
Package ‘DFplyr’
July 9, 2025

Title A `DataFrame` (`S4Vectors`) backend for `dplyr`

Version 1.2.0

Description Provides `dplyr` verbs (`mutate`, `select`, `filter`, etc...)
supporting `S4Vectors::DataFrame` objects. Importantly, this is achieved
without conversion to an intermediate `tibble`. Adds grouping
infrastructure to `DataFrame` which is respected by the transformation
verbs.

biocViews DataRepresentation, Infrastructure, Software

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/jonocarroll/DFplyr

BugReports https://github.com/jonocarroll/DFplyr/issues

Depends dplyr

Imports BiocGenerics, methods, rlang, S4Vectors, tidyselect

Suggests BiocStyle, GenomeInfoDb, GenomicRanges, IRanges, knitr,
rmarkdown, sessioninfo, testthat (>= 3.0.0), tibble

VignetteBuilder knitr

Config/testthat/edition 3

Roxygen list(markdown = TRUE)

git_url https://git.bioconductor.org/packages/DFplyr

git_branch RELEASE_3_21

git_last_commit 70d0e55

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Jonathan Carroll [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1404-5264>)

Maintainer Jonathan Carroll <rpkg@jcarroll.com.au>

1

https://github.com/jonocarroll/DFplyr
https://github.com/jonocarroll/DFplyr/issues
https://orcid.org/0000-0002-1404-5264

2 DFplyr-package

Contents
DFplyr-package . 2
arrange.DataFrame . 3
count.DataFrame . 5
desc . 6
distinct.DataFrame . 7
filter.DataFrame . 9
format.DataFrame . 11
group_by.DataFrame . 13
group_by_drop_default.DataFrame . 16
group_data . 17
group_data.DataFrame . 17
group_vars.DataFrame . 18
mutate.DataFrame . 19
pull.DataFrame . 22
rename2 . 23
select.DataFrame . 24
slice.DataFrame . 29
summarise.DataFrame . 31
summarize.DataFrame . 33
tally.DataFrame . 36
tbl_vars.DataFrame . 37
ungroup.DataFrame . 38

Index 41

DFplyr-package Treat a S4Vectors::DataFrame as a dplyr data source

Description

Add dplyr compatibility to S4Vectors::DataFrame for use with a selection of dplyr verbs.

Arguments

x A S4Vectors::DataFrame object

Author(s)

Maintainer: Jonathan Carroll <rpkg@jcarroll.com.au> (ORCID)

See Also

Useful links:

• https://github.com/jonocarroll/DFplyr

• Report bugs at https://github.com/jonocarroll/DFplyr/issues

https://orcid.org/0000-0002-1404-5264
https://github.com/jonocarroll/DFplyr
https://github.com/jonocarroll/DFplyr/issues

arrange.DataFrame 3

Examples

library(S4Vectors)
library(dplyr)

d <- as(mtcars, "DataFrame")

mutate(d, newvar = cyl + hp)

mutate_at(d, vars(starts_with("c")), ~ .^2)

group_by(d, cyl, am) %>%
tally(gear)

count(d, gear, am, cyl)

select(d, am, cyl)

select(d, am, cyl) %>%
rename2(foo = am)

arrange(d, desc(hp))

rbind(DataFrame(mtcars[1,], row.names = "MyCar"), d) %>%
distinct()

filter(d, am == 0)

slice(d, 3:6)

arrange.DataFrame Order rows using column values

Description

arrange() orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention
grouping variables (or use .by_group = TRUE) in order to group by them, and functions of vari-
ables are evaluated once per data frame, not once per group.

Usage

S3 method for class 'DataFrame'
arrange(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.

4 arrange.DataFrame

Details

Missing values:
Unlike base sorting with sort(), NA are:

• always sorted to the end for local data, even when wrapped with desc().
• treated differently for remote data, depending on the backend.

Value

An object of the same type as .data. The output has the following properties:

• All rows appear in the output, but (usually) in a different place.

• Columns are not modified.

• Groups are not modified.

• Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: filter(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

arrange(mtcars, cyl, disp)
arrange(mtcars, desc(disp))

grouped arrange ignores groups
by_cyl <- mtcars %>% group_by(cyl)
by_cyl %>% arrange(desc(wt))
Unless you specifically ask:
by_cyl %>% arrange(desc(wt), .by_group = TRUE)

use embracing when wrapping in a function;
see ?rlang::args_data_masking for more details
tidy_eval_arrange <- function(.data, var) {

.data %>%
arrange({{ var }})

}
tidy_eval_arrange(mtcars, mpg)

Use `across()` or `pick()` to select columns with tidy-select
iris %>% arrange(pick(starts_with("Sepal")))
iris %>% arrange(across(starts_with("Sepal"), desc))

count.DataFrame 5

count.DataFrame Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables: df %>% count(a,
b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n = n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()). Supply wt to
perform weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count() and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.

Usage

S3 method for class 'DataFrame'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = "n",
.drop = group_by_drop_default(x)

)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect the
output.

