Package ‘Streamer’

July 10, 2025
Type Package

Title Enabling stream processing of large files

Version 1.54.0

Author Martin Morgan, Nishant Gopalakrishnan

Maintainer Martin Morgan <martin.morgan@roswellpark.org>

Description Large data files can be difficult to work with in R,
where data generally resides in memory. This package encourages a
style of programming where data is 'streamed' from disk into R via
a “producer' and through a series of " consumers' that, typically
reduce the original data to a manageable size. The package
provides useful Producer and Consumer stream components for
operations such as data input, sampling, indexing, and
transformation; see package?Streamer for details.

License Artistic-2.0

LazyLoad yes

Imports methods, graph, RBGL, parallel, BiocGenerics

Suggests RUnit, Rsamtools (>= 1.5.53), GenomicAlignments, Rgraphviz
biocViews Infrastructure, Datalmport

Collate AllGenerics.R Streamer-class.R Producer-class.R
Consumer-class.R Stream-class.R ConnectionProducer-classes.R
RawlInput-class.R Seq-class.R Downsample-class.R
FunctionProducerConsumer-classes.R Paralle]lParam-classes.R
Team-class.R Team-methods.R Reducer-class.R DAGParam-class.R
DAGParam-methods.R DAGTeam-class.R Utility-classes.R
lapply-methods.R stream-methods.R plot-methods.R zzz.R

git_url https://git.bioconductor.org/packages/Streamer
git_branch RELEASE_3_21

git_last_commit 6736770

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

2 Streamer-package

Contents
Streamer-packageo 2
ConnectionProducer e e e 3
CONSUMET o v e it e 5
DAGTeam e e 6
Downsample e 7
Function™® e e e e 8
ParallelParam e e e e 9
Producer 11
Rawlnput o e 12
Reducer e e e 14
TESEL . v v e e e e e e e e e e e e e e 15
Seq . e e e 16
STALUS e e e e e e e e e 17
Stream L e e e e 18
Team e e e e e 20
Utility o e 21
yvield . . . 22

Index 23

Streamer-package Package to enable stream (iterative) processing of large data
Description

Large data files can be difficult to work with in R, where data generally resides in memory. This
package encourages a style of programming where data is ’streamed’ from disk into R through a
series of components that, typically, reduce the original data to a manageable size. The package
provides useful Producer and Consumer components for operations such as data input, sampling,
indexing, and transformation.

Details

The central paradigm in this package is a Stream composed of a Producer and zero or more
Consumer components. The Producer is responsible for input of data, e.g., from the file system. A
Consumer accepts data from a Producer and performs transformations on it. The Stream function
is used to assemble a Producer and zero or more Consumer components into a single string.

The yield function can be applied to a stream to generate one ‘chunk’ of data. The definition of
chunk depends on the stream and its components. A common paradigm repeatedly invokes yield
on a stream, retrieving chunks of the stream for further processing.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

mtmorgan@fhcrc.org

ConnectionProducer 3

See Also

Producer, Consumer are the main types of stream components. Use Stream to connect components,
and yield to iterate a stream.

Examples

About this package
packageDescription("Streamer")

Existing stream components
getClass("Producer”) # Producer classes
getClass("Consumer") # Consumer classes

An example

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(1e4))

s <- Stream(RawToChar(), Rev(), b)

s

head(yield(s)) # First chunk

close(b)

b <- RawInput(fl, 5000L, verbose=TRUE)
d <- Downsample(sampledSize=50)

s <- Stream(RawToChar(), d, b)

s

s[[2]1]

Processing the first ten chunks of the file
i<-1
while (10 >= i && 0L != length(chunk <- yield(s)))
{
cat("chunk”, i, "length"”, length(chunk), "\n")
i<-1i+1
3
close(b)

ConnectionProducer Producer classes to read file connections

Description

ConnectionProducer classes include ScanProducer, ReadLinesProducer, and ReadTableProducer,
providing Streamer interfaces to scan, readLines, and read. table.

Usage
ScanProducer(file, ..., fileArgs=list(), scanArgs=list(...))
ReadLinesProducer(con, ..., conArgs=list(), readlLinesArgs=list(...))

ReadTableProducer(file, ..., fileArgs=list(), readTableArgs=list(...))

4 ConnectionProducer

S3 method for class 'ConnectionProducer'
close(con, ...)

