) a vector of id’s
Value

(character) left primer sequence

46

get_seq

get_right_primer right primer sequence

Description

right primer sequence

Usage

get_right_primer(config, id)

Arguments
config (data.frame) config table
id (vector) a vector of id’s
Value

(character) right primer sequence

get_seq amplicon sequence, reverse complemented when needed

Description

amplicon sequence, reverse complemented when needed

Usage

get_seq(config, id, column = "Amplicon"”)
Arguments

config (data.frame) config table

id (vector) a vector of id’s
Value

(character) amplicon sequence, reverse complemented if Direction 1

goodAvgQuality 47

goodAvgQuality This filters out sequences which have bad average quality readings.

Description

This filters out sequences which have bad average quality readings.

Usage
goodAvgQuality(reads, avg = 30, batch_size = 1e+07)

Arguments
reads (ShortRead object) Loaded reads from fastq.
avg (numeric) This is what the average score of the quality of sequence should be.
For example, if we have a sequence with nucleotides which have quality 70-70-
70, the average would be 70. If set the average to 70 or less the sequence will
pass. If we set the average to 71 the sequence will not pass.
batch_size (numeric) How many reads to process at a time.
Value

(boolean) Logical vector with the valid rows as TRUE.

goodBaseQuality Filters out sequences which have bad base quality readings.

Description

Filters out sequences which have bad base quality readings.

Usage

goodBaseQuality(reads, min = 20, batch_size = 1e+07)

Arguments
reads (ShortRead object) Loaded reads from fastq.
min (numeric) This is the minimum quality that we accept for every nucleotide. For
example, if we have a sequence with nucleotides which have quality 50-50-
50-50-10, and we set the minimum to 30, the whole sequence will be a bad
sequence.
batch_size (numeric) How many reads to process at a time.
Value

(boolean) Logical vector with the valid rows as TRUE.

48 lookupAlignment

is_hdr_strict Figure out which reads conform to the HDR using the donor.

Description

This is strict detection as compared to ‘is_hdr‘ which was designed to be less specific and allow
for all kinds of donors. This method requires that you have exactly the same events (mismatches,
insertions, deletions) as the difference between amplicon and donor sequences. Itignores everything
else, so other mismatches and small indels etc. as noise are allowed here for valid HDR.

Usage

is_hdr_strict(aln, cfgT, scoring_matrix, gap_opening = 25, gap_extension = 0)

Arguments
aln (data.table) This are events that contain already consensus column, they are also
shifted and normalized.
cfgT (data.table) Config data.table with columns for amplicon and donor.

scoring_matrix (scoring matrix)
gap_opening (integer)

gap_extension (integer)

Value

(aln) same as aln on entry, but readType is updated to TRUE when read is recognized as HDR

lookupAlignment Show alignment in human readable format.

Description

Prints alignments in blast-like style for human examination.

Usage
lookupAlignment(x, ID, read_id = 1)

Arguments
X (AlignmentsExperimentSet)
ID (string) Experiment Identifier
read_id (numeric) Read Identifier. Reads are sorted by frequency. Defaults to 1, most

abundant read.

makeAlignment 49

Value

(print to view)

Examples

load example object

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

look at most frequent reads aligned from experiment ID_1

lookupAlignment(aln, "ID_1")

makeAlignment Make alignments helper.

Description

Aligning reads to the amplicons for each ID in this barcode, constructing amplicanAlignment. As-
sume that all IDs here belong to the same barcode.

Usage

makeAlignment(
cfgT,
average_quality,
min_quality,
filter_n,
batch_size,
scoring_matrix,
gap_opening,
gap_extension,
fastgfiles,
primer_mismatch,
donor_mismatch,
donor_strict

Arguments

cfgT config file as data table

average_quality
(numeric) The FASTQ file have a quality for each nucleotide, depending on se-
quencing technology there exist many formats. This package uses readFastq to
parse the reads. If the average quality of the reads fall below value of average_quality
then sequence is filtered. Default is O.

50

min_quality

filter_n

batch_size

scoring_matrix
gap_opening
gap_extension

fastgfiles

primer_mismatch

donor_mismatch

donor_strict

Value

makeAlignment

(numeric) Similar as in average_quality, but depicts the minimum quality for
ALL nucleotides in given read. If one of nucleotides has quality BELLOW
min_quality, then the sequence is filtered. Default is 20.