6 desc

Value

An object of the same type as .data. count() and add_count() group transiently, so the output
has the same groups as the input.

Examples

count() is a convenient way to get a sense of the distribution of
values in a dataset
starwars %>% count(species)
starwars %>% count(species, sort = TRUE)
starwars %>% count(sex, gender, sort = TRUE)
starwars %>% count(birth_decade = round(birth_year, -1))

use the `wt` argument to perform a weighted count. This is useful
when the data has already been aggregated once
df <- tribble(

~name, ~gender, ~runs,
"Max", "male", 10,
"Sandra", "female", 1,
"Susan", "female", 4

)
counts rows:
df %>% count(gender)
counts runs:
df %>% count(gender, wt = runs)

When factors are involved, `.drop = FALSE` can be used to retain factor
levels that don't appear in the data
df2 <- tibble(

id = 1:5,
type = factor(c("a", "c", "a", NA, "a"), levels = c("a", "b", "c"))

)
df2 %>% count(type)
df2 %>% count(type, .drop = FALSE)

Or, using `group_by()`:
df2 %>% group_by(type, .drop = FALSE) %>% count()

tally() is a lower-level function that assumes you've done the grouping
starwars %>% tally()
starwars %>% group_by(species) %>% tally()

both count() and tally() have add_ variants that work like
mutate() instead of summarise
df %>% add_count(gender, wt = runs)
df %>% add_tally(wt = runs)

desc Descending order

distinct.DataFrame 7

Description

Transform a vector into a format that will be sorted in descending order. This is useful within
arrange().

Usage

desc(x)

Arguments

x vector to transform

Value

the input vector in a format that will be sorted in descending order.

Examples

desc(1:10)
desc(factor(letters))

first_day <- seq(as.Date("1910/1/1"), as.Date("1920/1/1"), "years")
desc(first_day)

starwars %>% arrange(desc(mass))

distinct.DataFrame Keep distinct/unique rows

Description

Keep only unique/distinct rows from a data frame. This is similar to unique.data.frame() but
considerably faster.

Usage

S3 method for class 'DataFrame'
distinct(.data, ..., .keep_all = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values.

8 distinct.DataFrame

Value

An object of the same type as .data. The output has the following properties:

• Rows are a subset of the input but appear in the same order.

• Columns are not modified if ... is empty or .keep_all is TRUE. Otherwise, distinct() first
calls mutate() to create new columns.

• Groups are not modified.

• Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

df <- tibble(
x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)

)
nrow(df)
nrow(distinct(df))
nrow(distinct(df, x, y))

distinct(df, x)
distinct(df, y)

You can choose to keep all other variables as well
distinct(df, x, .keep_all = TRUE)
distinct(df, y, .keep_all = TRUE)

You can also use distinct on computed variables
distinct(df, diff = abs(x - y))

Use `pick()` to select columns with tidy-select
distinct(starwars, pick(contains("color")))

Grouping ---

df <- tibble(
g = c(1, 1, 2, 2, 2),
x = c(1, 1, 2, 1, 2),
y = c(3, 2, 1, 3, 1)

)
df <- df %>% group_by(g)

With grouped data frames, distinctness is computed within each group
df %>% distinct(x)

filter.DataFrame 9

When `...` are omitted, `distinct()` still computes distinctness using
all variables in the data frame
df %>% distinct()

filter.DataFrame Keep rows that match a condition

Description

The filter() function is used to subset a data frame, retaining all rows that satisfy your conditions.
To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition
evaluates to NA the row will be dropped, unlike base subsetting with [.

Usage

S3 method for class 'DataFrame'
filter(.data, ..., .preserve = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Details

The filter() function is used to subset the rows of .data, applying the expressions in ... to
the column values to determine which rows should be retained. It can be applied to both grouped
and ungrouped data (see group_by() and ungroup()). However, dplyr is not yet smart enough to
optimise the filtering operation on grouped datasets that do not need grouped calculations. For this
reason, filtering is often considerably faster on ungrouped data.

Value

An object of the same type as .data. The output has the following properties:

• Rows are a subset of the input, but appear in the same order.

• Columns are not modified.

• The number of groups may be reduced (if .preserve is not TRUE).

• Data frame attributes are preserved.

10 filter.DataFrame

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to
filter the data:

• ==, >, >= etc

• &, |, !, xor()

• is.na()

• between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

In the ungrouped version, filter() compares the value of mass in each row to the global average
(taken over the whole data set), keeping only the rows with mass greater than this global average.
In contrast, the grouped version calculates the average mass separately for each gender group, and
keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

Filtering by one criterion
filter(starwars, species == "Human")
filter(starwars, mass > 1000)

Filtering by multiple criteria within a single logical expression
filter(starwars, hair_color == "none" & eye_color == "black")
filter(starwars, hair_color == "none" | eye_color == "black")

When multiple expressions are used, they are combined using &

format.DataFrame 11

filter(starwars, hair_color == "none", eye_color == "black")

The filtering operation may yield different results on grouped
tibbles because the expressions are computed within groups.
#
The following filters rows where `mass` is greater than the
global average:
starwars %>% filter(mass > mean(mass, na.rm = TRUE))

Whereas this keeps rows with `mass` greater than the gender
average:
starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

To refer to column names that are stored as strings, use the `.data` pronoun:
vars <- c("mass", "height")
cond <- c(80, 150)
starwars %>%

filter(
.data[[vars[[1]]]] > cond[[1]],
.data[[vars[[2]]]] > cond[[2]]

)
Learn more in ?rlang::args_data_masking

format.DataFrame Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

S3 method for class 'DataFrame'
format(x, ...)