Arguments

file, con The file or connection to be used for input. See connections.

. Additional arguments, e.g., nlines, to scan, readLines, etc.
fileArgs, conArgs
Arguments, e.g., mode, encoding, to be used when invoking reset ().
scanArgs, readlLinesArgs, readTableArgs
Arguments to scan, readLines, etc., when reading a file or connection; provide
this argument when . .. contains arguments (especially verbose=TRUE) to be
used by the class.

Methods

See Producer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("ReadLinesProducer”)$fields.

Internal methods of this class are described with getRefClass(”"ReadLinesProducer”)$methods ()
and getRefClass("ReadLinesProducer”)$help().
Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Producer-class, Streamer-class.

Examples

fl <- system.file(package="Rsamtools”, "extdata”, "ex1.sam")

p <- ReadLinesProducer(fl, n = 1000) # read 1000 lines at a time
while (length(y <- yield(p)))

print(length(y))
close(p)

p <- ReadTableProducer(fl, quote="", fill=TRUE, nrows=1000)
while (length(y <- yield(p)))
print(dim(y))

reset(p)
dim(yield(p))

connections opened 'under the hood' are closed, with warnings

mtmorgan@fhcrc.org

Consumer 5

rm(p); gc()

avoid warnings by managing connections

p <- ScanProducer(file(fl, "r"), verbose=TRUE,
scanArgs=list(what=character()))

length(yield(p))

close(p)

rm(p); gc()

Consumer Class defining methods for all consumers

Description

A virtual base class representing components that can consume data from a Producer, and yield
data to the user or other Consumer instances. A Consumer typically transforms records from one
form to another. Producer and Consumer instances are associated with each other through the
Stream function.

Methods

Methods defined on this class include:

Stream Construct a stream from one Producer and one or more Consumer. See ?Stream.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("Consumer”)$fields.

Internal methods of this class are described with getRefClass(”Consumer”)$methods() and getRefClass("Consumer")$l

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Streamer-class, Producer-class, Stream-class.

Examples

showClass("Consumer")

mtmorgan@fhcrc.org

6 DAGTeam
DAGTeam Consumer classes for directed acyclic graph evaluation
Description
A Consumer to route incoming tasks through nodes connected as a directed acyclic graph.
Usage
DAGParam(x, ...)
DAGTeam(. .., dagParam = DAGParam(), teamParam = MulticoreParam(1L))
S3 method for class 'DAGTeam'
plot(x, vy, ...)
Arguments
X A matrix or data.frame with columns ‘From’, ‘“To’, or a graphNEL object (from
the graph package) describing a directed acyclic graph.
For DAGTeam, named FunctionConsumer instances, one for each node in the
graph. The FunctionConsumer corresponding to the first node in the graph
must accept one argument; remaining FunctionConsumer instances must have
as input arguments the names of the nodes from which the inputs derive, as in
the example below.
For DAGParam when x is a data.frame or matrix, data.frame columns W, V or
additional arguments W, V as described in ftM2graphNEL.
dagParam A DAGParam instance, with all nodes referenced in the graph represented by
FunctionConsumer instancesin
teamParam A ParallelParam instance, such as generated by MulticoreParam(). Cur-
rently ignored (all calculations are performed on a single thread).
y Unused.
Constructors
Use DAGParam and DAGTeam to construct instances of these classes, with ParallelParam instances
created by, e.g., MulticoreParam.
Methods

See Consumer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass(”"MulticoreTeam”)$fields.

Internal methods of this class are described with getRefClass(”"MulticoreTeam”)$methods()
and getRefClass("MulticoreTeam”)$help().

Downsample 7

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Team applies a single function across multiple threads..

Examples

df <- data.frame(From = c("A", "A", "B", "C"),
To =c("B", "C", "D", "D"),
stringsAsFactors=FALSE)

dagParam <- DAGParam(df)

dteam <- DAGTeam(A=FunctionConsumer(function(y) y),
B=FunctionConsumer (function(A) -A),
C=FunctionConsumer(function(A) 1 / A),
D=FunctionConsumer (function(B, C) B + C),
dagParam=dagParam)

plot(dteam)

strm <- Stream(Seq(to=10), dteam)
sapply(strm, c)
reset(strm)

Downsample Consumer class to down-sample data

Description
A Consumer-class to select records with fixed probability, returning a yield of fixed size. Successive
calls to yield result in sampling of subsequent records in the stream, until the stream is exhausted.
Usage

Downsample(probability=0.1, sampledSize=1e6, ...)