(boolean) Whether to filter out reads containing N base.

(numeric) How many reads to analyze at a time? Needed for filtering of large
fastq files.

(matrix) Default is 'NUC44’. Pass desired matrix using nucleotideSubstitutionMatrix.

(numeric) The opening gap score.
(numeric) The gap extension score.

(numeric) Normally you want to use both FASTQ files. But in some special
cases, you may want to use only the forward file, or only the reverse file. Possi-
ble options:

* 0 Use both FASTQ files.

* 0.5 Use both FASTQ files, but only for one of the reads (forward or reverse)
is required to have primer perfectly matched to sequence - eg. use when re-
verse reads are trimmed of primers, but forward reads have forward primer
in the sequence.

* 1 Use only the forward FASTQ file.
* 2 Use only the reverse FASTQ file.

(numeric) Decide how many mismatches are allowed during primer matching
of the reads, that groups reads by experiments. When primer_mismatch = @ no
mismatches are allowed, which can increase number of unasssigned read.

(numeric) How many events of length 1 (mismatches, deletions and insertions of
length 1) are allowed when aligning toward the donor template. This parameter
is only used when donor template is specified. The higher the parameter the
less strict will be algorithm accepting read as HDR. Set to O if only perfect
alignments to the donor template marked as HDR, unadvised due to error rate
of the sequencers.

(logical) Applies more strict algorithm for HDR detection. Only these reads that
have all of the donor events will count as HDR. Tolerates ‘donor_mismatch*
level of noise, but no indels are allowed. Use this when your reads should span
over the whole window of the donor events. Might be more time consuming.

amplicanAlignment object for this barcode experiments

metaplot_deletions 51

metaplot_deletions MetaPlots deletions using ggplot2.

Description

This function plots deletions in relation to the amplicons for given selection vector that groups
values by given config group. All reads should already be converted to their relative position to
their respective amplicon using amplicanMap. Top plot is for the forward reads and bottom plot is
for reverse reads.

Usage
metaplot_deletions(alnmt, config, group, selection, over = "overlaps")
Arguments
alnmt (data.frame) Loaded alignment information from events_filtered_shifted_normalized.csv
file.
config (data.frame) Loaded table from config_summary.csv file.
group (string) Name of the column from the config file to use for grouping. Events are
subselected based on this column and values from selection.
selection (string or vector of strings) Values from config column specified in group argu-
ment.
over (string) Specify which column contains overlaps with expected cut sites gener-
ated by amplicanOverlap
Value

(deletions metaplot) ggplot2 object of deletions metaplot

See Also

Other specialized plots: metaplot_insertions(), metaplot_mismatches(), plot_cuts(), plot_deletions(),
plot_heterogeneity(), plot_insertions(), plot_mismatches(), plot_variants()

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments"”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
metaplot_deletions(alignments[alignments$consensus, 7,
config, "Group", "Betty")

52 metaplot_insertions

metaplot_insertions MetaPlots insertions using ggplot2.

Description

This function plots insertions in relation to the amplicons for given selection vector that groups
values by given config group. All reads should already be converted to their relative position to
their respective amplicon using amplicanMap. Top plot is for the forward reads and bottom plot is
for reverse reads.

Usage

metaplot_insertions(alnmt, config, group, selection)

Arguments
alnmt (data.frame) Loaded alignment information from alignments_events.csv file.
config (data.frame) Loaded table from config_summary.csv file.
group (string) Name of the column from the config file to use for grouping. Events are
subselected based on this column and values from selection.
selection (string or vector of strings) Values from config column specified in group argu-
ment.
Value

(insertions metaplot) ggplot2 object of insertions metaplot

See Also

Other specialized plots: metaplot_deletions(), metaplot_mismatches(), plot_cuts(), plot_deletions(),
plot_heterogeneity(), plot_insertions(), plot_mismatches(), plot_variants()

Examples

#texample config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv",
package = "amplican”))

#texample alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
metaplot_insertions(alignments[alignments$consensus,], config,
"Group”, "Betty")

metaplot_mismatches 53

metaplot_mismatches MetaPlots mismatches using ggplot2.