Arguments

x any R object (conceptually); typically numeric.

... further arguments passed to or from other methods.

Details

format is a generic function. Apart from the methods described here there are methods for dates
(see format.Date), date-times (see format.POSIXct) and for other classes such as format.octmode
and format.dist.

format.data.frame formats the data frame column by column, applying the appropriate method
of format for each column. Methods for columns are often similar to as.character but offer

12 format.DataFrame

more control. Matrix and data-frame columns will be converted to separate columns in the result,
and character columns (normally all) will be given class "AsIs".

format.factor converts the factor to a character vector and then calls the default method (and so
justify applies).

format.AsIs deals with columns of complicated objects that have been extracted from a data frame.
Character objects and (atomic) matrices are passed to the default method (and so width does not
apply). Otherwise it calls toString to convert the object to character (if a vector or list, element by
element) and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods) is
done on display width (see nchar), taking double-width characters and the rendering of special char-
acters (as escape sequences, including escaping backslash but not double quote: see print.default)
into account. Thus the width is as displayed by print(quote = FALSE) and not as displayed by cat.
Character strings are padded with blanks to the display width of the widest. (If na.encode = FALSE
missing character strings are not included in the width computations and are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digits significant digits. However, if all the elements then have trailing ze-
roes, the number of decimal places is reduced until at least one element has a non-zero final digit; see
also the argument documentation for big.*, small.* etc, above. See the note in print.default
about digits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.

format.default(x) now provides a “minimal” string when isS4(x) is true.

The internal code respects the option getOption("OutDec") for the ‘decimal mark’, so if this is
set to something other than "." then it takes precedence over argument decimal.mark.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format.default(x, ...) to each
element of the list (after unlisting elements which are themselves lists), and then collapsing the
result for each element with paste(collapse = ", "). The defaults in this case are trim = TRUE,
justify = "none" since one does not usually want alignment in the collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format.info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString, encodeString.

group_by.DataFrame 13

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names = FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)
format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits = 2)
format(c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format(2^31-1)
format(2^31-1, scientific = TRUE)

a list
z <- list(a = letters[1:3], b = (-pi+0i)^((-2:2)/2), c = c(1,10,100,1000),

d = c("a", "longer", "character", "string"),
q = quote(a + b), e = expression(1+x))

can you find the "2" small differences?
(f1 <- format(z, digits = 2))
(f2 <- format(z, digits = 2, justify = "left", trim = FALSE))
f1 == f2 ## 2 FALSE, 4 TRUE

A "minimal" format() for S4 objects without their own format() method:
cc <- methods::getClassDef("standardGeneric")
format(cc) ## "<S4 class>"

group_by.DataFrame Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing tbl
and converts it into a grouped tbl where operations are performed "by group". ungroup() removes
grouping.

Usage

S3 method for class 'DataFrame'
group_by(.data, ..., add = FALSE, .drop = group_by_drop_default(.data))

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

14 group_by.DataFrame

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping.

add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

Value

A grouped data frame with class grouped_df, unless the combination of ... and add yields a empty
set of grouping columns, in which case a tibble will be returned.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• group_by(): no methods found.

• ungroup(): no methods found.

Ordering

Currently, group_by() internally orders the groups in ascending order. This results in ordered
output from functions that aggregate groups, such as summarise().

When used as grouping columns, character vectors are ordered in the C locale for performance
and reproducibility across R sessions. If the resulting ordering of your grouped operation matters
and is dependent on the locale, you should follow up the grouped operation with an explicit call to
arrange() and set the .locale argument. For example:

data %>%
group_by(chr) %>%
summarise(avg = mean(x)) %>%
arrange(chr, .locale = "en")

This is often useful as a preliminary step before generating content intended for humans, such as an
HTML table.

Legacy behavior:
Prior to dplyr 1.1.0, character vector grouping columns were ordered in the system locale. If you
need to temporarily revert to this behavior, you can set the global option dplyr.legacy_locale

group_by.DataFrame 15

to TRUE, but this should be used sparingly and you should expect this option to be removed in a
future version of dplyr. It is better to update existing code to explicitly call arrange(.locale =
) instead. Note that setting dplyr.legacy_locale will also force calls to arrange() to use the
system locale.