Arguments

probability A numeric(1) between O, 1 indicating the probability with which a record
should be retained.

Additional arguments, passed to the $new method of the underlying reference
class. Currently unused.

sampledSize A integer (1) indicating the number of records to return.

Methods

See Consumer Methods.

mtmorgan@fhcrc.org

8 Function*

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("Downsample”)$fields.

Internal methods of this class are described with getRefClass("Downsample”)$methods() and
getRefClass("Downsample”)$help().

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream

Examples

showClass("Downsample”)

Functionx Classes for user-defined Producers and Consumers

Description

The FunctionProducer and FunctionConsumer classes provide an easy way to quickly create
Producer and Consumer instances from user-provided functions.

Usage
FunctionProducer(FUN, RESET, ..., state=NULL)
FunctionConsumer (FUN, RESET, ..., state=NULL)
Arguments
FUN User defined function to yield successive records in the stream. The FunctionProducer
function must return an object of length O (e.g., logical(@)) when the stream
is complete.
RESET An optional function of one arugment (‘state’) to reset the stream to its original
state. If missing, the stream cannot be reset.
Arguments passed to the Producer-class or Consumer-class constructors.
state Any information, made available to RESET.
Constructors

Use FunctionProducer or FunctionConsumer to construct instances of this class.

Methods

See Producer and Consumer Methods.

mtmorgan@fhcrc.org

Paralle]lParam 9

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass(”"FunctionProducer”)$fields.

Internal methods of this class are described with getRefClass("FunctionProducer”)$methods()
and getRefClass("FunctionProducer”)$help().

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

Stream

Examples

A ProducerFunction

producerFun <- function()
produce the mean of 10 random uniform numbers
stop when the mean is greater than 0.8

x <= mean(runif(10))

if (x > .8) numeric(®) else x
3
randomSampleMeans <- FunctionProducer (producerFun)
result <- sapply(randomSampleMeans, c)
length(result)
head(result)

A FunctionConsumer:
consumerFun <- function(y)
transform input by -10 logl@
{
-10 * loglo(y)
3

negl@logl@® <- FunctionConsumer (consumerFun)

strm <- Stream(randomSampleMeans, negl@log1@)
result <- sapply(strm, c)

length(result)

head(result)

ParallelParam Classes to configure parallel evaluation

Description

Configure and register parallel calculations, e.g., for Team evaluation.

ngopalak@fhcrc.org

10 Paralle]Param

Usage
MulticoreParam(size = getOption("mc.cores”, 2L),
mc.set.seed = TRUE, ...)
register(param)
Arguments
size The number of members in the parallel cluster.
mc.set.seed logical(1); see ?mcparallel on unix platforms.
param A ParallelParam instance, such as generated by MulticoreParam().

Additional arguments, e.g., verbose, passed to the Streamer class.

Constructors

Use MulticoreParam to construct instances of this class.

Methods

register Invoked with an argument param stores the param for use in subsequent parallel computa-
tion. Use NULL to clear the register. The function returns, invisibly, the previously registered
parameter instance, if any.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("MulticoreParam”)$fields.

Internal methods of this class are described with getRefClass(”"MulticoreParam”)$methods()
and getRefClass("MulticoreParam”)$help().

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Team to apply one function in parallel, DAGTeam to evaluate functions whose dependencies are rep-
resented as directed acyclic graphs.

Examples

if (.Platform$0S.type != "windows") {

oparam <- register() ## previous setting

param <- MulticoreParam() ## default multicore settings
register(param) ## register for future use, e.g,. Team
register(oparam) ## reset original

mtmorgan@fhcrc.org

Producer 11

Producer Class defining methods for all Producers

Description

A virtual class representing components that can read data from connections, and yield records to
the user or a Consumer instance. A Producer represents a source of data, responsible for parsing
a file or other data source into records to be passed to Consumer classes. Producer and Consumer
instances are associated with each other through the Stream function.

Usage

S4 method for signature 'Producer'’
lapply(X, FUN, ...)