Description

Plots mismatches in relation to the amplicons for given selection vector that groups values by
given config group. All reads should already be converted to their relative position to their respec-
tive amplicon using amplicanMap. Zero position on new coordinates is the most left UPPER case
letter of the respective amplicon. This function filters out all alignment events that have amplicons
without UPPER case defined. Top plot is for the forward reads and bottom plot is for reverse reads.

Usage

metaplot_mismatches(alnmt, config, group, selection)

Arguments
alnmt (data.frame) Loaded alignment information from alignments_events.csv file.
config (data.frame) Loaded table from config_summary.csv file.
group (string) Name of the column from the config file to use for grouping. Events are
subselected based on this column and values from selection.
selection (string or vector of strings) Values from config column specified in group argu-
ment.
Value

(mismatches metaplot) ggplot2 object of mismatches metaplot

See Also

Other specialized plots: metaplot_deletions(), metaplot_insertions(), plot_cuts(),plot_deletions(),
plot_heterogeneity(), plot_insertions(), plot_mismatches(), plot_variants()

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
metaplot_mismatches(alignments,
config, "Group”, "Betty")

54 plot_amplicon

pairToEvents Read "pair"” format of EMBOSS needle into GRanges as events.

Description

Parse EMBOSS needle (or needleall) "pair" format into GRanges representation with events of
deletions, insertions and mismatches. Make sure that each file corresponds to single subject (sin-
gle amplicon). Assumes that bottom sequence "-bsequence” corresponds to the "subject" and full
sequence alignment is returned.

Usage

pairToEvents(file, ID = "NA", strand_info = "+"

Arguments
file (character) File path.
1D (character) ID of the experiment, will be used as seqnames of the reutner ranges.
strand_info (character) Strand to assign.

Value

(GRanges) Same as events.

plot_amplicon Plots amplicon sequence using ggplot2.

Description

Plots amplicon sequence using ggplot2.

Usage

plot_amplicon(amplicon, from, to)

Arguments

amplicon (character) Sequence of the amplicon to plot.

from (number) Minimum on x axis - start of the amplicon

to (number) Maximum on x axis - not necessarily end of the amplicon
Value

(amplicon plot) ggplot2 object of amplicon plot

plot_cuts 55

plot_cuts Plots cuts using ggplot2.

Description

This function plots cuts in relation to the amplicon with distinction for each ID.

Usage

plot_cuts(alignments, config, id, cut_buffer = 5, xlab_spacing = 4)

Arguments

alignments (data.frame) Loaded alignment information from alignments_events.csv file.

config (data.frame) Loaded table from config_summary.csv file.

id (string or vector of strings) Name of the ID column from config file or name of
multiple IDs if it is possible to group them. First amplicon will be used as the
basis for plot.

cut_buffer (numeric) Default is 5, you should specify the same as used in the analysis.

xlab_spacing (numeric) Spacing of the x axis labels. Default is 4.

Value

(cuts plot) gtable object of cuts plot

See Also
Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),

plot_deletions(), plot_heterogeneity(),plot_insertions(), plot_mismatches(), plot_variants()

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
plot_cuts(alignments[alignments$consensus & alignments$overlaps, 1,
config, c('ID_1","'ID_3"))

56 plot_deletions

plot_deletions Plots deletions using ggplot2.

Description

This function plots deletions in relation to the amplicon, assumes events are relative to the expected
cut site. Top plot is for the forward reads, middle one shows amplicon sequence, and bottom plot is
for reverse reads.

Usage

plot_deletions(
alignments,
config,
id,
cut_buffer = 5,
xlab_spacing = 4,

over = "overlaps”
)
Arguments
alignments (data.frame) Loaded alignment information from alignments.csv file.
config (data.frame) Loaded table from config_summary.csv file.
id (string or vector of strings) Name of the ID column from config file or name of

multiple IDs if it is possible to group them. First amplicon will be used as the
basis for plot.

cut_buffer (numeric) Default is 5, you should specify the same as used in the analysis.
xlab_spacing (numeric) Spacing of the x axis labels. Default is 4.

over (string) Specify which columns contains overlaps with expected cut sites gener-
ated by amplicanOverlap

Value

(deletions plot) gtable object of deletions plot

See Also

Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),
plot_cuts(),plot_heterogeneity(),plot_insertions(), plot_mismatches(), plot_variants()

plot_height 57

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
p <- plot_deletions(alignments[alignments$consensus, 1,
config, c('ID_1',"'ID_3"))

plot_height Get figure height in inches for number of elements on 'y axis.