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

by_cyl <- mtcars %>% group_by(cyl)

grouping doesn't change how the data looks (apart from listing
how it's grouped):
by_cyl

It changes how it acts with the other dplyr verbs:
by_cyl %>% summarise(

disp = mean(disp),
hp = mean(hp)

)
by_cyl %>% filter(disp == max(disp))

Each call to summarise() removes a layer of grouping
by_vs_am <- mtcars %>% group_by(vs, am)
by_vs <- by_vs_am %>% summarise(n = n())
by_vs
by_vs %>% summarise(n = sum(n))

To removing grouping, use ungroup
by_vs %>%

ungroup() %>%
summarise(n = sum(n))

By default, group_by() overrides existing grouping
by_cyl %>%

group_by(vs, am) %>%
group_vars()

Use add = TRUE to instead append
by_cyl %>%

group_by(vs, am, .add = TRUE) %>%
group_vars()

You can group by expressions: this is a short-hand
for a mutate() followed by a group_by()
mtcars %>%

group_by(vsam = vs + am)

The implicit mutate() step is always performed on the
ungrouped data. Here we get 3 groups:

16 group_by_drop_default.DataFrame

mtcars %>%
group_by(vs) %>%
group_by(hp_cut = cut(hp, 3))

If you want it to be performed by groups,
you have to use an explicit mutate() call.
Here we get 3 groups per value of vs
mtcars %>%

group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)

when factors are involved and .drop = FALSE, groups can be empty
tbl <- tibble(

x = 1:10,
y = factor(rep(c("a", "c"), each = 5), levels = c("a", "b", "c"))

)
tbl %>%

group_by(y, .drop = FALSE) %>%
group_rows()

group_by_drop_default.DataFrame

Default value for .drop argument of group_by

Description

Default value for .drop argument of group_by

Usage

S3 method for class 'DataFrame'
group_by_drop_default(.tbl)

Arguments

.tbl A data frame

Value

TRUE unless .tbl is a grouped data frame that was previously obtained by group_by(.drop =
FALSE)

Examples

group_by_drop_default(iris)

iris %>%
group_by(Species) %>%

group_data 17

group_by_drop_default()

iris %>%
group_by(Species, .drop = FALSE) %>%
group_by_drop_default()

group_data Set and Get Group Data on a DataFrame

Description

The location of group data is an internal implemnetation detail, so these get and set methods enable
interfacing with that data.

Usage

set_group_data(x, g, .drop = group_by_drop_default(x))

get_group_data(x)

Arguments

x A S4Vectors::DataFrame on which to set group data.

g Group data (a data.frame).

.drop Drop groups formed by factor levels that don’t appear in the data?

Value

For set_group_data, the input x with group data set as metadata. For get_group_data, the group
data that is set on x.

group_data.DataFrame Grouping metadata

Description

This collection of functions accesses data about grouped data frames in various ways:

• group_data() returns a data frame that defines the grouping structure. The columns give the
values of the grouping variables. The last column, always called .rows, is a list of integer
vectors that gives the location of the rows in each group.

• group_keys() returns a data frame describing the groups.

• group_rows() returns a list of integer vectors giving the rows that each group contains.

• group_indices() returns an integer vector the same length as .data that gives the group that
each row belongs to.

18 group_vars.DataFrame

• group_vars() gives names of grouping variables as character vector.

• groups() gives the names of the grouping variables as a list of symbols.

• group_size() gives the size of each group.

• n_groups() gives the total number of groups.

See context for equivalent functions that return values for the current group.

Usage

S3 method for class 'DataFrame'
group_data(.data)

Arguments

.data a S4Vectors::DataFrame()

Value

a data.frame of group data

group_vars.DataFrame Grouping metadata

Description

This collection of functions accesses data about grouped data frames in various ways:

• group_data() returns a data frame that defines the grouping structure. The columns give the
values of the grouping variables. The last column, always called .rows, is a list of integer
vectors that gives the location of the rows in each group.

• group_keys() returns a data frame describing the groups.

• group_rows() returns a list of integer vectors giving the rows that each group contains.

• group_indices() returns an integer vector the same length as .data that gives the group that
each row belongs to.

• group_vars() gives names of grouping variables as character vector.

• groups() gives the names of the grouping variables as a list of symbols.

• group_size() gives the size of each group.

• n_groups() gives the total number of groups.

See context for equivalent functions that return values for the current group.

Usage

S3 method for class 'DataFrame'
group_vars(x)

mutate.DataFrame 19

Arguments

x a S4Vectors::DataFrame(), likely grouped

Value

the grouping variables as a character vector

mutate.DataFrame Create, modify, and delete columns

Description

mutate() creates new columns that are functions of existing variables. It can also modify (if the
name is the same as an existing column) and delete columns (by setting their value to NULL).

Usage

S3 method for class 'DataFrame'
mutate(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Value

An object of the same type as .data. The output has the following properties:

• Columns from .data will be preserved according to the .keep argument.

• Existing columns that are modified by ... will always be returned in their original location.

• New columns created through ... will be placed according to the .before and .after argu-
ments.

• The number of rows is not affected.

• Columns given the value NULL will be removed.