S4 method for signature 'Producer'

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)
Arguments
X An instance of class Producer
FUN A function to be applied to each successful yield() of X.
Additional arguments to FUN.
simplify See ?base: :sapply.
USE . NAMES See ?base: : sapply but note that names do not usually make sense for instances

of class Producer.

Methods
Methods defined on this class include:
Stream Construct a stream from one Producer and one or more Consumer. See ?Stream.
yield Yield a single result (e.g., data.frame) from the Producer.

reset Reset, if possible, the Producer.

lapply, sapply Apply FUN to each result applied to yield(), simplifying (using simplify2array)
if possible for sapply. Partial results on error can be recovered using tryCatch, as illustrated
below. Infinite producers will of course exhaust memory.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("Producer”)$fields.

Internal methods of this class are described with getRefClass("Producer”)$methods() and getRefClass("Producer"”)$l

Author(s)

Martin Morgan mtmorgan@fhcrc.org

mtmorgan@fhcrc.org

12 Rawlnput

See Also

Streamer-package, Consumer-class, Streamer-class.

Examples

showClass("Producer”)
showMethods(class="Producer"”, where="package:Streamer")

sapply(Seq(to=47, yieldSize=7), function(elt) {
c(n = length(elt), xbar = mean(elt))
»

recover partial results
fun = function(i) if (i == 5) stop("oops, i == 5") else i
res <- tryCatch(sapply(Seq(to=10), fun), error=function(err) {
warning(conditionMessage(err),
"\n only partial results available"”)
simplify2array(err$partialResult)
»

res

RawInput Class "RawInput”

Description

A Producer-class to interpret files as raw (binary) data. Users interact with this class through the
constructor RawInput and methods yield, reset, and Stream.

This class requires two helper functions; the ‘factory’ methods defined on this page can be used
to supply these. rawReaderFactory creates a ‘reader’, whose responsibility it is to accept a con-
nection and return a vector of predefined type, e.g., raw. rawParserFactory creates a ‘parser’,
responsible for parsing a buffer and vector of the same type as produced by the reader into records.
The final record may be incomplete (e.g., because reader does not return complete records), and
regardless of completion status is the content of buf on the subsequent invocation of parser.
length(buf) or length(bin) may be 0, as when the first or final record is parsed.

Usage

RawInput(con, yieldSize = 1e+06, reader = rawReaderFactory(),
parser = rawParserFactory(), ...)

rawReaderFactory(blockSize = 1e+06, what)

rawParserFactory(separator = charToRaw("\n"), trim = separator)

Arguments

con A character string or connection (opened as "rb"” mode) from which raw input
will be retrieved.

yieldSize The number of records the input parser is to yield.

RawlInput 13

reader A function of one argument (con, an open connection positioned at the start of
the file, or at the position the con was in at the end of the previous invocation of
the reader function) that returns a vector of type raw.

parser A function of two arguments (buf, bin), parsing the raw vector c(buf, bin)
into records.

Additional arguments, passed to the $new method of this class. Currently ig-

nored.
blockSize The number of bytes to read at one time.
what The type of data to read, as the argument to readBin.
separator A raw vector indicating the unique sequence of bytes by which record starts are

to be recognized. The parser supplied here includes the record separator at the
start of each record.

trim A raw vector that is a prefix of separator, and that is to be removed from the
record during parsing.

Fields
con: Object of class connection. An R connection opened in “rb” mode from which data will
be read.
blockSize: Object of class integer. Size (e.g., number of raw bytes) input during each yield.
reader: Object of class function. A function used to input blockSize elements. See rawReaderFactory.

parser: Object of class function. A function used to parse raw input into records, e.g., breaking
a raw vector on new lines ‘\n’. See rawParserFactory

.buffer: Object of class raw. Contains read but not parsed raw stream data.
.records: Object of class 1ist. Parsed but not yet yield-ed records.

.parsedRecords: Object of class integer. Total number of records parsed by the Producer.

Class-Based Methods

reset(): Remove buffer and current records, reset record counter, re-open con.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream

Examples

fl <- system.file("extdata”, "s_1_sequence.txt”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(1e4))

length(value <- yield(b))

head(value)

close(b)

mtmorgan@fhcrc.org

14 Reducer

Reducer Consumer class to combine successive records

Description

A Consumer-class to reduce N successive records into a single yield.