Description

Helper function to calculate figure height based on number of elements to plot for automating sizes
of figures in knited reports.

Usage

plot_height(x)

Arguments

X (numeric) number of elements to fit onto height axis

Value

(numeric) In inches

Examples

plot_height(20)

58 plot_heterogeneity

plot_heterogeneity Plots heterogeneity of the reads using ggplot2.

Description

This function creates stacked barplot explaining reads heterogeneity. It groups reads by user defined
levels and measures how unique are reads in this level. Uniqueness of reads is simplified to the bins
and colored according to the color gradient. Default color black indicates very high heterogeneity
of the reads. The more yellow (default) the more similar are reads and less heterogeneous.

Usage

plot_heterogeneity(
alignments,
config,
level = "ID",
colors = c("#000000", "#FQE442"),
bins = c(0, 5, seq(10, 100, 10))

)

Arguments
alignments (data.frame) Loaded alignment information from alignments_events.csv file.
config (data.frame) Loaded table from config_summary.csv file.
level (string) Name of the column from config file specifying levels to group by.
colors (html colors vector) Two colours for gradient, eg. c("#000000’, *#FOE442’).
bins (numeric vector) Numeric vector from O to 100 specifying bins eg. ¢(0, 5,

seq(10, 100, 10)).
Value

(heterogeneity plot) ggplot2 object of heterogeneity plot

See Also

Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),
plot_cuts(), plot_deletions(), plot_insertions(), plot_mismatches(), plot_variants()

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican"))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments"”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

plot_insertions 59

alignments <- read.csv(alignments_file)
plot_heterogeneity(alignments[alignments$consensus,], config)

plot_insertions Plots insertions using ggplot2.

Description
This function plots insertions in relation to the amplicon. Top plot is for the forward reads, middle
one shows amplicon sequence, and bottom plot is for reverse reads.

Usage

plot_insertions(alignments, config, id, cut_buffer = 5, xlab_spacing = 4)

Arguments

alignments (data.frame) Loaded alignment information from alignments_events.csv file.

config (data.frame) Loaded table from config_summary.csv file.

id (string or vector of strings) Name of the ID column from config file or name of
multiple IDs if it is possible to group them. First amplicon will be used as the
basis for plot.

cut_buffer (numeric) Default is 5, you should specify the same as used in the analysis.

xlab_spacing (numeric) Spacing of the x axis labels. Default is 4.

Value

(insertions plot) gtable object of insertions plot

See Also

Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),
plot_cuts(),plot_deletions(),plot_heterogeneity(), plot_mismatches(), plot_variants()

Examples

#texample config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#texample alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)
p <- plot_insertions(alignments, config, c('ID_1",'ID_3"'))

60 plot_mismatches

plot_mismatches Plots mismatches using ggplot2.

Description

Plots mismatches in relation to the amplicon, assumes your reads are relative to the respective am-
plicon sequences predicted cut sites. Top plot is for the forward reads, middle one shows amplicon
sequence, and bottom plot is for reverse reads.

Usage

plot_mismatches(alignments, config, id, cut_buffer = 5, xlab_spacing = 4)

Arguments

alignments (data.frame) Loaded alignment information from alignments_events.csv file.

config (data.frame) Loaded table from config_summary.csv file.

id (string or vector of strings) Name of the ID column from config file or name of
multiple IDs, if it is possible to group them. They have to have the same am-
plicon, amplicons on the reverse strand will be reverse complemented to match
forward strand amplicons.

cut_buffer (numeric) Default is 5, you should specify the same as used in the analysis.

xlab_spacing (numeric) Spacing of the x axis labels. Default is 4.

Value

(mismatches plot) gtable object of mismatches plot

See Also
Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),

plot_cuts(),plot_deletions(), plot_heterogeneity(),plot_insertions(), plot_variants()

Examples

#example config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)

id <= c¢('ID_1", 'ID_3"); cut_buffer = 5; xlab_spacing = 4;
p <- plot_mismatches(alignments, config, c('ID_1"', 'ID_3"))
ggplot2::ggsave("~/test.png”, p, width = 25, units = "in"

plot_variants

61

plot_variants

Plots most frequent variants using ggplot2.