• Groups will be recomputed if a grouping variable is mutated.

• Data frame attributes are preserved.

20 mutate.DataFrame

Useful mutate functions

• +, -, log(), etc., for their usual mathematical meanings

• lead(), lag()

• dense_rank(), min_rank(), percent_rank(), row_number(), cume_dist(), ntile()

• cumsum(), cummean(), cummin(), cummax(), cumany(), cumall()

• na_if(), coalesce()

• if_else(), recode(), case_when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped mutate:

starwars %>%
select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>%
select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

The former normalises mass by the global average whereas the latter normalises by the averages
within species levels.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

Methods available in currently loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), reframe(), rename(), select(), slice(), summarise()

Examples

Newly created variables are available immediately
starwars %>%

select(name, mass) %>%
mutate(

mass2 = mass * 2,
mass2_squared = mass2 * mass2

mutate.DataFrame 21

)

As well as adding new variables, you can use mutate() to
remove variables and modify existing variables.
starwars %>%

select(name, height, mass, homeworld) %>%
mutate(

mass = NULL,
height = height * 0.0328084 # convert to feet

)

Use across() with mutate() to apply a transformation
to multiple columns in a tibble.
starwars %>%

select(name, homeworld, species) %>%
mutate(across(!name, as.factor))

see more in ?across

Window functions are useful for grouped mutates:
starwars %>%

select(name, mass, homeworld) %>%
group_by(homeworld) %>%
mutate(rank = min_rank(desc(mass)))

see `vignette("window-functions")` for more details

By default, new columns are placed on the far right.
df <- tibble(x = 1, y = 2)
df %>% mutate(z = x + y)
df %>% mutate(z = x + y, .before = 1)
df %>% mutate(z = x + y, .after = x)

By default, mutate() keeps all columns from the input data.
df <- tibble(x = 1, y = 2, a = "a", b = "b")
df %>% mutate(z = x + y, .keep = "all") # the default
df %>% mutate(z = x + y, .keep = "used")
df %>% mutate(z = x + y, .keep = "unused")
df %>% mutate(z = x + y, .keep = "none")

Grouping --
The mutate operation may yield different results on grouped
tibbles because the expressions are computed within groups.
The following normalises `mass` by the global average:
starwars %>%

select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

Whereas this normalises `mass` by the averages within species
levels:
starwars %>%

select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

22 pull.DataFrame

Indirection --
Refer to column names stored as strings with the `.data` pronoun:
vars <- c("mass", "height")
mutate(starwars, prod = .data[[vars[[1]]]] * .data[[vars[[2]]]])
Learn more in ?rlang::args_data_masking

pull.DataFrame Extract a single column

Description

pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works with
remote data frames, and it can optionally name the output.

Usage

S3 method for class 'DataFrame'
pull(.data, var = -1, name = NULL, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

var A variable specified as:

• a literal variable name
• a positive integer, giving the position counting from the left
• a negative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column you’ve
created most recently).
This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

name An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

... For use by methods.

Value

A vector the same size as .data.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

rename2 23

Examples

d <- S4Vectors::DataFrame(mtcars)
pull(d, cyl)

rename2 Rename columns

Description

rename() changes the names of individual variables using new_name = old_name syntax; rename_with()
renames columns using a function.

Usage

rename2(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• Column names are changed; column order is preserved.

• Data frame attributes are preserved.

• Groups are updated to reflect new names.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), select(), slice(), summarise()

24 select.DataFrame

Examples

iris <- as_tibble(iris) # so it prints a little nicer
rename(iris, petal_length = Petal.Length)

Rename using a named vector and `all_of()`
lookup <- c(pl = "Petal.Length", sl = "Sepal.Length")
rename(iris, all_of(lookup))

If your named vector might contain names that don't exist in the data,
use `any_of()` instead
lookup <- c(lookup, new = "unknown")
try(rename(iris, all_of(lookup)))
rename(iris, any_of(lookup))

rename_with(iris, toupper)
rename_with(iris, toupper, starts_with("Petal"))
rename_with(iris, ~ tolower(gsub(".", "_", .x, fixed = TRUE)))

If your renaming function uses `paste0()`, make sure to set
`recycle0 = TRUE` to ensure that empty selections are recycled correctly
try(rename_with(

iris,
~ paste0("prefix_", .x),
starts_with("nonexistent")

))

rename_with(
iris,
~ paste0("prefix_", .x, recycle0 = TRUE),
starts_with("nonexistent")

)

select.DataFrame Keep or drop columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name (e.g. a:f selects all columns from a on the left to f
on the right) or type (e.g. where(is.numeric) selects all numeric columns).

Overview of selection features:
Tidyverse selections implement a dialect of R where operators make it easy to select variables:

• : for selecting a range of consecutive variables.
• ! for taking the complement of a set of variables.
• & and | for selecting the intersection or the union of two sets of variables.

select.DataFrame 25

• c() for combining selections.