Usage
Reducer(FUN, init, ..., yieldNth = NA_integer_)
Arguments
FUN A function of two arguments, where the first argument is the result of the previ-
ous reduction (or init, if specified, for the first record) and the second argument
is the current record.
init An optional initial value to initiate the reduction. When present, init is used to
initial each yield.
Additional arguments, passed to the $new method of the underlying reference
class. Currently unused.
yieldNth A positive integer indicating how many upstream yields are combined before
the Reducer yields. A value of NA_integer_ indicates reduction of all records
in the input stream.
Methods

See Consumer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("Reducer”)$fields.

Internal methods of this class are described with getRefClass("Reducer"”)$methods() and getRefClass("Reducer") $he.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream

mtmorgan@fhcrc.org

reset 15

Examples

s <- Stream(Seq(to=10), Reducer("+"))

yield(s) ## sum(1:10), i.e., Reduce over the entire stream
s <- Stream(Seq(to=10), Reducer("+", yieldNth=5))

yield(s) ## sum(1:5)

yield(s) ## sum(6:10)

s <- Stream(Seq(to=10), Reducer("+", init=10, yieldNth=5))
sapply(s, c) ## 10 + c(sum(1:5), sum(6:10))
if (.Platform$0S.type != "windows") {
s <- Stream(Seq(to=10),
Team(function(i) { Sys.sleep(1); i 3},
param=MulticoreParam(10L)),
Reducer("+"))
system.time(y <- yield(s))
y

reset Function to reset a Stream, Producer, or Consumer

Description

reset on a stream invokes the reset method of all components of the stream; on a component, it
invokes the reset method of the component and all inputs to the component.

Usage
reset(x, ...)
Arguments
X A Stream, Producer, or Consumer object.
Additional arguments, currently unused.
Value

A reference to x, the stream or component on which reset was invoked.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream, Producer, Consumer.

Examples

see example(Stream)

mtmorgan@fhcrc.org

16 Seq

Seq Producer class to generate (numeric) sequences

Description

A Producer-class to generate a sequence (possibly long) of numbers.

Usage
Seq(from = 1L, to=.Machine$integer.max, by = 1L, yieldSize=1L,
L)
Arguments
from A starting value of any type (e.g., integer, numeric supported by base: : seq.
to An ending value, typically of the same type as from.
by A value, typically of the same class as from, indicating the increment between
successive numbers in the sequence. by = @ can create an infinite stream.
yieldSize A integer (1) indicating the length of the output sequence each time yield()
is invoked.
Additional arguments passed to Producer.
Constructors

Use Seq to construct instances of this class.

Methods

See Producer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with getRefClass("Seq")$fields.
Internal methods of this class are described with getRefClass("”Seq"”) $methods() and getRefClass("Seq")$help().

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream

Examples

s <- Seq(1, 10, yieldSize=5)
while(length(y <- yield(s)))
print(y)

mtmorgan@fhcrc.org

status 17

status Function to report current status of a stream

Description
status invoked on a stream yields the current status of the stream, as reported by the status
methods of each component.
Usage
status(x, ...)
S4 method for signature 'Streamer'’

status(x, ...)

Arguments

X A Stream, Producer, or Consumer object.

Additional arguments, currently unused.

Value

A component-specific summary the current status

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream, Producer, Consumer.

Examples

see example(Stream)

mtmorgan@fhcrc.org

18 Stream

Stream Class to represent a Producer and zero or more Consumers

Description

An ordered collection of Consumer and Producer components combined into a single entity. Ap-
plying a method such as yield to Stream invokes yield on the terminal Consumer component of
the stream, yielding one batch from the stream. The result of yield is defined by the Producer and
Consumer components of the stream.

Usage
Stream(x, ..., verbose=FALSE)

S4 method for signature 'Stream’
length(x)

S4 method for signature 'Stream,numeric'
x[[i, j, ...]1]

S4 method for signature 'Stream'
lapply(X, FUN, ...)

S4 method for signature 'Stream'

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)
Arguments
X, X For Stream, x is a Producer instance. For other functions, an instance of class
Stream.
FUN A function to be applied to each successful yield() of X.
i, j Numeric index of the ith stream element (j is ignored by this method).