Description

This function plots variants in relation to the amplicon. Shows sequences of top mutants without
aggregating on deletions, insertions and mismatches.

Usage

plot_variants(
alignments,

config,
id,
cut_buffer
top = 10,

5,

annot = if (amplican:::get_seq(config, id, "Donor") == "") "cov"” else NA,

nn

summary_plot = amplican:::get_seq(config, id, "Donor") == R

frameshift

Arguments

alignments
config

id

cut_buffer

top

annot

summary_plot

frameshift

amplican:::get_seq(config, id, "Donor") ==

nn

(data.frame) Loaded alignment information from alignments_events.csv file.
(data.frame) Loaded table from config_summary.csv file.

(string or vector of strings) Name of the ID column from config file or name of
multiple IDs if it is possible to group them. First amplicon will be used as the
basis for plot. If Donor is available we will try to add the first donor and mark it
on the plot.

(numeric) Default is 5, you should specify the same as used in the analysis.

(numeric) Specify number of most frequent reads to plot. By default it is 10.
Check plot_heterogeneity to see how many reads will be enough to give
good overview of your variants.

("codon" or "cov" or NA) What to display for annotation top plot. When NA will
not display anything, also not display total summary. Codon plot is all reading
frames for a given window, and the default "cov" is coverage of all indels and
mismatches over a given window.

(boolean) Whether small summary plot in the upper right corner should be dis-
played. Top bar summarizes total reads with frameshift (F), reads with Edits
without Frameshift (Edits) and reads without Edits (Match).

(boolean) Whether to include Frameshift column in the table.

annot on | off

62 plot_variants

Details

Top plot shows all six possible frames for given amplicon. Amino acids are colored as follows:

Small nonpolar G,A,ST Orange
Hydrophobic C,V,LLL,P F Y, M, Green
Polar N,Q,H Magenta

Negatively charged D,E Red
Positively charged K,R Blue
Other eg. ¥, U, + Grey

Variant plot shows amplicon reference, UPPER letters which were the basis for window selection
are highlighted with dashed white box (guideRNA). Black triangles are reflecting insertion points.
Dashed letters indicate deletions. Table associated with variant plot represents:

* Freq - Frequency of given read in experiment. Variants are ordered by frequency value.
* Count - Represents raw count of this variant reads in experiment.

* F - Sum of deletion and insertion widths of events overlapping presented window. Green
background indicates frameshift.

Value

(variant plot) gtable object of variants plot

Note

This function is inspired by plotAlignments.

See Also

Other specialized plots: metaplot_deletions(), metaplot_insertions(), metaplot_mismatches(),
plot_cuts(),plot_deletions(),plot_heterogeneity(),plot_insertions(), plot_mismatches()

Examples

#texample config

config <- read.csv(system.file("extdata”, "results”, "config_summary.csv"”,
package = "amplican”))

#example alignments results

alignments_file <- system.file("extdata”, "results”, "alignments”,
"events_filtered_shifted_normalized.csv”,
package = "amplican")

alignments <- read.csv(alignments_file)

alignments <- alignments[alignments$consensus & alignments$overlaps, 1

p <- plot_variants(alignments[alignments$consensus & alignments$overlaps, 1,
config, c('ID_1","'ID_3"))

with Donor we dont plot summary and the annot, summary plot and frameshift

p <- plot_variants(alignments[alignments$consensus & alignments$overlaps, 1,
config, c('ID_5"))

readCounts

63

readCounts Alignments for forward reads.

Description

Set alignments for forward reads.

Usage

readCounts(x)

Arguments

X (AlignmentsExperimentSet)

Value

(listOrNULL)

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package =

aln <- readRDS(file_path)

readCounts(aln)

"amplican")

readCounts<- Alignments for forward reads.

Description

Set alignments for forward reads.

Usage

readCounts(x) <- value

Arguments

X (AlignmentsExperimentSet)

value (list) Named (experiment IDs) list with elements of
Value

(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.

64

Examples

file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican")

aln <- readRDS(file_path)

readCounts(aln) <- readCounts(aln) # replace with the same values

rveReads

revComp Reverse and complement given string or list of strings

Description

Reverse and complement given string or list of strings

Usage

revComp(x)

Arguments

X (string or vector of strings)

Value

(string or vector of strings) reverse complemented input

rveReads Alignments for reverse reads.