In addition, you can use selection helpers. Some helpers select specific columns:

• everything(): Matches all variables.
• last_col(): Select last variable, possibly with an offset.
• group_cols(): Select all grouping columns.

Other helpers select variables by matching patterns in their names:

• starts_with(): Starts with a prefix.
• ends_with(): Ends with a suffix.
• contains(): Contains a literal string.
• matches(): Matches a regular expression.
• num_range(): Matches a numerical range like x01, x02, x03.

Or from variables stored in a character vector:

• all_of(): Matches variable names in a character vector. All names must be present, other-
wise an out-of-bounds error is thrown.

• any_of(): Same as all_of(), except that no error is thrown for names that don’t exist.

Or using a predicate function:

• where(): Applies a function to all variables and selects those for which the function returns
TRUE.

Usage

S3 method for class 'DataFrame'
select(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x:y can be used to select a range of variables.

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• Output columns are a subset of input columns, potentially with a different order. Columns
will be renamed if new_name = old_name form is used.

• Data frame attributes are preserved.

• Groups are maintained; you can’t select off grouping variables.

26 select.DataFrame

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

Here we show the usage for the basic selection operators. See the specific help pages to learn about
helpers like starts_with().

The selection language can be used in functions like dplyr::select() or tidyr::pivot_longer().
Let’s first attach the tidyverse:

library(tidyverse)

For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars %>% select(height)
#> # A tibble: 87 x 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # i 83 more rows

iris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6
#> Sepal.Width Petal.Length Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9
#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # i 146 more rows

Select multiple variables by separating them with commas. Note how the order of columns is
determined by the order of inputs:

starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass
#> <chr> <int> <dbl>

select.DataFrame 27

#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # i 83 more rows

Functions like tidyr::pivot_longer() don’t take variables with dots. In this case use c() to
select multiple variables:

iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5
#> Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # i 296 more rows

Operators::
The : operator selects a range of consecutive variables:

starwars %>% select(name:mass)
#> # A tibble: 87 x 3
#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # i 83 more rows

The ! operator negates a selection:

starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # i 83 more rows
#> # i 3 more variables: films <list>, vehicles <list>, starships <list>

iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species
#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa

28 select.DataFrame

#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows

iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species
#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # i 146 more rows

& and | take the intersection or the union of two selections:

iris %>% select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width
#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # i 146 more rows

iris %>% select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width
#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows

To take the difference between two selections, combine the & and ! operators:

iris %>% select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length
#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # i 146 more rows

slice.DataFrame 29

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), slice(), summarise()

slice.DataFrame Subset rows using their positions

Description

slice() lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

• slice_head() and slice_tail() select the first or last rows.
• slice_sample() randomly selects rows.
• slice_min() and slice_max() select rows with the smallest or largest values of a variable.

If .data is a grouped_df, the operation will be performed on each group, so that (e.g.) slice_head(df,
n = 5) will select the first five rows in each group.

Usage

S3 method for class 'DataFrame'
slice(.data, ..., .preserve = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Details

Slice does not work with relational databases because they have no intrinsic notion of row order. If
you want to perform the equivalent operation, use filter() and row_number().

Value

An object of the same type as .data. The output has the following properties:

• Each row may appear 0, 1, or many times in the output.
• Columns are not modified.
• Groups are not modified.
• Data frame attributes are preserved.

30 slice.DataFrame

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• slice(): no methods found.

• slice_head(): no methods found.

• slice_tail(): no methods found.

• slice_min(): no methods found.

• slice_max(): no methods found.

• slice_sample(): no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), select(),
summarise()

Examples

Similar to head(mtcars, 1):
mtcars %>% slice(1L)
Similar to tail(mtcars, 1):
mtcars %>% slice(n())
mtcars %>% slice(5:n())
Rows can be dropped with negative indices:
slice(mtcars, -(1:4))

First and last rows based on existing order
mtcars %>% slice_head(n = 5)
mtcars %>% slice_tail(n = 5)

Rows with minimum and maximum values of a variable
mtcars %>% slice_min(mpg, n = 5)
mtcars %>% slice_max(mpg, n = 5)

slice_min() and slice_max() may return more rows than requested
in the presence of ties.
mtcars %>% slice_min(cyl, n = 1)
Use with_ties = FALSE to return exactly n matches
mtcars %>% slice_min(cyl, n = 1, with_ties = FALSE)
Or use additional variables to break the tie:
mtcars %>% slice_min(tibble(cyl, mpg), n = 1)

slice_sample() allows you to random select with or without replacement
mtcars %>% slice_sample(n = 5)
mtcars %>% slice_sample(n = 5, replace = TRUE)

you can optionally weight by a variable - this code weights by the

summarise.DataFrame 31

physical weight of the cars, so heavy cars are more likely to get
selected
mtcars %>% slice_sample(weight_by = wt, n = 5)

Group wise operation --
df <- tibble(

group = rep(c("a", "b", "c"), c(1, 2, 4)),
x = runif(7)

)

All slice helpers operate per group, silently truncating to the group
size, so the following code works without error
df %>% group_by(group) %>% slice_head(n = 2)