For Stream, zero or more Consumer instances. For lapply, sapply, additional
arguments to FUN.

simplify See ?base: :sapply.
USE .NAMES See ?base: : sapply but note that names do not usually make sense for instances
of class Producer.
verbose A logical (1) indicating whether status information should be reported.
Constructors

Arguments to Stream must consist of a single Producer and zero or more Consumer components.

When invoked with the Producer as the first argument, Stream(P, C1, C2) produces a stream in
which the data is read by P, then processed by C1, then processed by C2.

Stream 19

When invoked with the Consumer as the first argument, the . . . must include a Producer as the last
argument. Stream(C1, C2, P) produces a stream in which the data is read by P, then processed by
C2, then processed by C1.

Methods

Methods defined on this class include:

length The number of components in this stream.

[[The ith component (including inputs) of this stream.

yield Yield a single result (e.g., data. frame) from the stream.
reset Reset, if possible, each component of the stream.

lapply, sapply Apply FUN to each result applied to yield(), simplifying (using simplify2array)
if possible for sapply. Partial results on error can be recovered using tryCatch, as illustrated
on the help page Producer.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass(”"FunctionProducer”)$fields.

Internal methods of this class are described with getRefClass("”"FunctionProducer”)$methods()
and getRefClass("FunctionProducer”)$help().

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Producer-class.

Examples

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(le4))

s <- Stream(b, Rev(), RawToChar())

s

yield(s)

reset(s)

while (length(yield(s))) cat("tick\n")

close(b)

strm <- Stream(Seq(to=10), FunctionConsumer(function(y) 1/y))
sapply(strm, c)

mtmorgan@fhcrc.org

20 Team

Team Consumer classes for parallel evaluation

Description

A Consumer to divide incoming tasks amongst processes for parallel evaluation; not supported on

Windows.
Usage
Team(FUN, ..., param)
Arguments
FUN A function of one argument (the input to this consumer), to be applied to each
element of the stream. The return value of the function is the value yield’ed.
Additional arguments (e.g., verbose, passed to the Consumer constructor.
param If provided, a ParallelParaminstance, such as generated by MulticoreParam().
Constructors

Use Team to construct instances of this class.

When param is missing, Team consults the registry (see register) for a parallel parameter class.
If none is found and .Platform$0S. type == "unix”, a default MulticoreParam instance is used.
An error is signaled on other operating systems (i.e., Windows)

Methods

See Consumer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass(”"MulticoreTeam")$fields.

Internal methods of this class are described with getRefClass(”"MulticoreTeam”)$methods()
and getRefClass("MulticoreTeam”)$help().

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

ParallelParam for configuring parallel environments. DAGTeam apply functions organized as a
directed acyclic graph.

mtmorgan@fhcrc.org

Utility 21

Examples

if (.Platform$0S.type != "windows") {
param <- MulticoreParam(size=5)
team <- Team(function(x) { Sys.sleep(1); mean(x) }, param=param)
s <- Stream(Seq(to=50, yieldSize=5), team)
system.time({while(length(y <- yield(s)))
print(y)
}) ## about 2 seconds

Utility Consumer classes with simple functionality, e.g., RawToChar, Rev

Description

Utility is a virtual class containing components to create light weight Consumer classes.
RawToChar is a class to convert raw (binary) records to char, applying rawToChar to each record.

Rev reverses the order of current task.

Usage

RawToChar(...)
Rev(...)

Arguments

Arguments passed to the Consumer-class.

Construction

Use constructors RawToChar, Rev.

Methods

See Consumer Methods.

Internal Class Fields and Methods

Internal fields of this class are are described with, e.g., getRefClass("Utility")$fields.
Internal methods of this class are described with getRefClass("Utility")$methods() and getRefClass("Utility")$he.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Streamer-class.

mtmorgan@fhcrc.org

22 yield

Examples

showClass("Utility")

yield Function to yield one task from a Stream or Producer

Description

yield invoked on a stream yields one chunk of data or, if the stream is complete, a length zero
element of the data. Successive invocations of yield produce successive chunks of data.

Usage
yield(x, ...)
Arguments
X A Stream, Producer, or Consumer object.
Additional arguments, currently unused.
Value

A chunk of data, with the specific notion of chunk defined by the final component of the stream.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Stream, Producer, Consumer.