Description

Get alignments for reverse reads.

Usage

rveReads (x)

Arguments

X (AlignmentsExperimentSet)

Value

(listOrNULL) list with objects of PairwiseAlignmentsSingleSubject

rveReads<-

65

Examples
file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican")
aln <- readRDS(file_path)
rveReads(aln)
rveReads<- Alignments for forward reads.
Description
Set alignments for forward reads.
Usage
rveReads(x) <- value
Arguments
X (AlignmentsExperimentSet)
value (list) Named (experiment IDs) list with elements of
Value
(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.
Examples
file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)
rveReads(aln) <- rveReads(aln) # replace with the same values

rveReadsType Type of reverse reads.

Description

Get type of reverse reads.

Usage

rveReadsType(x)

Arguments

X (AlignmentsExperimentSet)

66 rveReadsType<-

Value

(listOrNULL) list with objects of PairwiseAlignmentsSingleSubject

Examples
file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds"”, package = "amplican”)
aln <- readRDS(file_path)
rveReadsType(aln)
rveReadsType<- Read type for reverse reads.
Description

Set read type for reverse reads.

Usage

rveReadsType(x) <- value

Arguments

X (AlignmentsExperimentSet)

value (list) Named (experiment IDs) list with elements of
Value

(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.

Examples

file_path <- system.file("extdata”, "results”, "alignments”,
"AlignmentsExperimentSet.rds", package = "amplican")

aln <- readRDS(file_path)

rveReadsType(aln) <- rveReadsType(aln) # replace with the same values

unassignedCount

unassignedCount Get count of unassigned reads.

Description

Get count of unassigned reads.

Usage

unassignedCount(x)

Arguments

X (AlignmentsExperimentSet)

Value

(numeric)

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds"”, package = "amplican”)

aln <- readRDS(file_path)

unassignedCount(aln)

unassignedData Unassigned read information.

Description

Get unassigned reads and their characteristics.

Usage

unassignedData(x)
Arguments

X (AlignmentsExperimentSet)
Value

(data.frameOrNULL)

68 upperGroups

Examples
file_path <- system.file("extdata”, "results"”, "alignments”,
"AlignmentsExperimentSet.rds"”, package = "amplican"”)
aln <- readRDS(file_path)
unassignedData(aln)
unassignedData<- Alignments for forward reads.
Description

Set alignments for forward reads.

Usage

unassignedData(x) <- value

Arguments

X (AlignmentsExperimentSet)

value (list) Named (experiment IDs) list with elements of
Value

(AlignmentsExperimentSet) PairwiseAlignmentsSingleSubject class.

Examples

file_path <- system.file("extdata”, "results”, "alignments",
"AlignmentsExperimentSet.rds"”, package = "amplican")

aln <- readRDS(file_path)

unassignedData(aln) <- unassignedData(aln) #replace with the same values

upperGroups Detect uppercases as ranges object.

Description
For a given string, detect how many groups of uppercases is inside, where are they, and how long
they are.

Usage

upperGroups(candidate)

writeAlignments 69

Arguments

candidate (string) A string with the nucleotide sequence.

Details

For example: asdkfaAGASDGAsjaeurad AFDSfasfjaciorAuaoeurasjfasdhfashTTSfajeiasjst
Has 4 groups of uppercases of length 7, 4, 1 and 3.

Value

(IRanges) A IRanges object with uppercases groups for given candidate string

writeAlignments Write alignments to file.

Description

Saves alignments into txt or fasta file.

Usage
writeAlignments(x, file = "", aln_format = "txt")
Arguments
X (AlignmentsExperimentSet)
file (connection or string) Destination file. When empty, defaults to standard output.
aln_format ("txt" or "fasta") Specifies format of the file.
Value
(invisible)
Examples
file_path <- system.file("extdata”, "results”, "alignments",

"AlignmentsExperimentSet.rds", package = "amplican")
aln <- readRDS(file_path)
writeAlignments(aln, file.path(tempdir(), "aln.txt"))