When specifying the proportion of rows to include non-integer sizes
are rounded down, so group a gets 0 rows
df %>% group_by(group) %>% slice_head(prop = 0.5)

Filter equivalents --
slice() expressions can often be written to use `filter()` and
`row_number()`, which can also be translated to SQL. For many databases,
you'll need to supply an explicit variable to use to compute the row number.
filter(mtcars, row_number() == 1L)
filter(mtcars, row_number() == n())
filter(mtcars, between(row_number(), 5, n()))

summarise.DataFrame Summarise each group down to one row

Description

summarise() creates a new data frame. It returns one row for each combination of grouping vari-
ables; if there are no grouping variables, the output will have a single row summarising all observa-
tions in the input. It will contain one column for each grouping variable and one column for each
of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

Usage

S3 method for class 'DataFrame'
summarise(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

32 summarise.DataFrame

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

Value

An object usually of the same type as .data.

• The rows come from the underlying group_keys().

• The columns are a combination of the grouping keys and the summary expressions that you
provide.

• The grouping structure is controlled by the .groups= argument, the output may be another
grouped_df, a tibble or a rowwise data frame.

• Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.

Useful functions

• Center: mean(), median()

• Spread: sd(), IQR(), mad()

• Range: min(), max(),

• Position: first(), last(), nth(),

• Count: n(), n_distinct()

• Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), select(),
slice()

summarize.DataFrame 33

Examples

A summary applied to ungrouped tbl returns a single row
mtcars %>%

summarise(mean = mean(disp), n = n())

Usually, you'll want to group first
mtcars %>%

group_by(cyl) %>%
summarise(mean = mean(disp), n = n())

Each summary call removes one grouping level (since that group
is now just a single row)
mtcars %>%

group_by(cyl, vs) %>%
summarise(cyl_n = n()) %>%
group_vars()

BEWARE: reusing variables may lead to unexpected results
mtcars %>%

group_by(cyl) %>%
summarise(disp = mean(disp), sd = sd(disp))

Refer to column names stored as strings with the `.data` pronoun:
var <- "mass"
summarise(starwars, avg = mean(.data[[var]], na.rm = TRUE))
Learn more in ?rlang::args_data_masking

In dplyr 1.1.0, returning multiple rows per group was deprecated in favor
of `reframe()`, which never messages and always returns an ungrouped
result:
mtcars %>%

group_by(cyl) %>%
summarise(qs = quantile(disp, c(0.25, 0.75)), prob = c(0.25, 0.75))

->
mtcars %>%

group_by(cyl) %>%
reframe(qs = quantile(disp, c(0.25, 0.75)), prob = c(0.25, 0.75))

summarize.DataFrame Summarise each group down to one row

Description

summarise() creates a new data frame. It returns one row for each combination of grouping vari-
ables; if there are no grouping variables, the output will have a single row summarising all observa-
tions in the input. It will contain one column for each grouping variable and one column for each
of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

34 summarize.DataFrame

Usage

S3 method for class 'DataFrame'
summarize(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

Value

An object usually of the same type as .data.

• The rows come from the underlying group_keys().

• The columns are a combination of the grouping keys and the summary expressions that you
provide.

• The grouping structure is controlled by the .groups= argument, the output may be another
grouped_df, a tibble or a rowwise data frame.

• Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.

Useful functions

• Center: mean(), median()

• Spread: sd(), IQR(), mad()

• Range: min(), max(),

• Position: first(), last(), nth(),

• Count: n(), n_distinct()

• Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

summarize.DataFrame 35

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), select(),
slice()

Examples

A summary applied to ungrouped tbl returns a single row
mtcars %>%

summarise(mean = mean(disp), n = n())

Usually, you'll want to group first
mtcars %>%

group_by(cyl) %>%
summarise(mean = mean(disp), n = n())

Each summary call removes one grouping level (since that group
is now just a single row)
mtcars %>%

group_by(cyl, vs) %>%
summarise(cyl_n = n()) %>%
group_vars()

BEWARE: reusing variables may lead to unexpected results
mtcars %>%

group_by(cyl) %>%
summarise(disp = mean(disp), sd = sd(disp))

Refer to column names stored as strings with the `.data` pronoun:
var <- "mass"
summarise(starwars, avg = mean(.data[[var]], na.rm = TRUE))
Learn more in ?rlang::args_data_masking

In dplyr 1.1.0, returning multiple rows per group was deprecated in favor
of `reframe()`, which never messages and always returns an ungrouped
result:
mtcars %>%

group_by(cyl) %>%
summarise(qs = quantile(disp, c(0.25, 0.75)), prob = c(0.25, 0.75))

->
mtcars %>%

group_by(cyl) %>%
reframe(qs = quantile(disp, c(0.25, 0.75)), prob = c(0.25, 0.75))

36 tally.DataFrame

tally.DataFrame Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables: df %>% count(a,
b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n = n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()). Supply wt to
perform weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count() and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.