Examples

see example(Stream)

mtmorgan@fhcrc.org

Index

* classes
ConnectionProducer, 3
DAGTeam, 6
Downsample, 7
Functionx, 8
ParallelParam, 9
Producer, 11
RawInput, 12
Reducer, 14
Seq, 16
Stream, 18
Team, 20
Utility, 21

* manip
status, 17
yield, 22

+ methods
reset, 15

* package
Streamer-package, 2

[[,Stream,numeric-method (Stream), 18

close.ConnectionProducer
(ConnectionProducer), 3
connection, 13
ConnectionProducer, 3
ConnectionProducer-class
(ConnectionProducer), 3
ConnectionProducer-classes
(ConnectionProducer), 3
connections, 4
Consumer, 2, 3,5,6-8, 12, 14, 15,17, 19-22
Consumer-class (Consumer), 5

DAGParam (DAGTeam), 6

DAGParam,data. frame-method (DAGTeam), 6
DAGParam, graphNEL-method (DAGTeam), 6
DAGParam,matrix-method (DAGTeam), 6
DAGParam,missing-method (DAGTeam), 6
DAGParam-class (DAGTeam), 6

23

DAGTeam, 6, 10, 20

DAGTeam-class (DAGTeam), 6
Downsample, 7

Downsample-class (Downsample), 7

ftM2graphNEL, 6

Functionx, 8

FunctionConsumer, 6

FunctionConsumer (Functionx), 8

FunctionConsumer-class (Functionx), 8

FunctionProducer (Functionx), 8

FunctionProducer-class (Functionx), 8

FunctionProducerConsumer-classes
(Functionx), 8

lapply,Producer-method (Producer), 11
lapply, Stream-method (Stream), 18
length,Stream-method (Stream), 18

MulticoreParam, 20

MulticoreParam (ParallelParam), 9
MulticoreParam-class (ParallelParam), 9
MulticoreTeam-class (Team), 20

ParallelParam, 9, 20

ParallelParam-class (ParallelParam), 9

ParallelRegister-class (ParallelParam),
9

plot.DAGParam (DAGTeam), 6

plot.DAGTeam (DAGTeam), 6

Producer, 2-5, 8, 11, 12, 15-17, 19, 22

Producer-class (Producer), 11

RawInput, 12, 12

RawInput-class (RawInput), 12
rawParserFactory, 13
rawParserFactory (RawInput), 12
rawReaderFactory, 13
rawReaderFactory (RawInput), 12
RawToChar (Utility), 21
RawToChar-class (Utility), 21

24 INDEX

readBin, 13 yield, 2, 3,12, 13,22
ReadLinesProducer (ConnectionProducer), yield,Streamer-method (yield), 22
3 yield-methods (yield), 22

ReadLinesProducer-class
(ConnectionProducer), 3

ReadTableProducer (ConnectionProducer),
3

ReadTableProducer-class
(ConnectionProducer), 3

Reducer, 14

Reducer-class (Reducer), 14

register, 20

register (ParallelParam), 9

reset, 4, 12,15

reset,Streamer-method (reset), 15

reset-methods (reset), 15

Rev (Utility), 21

Rev-class (Utility), 21

sapply, Producer-method (Producer), 11

sapply, Stream-method (Stream), 18

ScanProducer (ConnectionProducer), 3

ScanProducer-class
(ConnectionProducer), 3

Seq, 16

Seg-class (Seq), 16

show, Consumer-method (Consumer), 5

status, 17

status, Streamer-method (status), 17

status-methods (status), 17

Stream, 2, 3,5,8, 9, 11-17, 18, 22

Stream, Consumer-method (Stream), 18

Stream,Producer-method (Stream), 18

Stream-class (Stream), 18

Stream-methods (Stream), 18

Streamer, 4, 5, 12,21

Streamer (Streamer-package), 2

Streamer-class (Streamer-package), 2

Streamer-package, 2

Team, 7, 9, 10, 20
Team,missing-method (Team), 20
Team,MulticoreParam-method (Team), 20
Team-class (Team), 20

tryCatch, 11, 19

Utility, 21
Utility-class (Utility), 21
Utility-classes (Utility), 21

	Streamer-package
	ConnectionProducer
	Consumer
	DAGTeam
	Downsample
	Function*
	ParallelParam
	Producer
	RawInput
	Reducer
	reset
	Seq
	status
	Stream
	Team
	Utility
	yield
	Index