Index

* analysis steps getEventInfo, 44
amplicanAlign, 8 goodAvgQuality, 47
amplicanConsensus, 11 goodBaseQuality, 47
amplicanFilter, 12 lookupAlignment, 48
amplicanMap, 13 makeAlignment, 49
amplicanNormalize, 14 plot_amplicon, 54
amplicanOverlap, 15 readCounts, 63
amplicanPipeline, 16 readCounts<-, 63
amplicanPipelineConservative, 19 revComp, 64
amplicanReport, 23 rveReads, 64
amplicanSummarize, 24 rveReads<-, 65

« filters rveReadsType, 65
findEOP, 35 rveReadsType<-, 66
findLQR, 36 unassignedCount, 67
findPD, 37 unassignedData, 67

* internal unassignedData<-, 68

upperGroups, 68
writeAlignments, 69

* specialized plots
metaplot_deletions, 51
metaplot_insertions, 52
metaplot_mismatches, 53
plot_cuts, 55
plot_deletions, 56
plot_heterogeneity, 58
plot_insertions, 59
plot_mismatches, 60

AlignmentsExperimentSet-class, 4
alphabetQuality, 7
assignedCount, 26

barcodeData, 26

barcodeData<-, 27
checkConfigFile, 28
checkFileWriteAccess, 28
checkPrimers, 29

checkTarget, 29

cumsumw, 31

je;ode§;2 plot_variants, 61

€ GRi [,AlignmentsExperimentSet,numeric,missing,missing-method
exper}mentData,33 (AlignmentsExperimentSet-class),
experimentData<-, 34 4

extractEvents, 34

$,AlignmentsExperimentSet-method
flipRanges, 38

(AlignmentsExperimentSet-class),

fwdReads, 38 4

fwdReads<-, 39

fwdReadsType, 39 aes(), 41

fwdReadsType<-, 40 AlignmentsExperimentSet, 8, 10, 17, 20
get_left_primer, 45 AlignmentsExperimentSet
get_right_primer, 46 (AlignmentsExperimentSet-class),
get_seq, 46 4

70

INDEX

AlignmentsExperimentSet-class, 4
alphabetQuality, 7
amplican, 8
amplican-package (amplican), 8
amplican_print_reads, 25
amplicanAlign, 8, 11-13, 15, 16, 19, 22-25
amplicanConsensus, 10, 11, 12, 13, 15, 16,
18, 19,22,24, 25
amplicanFilter, 10, 11,12, 13,15, 16, 19,
22,24, 25
amplicanMap, 10-12, 13, 15, 16, 19, 22, 24
25,51-53
amplicanNormalize, 10-13, 14, 16, 19, 22,
24, 25
amplicanOverlap, 10-13, 15,15, 19, 22, 24
25,51, 56
amplicanPipeline, 10-13, 15, 16, 16, 22, 24,
25
amplicanPipelineConservative, 10-13, 15,
16, 19,19, 24, 25
amplicanReport, 10-13, 15, 16, 19, 22, 23, 25
amplicanSummarize, 10-13, 15, 16, 19, 22,
24,24
as.list.AlignmentsExperimentSet
(AlignmentsExperimentSet-class),
4
assignedCount, 26
assignedCount,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4

barcodeData, 26
barcodeData,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4
barcodeData<-, 27
barcodeData<-,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4
borders(), 42

c,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4

checkConfigFile, 28

checkFileWriteAccess, 28

checkPrimers, 29

checkTarget, 29

cigarsToEvents, 30

71

comb_along, 31
cumsumw, 31

decode, 32
defGR, 32

experimentData, 33
experimentData,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4

experimentData<-, 34

experimentData<-,AlignmentsExperimentSet-method

(AlignmentsExperimentSet-class),
4
extractEvents, 34
extractEvents,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4

findEOP, 12, 35, 36, 37
findLQR, 35, 36, 37
findPD, 12, 35, 36, 37
flipRanges, 38
fortify(), 41
fwdReads, 38
fwdReads,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4
fwdReads<-, 39
fwdReads<-,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4
fwdReadsType, 39
fwdReadsType,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4
fwdReadsType<-, 40
fwdReadsType<-,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
4

geom_bezier, 40
get_left_primer, 45
get_right_primer, 46
get_seq, 46
getEventInfo, 44
getEvents, 44

ggplot(), 41
goodAvgQuality, 47

72 INDEX

goodBaseQuality, 47 plotAlignments, 62
GRanges, 7, 13, 30, 33, 35, 37,44, 45, 54
grid: :arrow(), 43 readCounts, 63
readCounts,AlignmentsExperimentSet-method
IRanges, 31, 33, 69 (AlignmentsExperimentSet-class),
is_hdr_strict, 48 4
readCounts<-, 63
key glyphs, 42 readCounts<-,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
layer geom, 42 4
layer position, 42 readFasta, 9, 17, 21,49
layer stat, 43 register, 6, 34
layer(), 42 revComp, 64
length,AlignmentsExperimentSet-method rveReads, 64
(AlignmentsExperimentSet-class), rveReads,AlignmentsExperimentSet-method
4 (AlignmentsExperimentSet-class),
lookupAlignment, 10, 48 4

lookupAlignment,AlignmentsExperimentSet-methof creads<-. 65
(AlignmentsExperimentSet-class),

A rveReads<-,AlignmentsExperimentSet-method

(AlignmentsExperimentSet-class),

4
rveReadsType, 65
rveReadsType,AlignmentsExperimentSet-method

makeAlignment, 49
metaplot_deletions, 51, 52, 53, 55, 56,

58-60, 62 . .
metaplot_insertions, 51,52, 53, 55, 56, géllgnmentsExperlmentSet class),
58-60, 62
<_
metaplot_mismatches, 517, 52, 53, 55, 56, rveReadsType ’66. .
5860, 62 rveReadsType<-,AlignmentsExperimentSet-method

(AlignmentsExperimentSet-class),

names,AlignmentsExperimentSet-method 4

(AlignmentsExperimentSet-class), stat_bezier (geom_bezier), 40

4
nucleotideSubstitutionMatrix, 9, I8, 21, unassignedCount, 67
50 unassignedCount,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),
pairToEvents, 54 4

pairwiseAlignment, 45

PairwiseAlignmentsSingleSubject, 6, 39, unassignedData,AlignmentsExperimentSet-method

40,44, 63, 65, 66, 68 (AlignmentsExperimentSet-class),
plot_amplicon, 54 4

plot_cuts, 51-53, 55, 56, 58-60, 62
plot_deletions, 51-53, 55, 56, 58-60, 62
plot_height, 57

unassignedData, 67

unassignedData<-, 68
unassignedData<-,AlignmentsExperimentSet-method
(AlignmentsExperimentSet-class),

plot_heterogeneity, 51-53, 55, 56, 58, 4
59-62 upperGroups, 68
plot_insertions, 5/-53, 55, 56, 58, 59, 60,
62 writeAlignments, 69
plot_mismatches, 51-53, 55, 56, 58, 59, 60, writeAlignments,AlignmentsExperimentSet-method
62 (AlignmentsExperimentSet-class),

plot_variants, 51-53, 55, 56, 58-60, 61 4

	AlignmentsExperimentSet-class
	alphabetQuality
	amplican
	amplicanAlign
	amplicanConsensus
	amplicanFilter
	amplicanMap
	amplicanNormalize
	amplicanOverlap
	amplicanPipeline
	amplicanPipelineConservative
	amplicanReport
	amplicanSummarize
	amplican_print_reads
	assignedCount
	barcodeData
	barcodeData<-
	checkConfigFile
	checkFileWriteAccess
	checkPrimers
	checkTarget
	cigarsToEvents
	comb_along
	cumsumw
	decode
	defGR
	experimentData
	experimentData<-
	extractEvents
	findEOP
	findLQR
	findPD
	flipRanges
	fwdReads
	fwdReads<-
	fwdReadsType
	fwdReadsType<-
	geom_bezier
	getEventInfo
	getEvents
	get_left_primer
	get_right_primer
	get_seq
	goodAvgQuality
	goodBaseQuality
	is_hdr_strict
	lookupAlignment
	makeAlignment
	metaplot_deletions
	metaplot_insertions
	metaplot_mismatches
	pairToEvents
	plot_amplicon
	plot_cuts
	plot_deletions
	plot_height
	plot_heterogeneity
	plot_insertions
	plot_mismatches
	plot_variants
	readCounts
	readCounts<-
	revComp
	rveReads
	rveReads<-
	rveReadsType
	rveReadsType<-
	unassignedCount
	unassignedData
	unassignedData<-
	upperGroups
	writeAlignments
	Index