Usage

S3 method for class 'DataFrame'
tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

Value

An object of the same type as .data. count() and add_count() group transiently, so the output
has the same groups as the input.

Examples

count() is a convenient way to get a sense of the distribution of
values in a dataset
starwars %>% count(species)
starwars %>% count(species, sort = TRUE)
starwars %>% count(sex, gender, sort = TRUE)
starwars %>% count(birth_decade = round(birth_year, -1))

use the `wt` argument to perform a weighted count. This is useful
when the data has already been aggregated once

tbl_vars.DataFrame 37

df <- tribble(
~name, ~gender, ~runs,
"Max", "male", 10,
"Sandra", "female", 1,
"Susan", "female", 4

)
counts rows:
df %>% count(gender)
counts runs:
df %>% count(gender, wt = runs)

When factors are involved, `.drop = FALSE` can be used to retain factor
levels that don't appear in the data
df2 <- tibble(

id = 1:5,
type = factor(c("a", "c", "a", NA, "a"), levels = c("a", "b", "c"))

)
df2 %>% count(type)
df2 %>% count(type, .drop = FALSE)

Or, using `group_by()`:
df2 %>% group_by(type, .drop = FALSE) %>% count()

tally() is a lower-level function that assumes you've done the grouping
starwars %>% tally()
starwars %>% group_by(species) %>% tally()

both count() and tally() have add_ variants that work like
mutate() instead of summarise
df %>% add_count(gender, wt = runs)
df %>% add_tally(wt = runs)

tbl_vars.DataFrame List variables provided by a tbl.

Description

tbl_vars() returns all variables while tbl_nongroup_vars() returns only non-grouping vari-
ables. The groups attribute of the object returned by tbl_vars() is a character vector of the
grouping columns.

Usage

S3 method for class 'DataFrame'
tbl_vars(x)

Arguments

x A tbl object

38 ungroup.DataFrame

Value

all variables, with a groups attribute when grouped.

See Also

group_vars() for a function that returns grouping variables.

ungroup.DataFrame Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing tbl
and converts it into a grouped tbl where operations are performed "by group". ungroup() removes
grouping.

Usage

S3 method for class 'DataFrame'
ungroup(x, ...)

Arguments

x A tbl()

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping.

Value

A grouped data frame with class grouped_df, unless the combination of ... and add yields a empty
set of grouping columns, in which case a tibble will be returned.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• group_by(): no methods found.

• ungroup(): no methods found.

ungroup.DataFrame 39

Ordering

Currently, group_by() internally orders the groups in ascending order. This results in ordered
output from functions that aggregate groups, such as summarise().

When used as grouping columns, character vectors are ordered in the C locale for performance
and reproducibility across R sessions. If the resulting ordering of your grouped operation matters
and is dependent on the locale, you should follow up the grouped operation with an explicit call to
arrange() and set the .locale argument. For example:

data %>%
group_by(chr) %>%
summarise(avg = mean(x)) %>%
arrange(chr, .locale = "en")

This is often useful as a preliminary step before generating content intended for humans, such as an
HTML table.

Legacy behavior:
Prior to dplyr 1.1.0, character vector grouping columns were ordered in the system locale. If you
need to temporarily revert to this behavior, you can set the global option dplyr.legacy_locale
to TRUE, but this should be used sparingly and you should expect this option to be removed in a
future version of dplyr. It is better to update existing code to explicitly call arrange(.locale =
) instead. Note that setting dplyr.legacy_locale will also force calls to arrange() to use the
system locale.

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

by_cyl <- mtcars %>% group_by(cyl)

grouping doesn't change how the data looks (apart from listing
how it's grouped):
by_cyl

It changes how it acts with the other dplyr verbs:
by_cyl %>% summarise(

disp = mean(disp),
hp = mean(hp)

)
by_cyl %>% filter(disp == max(disp))

Each call to summarise() removes a layer of grouping
by_vs_am <- mtcars %>% group_by(vs, am)
by_vs <- by_vs_am %>% summarise(n = n())
by_vs
by_vs %>% summarise(n = sum(n))

To removing grouping, use ungroup

40 ungroup.DataFrame

by_vs %>%
ungroup() %>%
summarise(n = sum(n))

By default, group_by() overrides existing grouping
by_cyl %>%

group_by(vs, am) %>%
group_vars()

Use add = TRUE to instead append
by_cyl %>%

group_by(vs, am, .add = TRUE) %>%
group_vars()

You can group by expressions: this is a short-hand
for a mutate() followed by a group_by()
mtcars %>%

group_by(vsam = vs + am)

The implicit mutate() step is always performed on the
ungrouped data. Here we get 3 groups:
mtcars %>%

group_by(vs) %>%
group_by(hp_cut = cut(hp, 3))

If you want it to be performed by groups,
you have to use an explicit mutate() call.
Here we get 3 groups per value of vs
mtcars %>%

group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)

when factors are involved and .drop = FALSE, groups can be empty
tbl <- tibble(

x = 1:10,
y = factor(rep(c("a", "c"), each = 5), levels = c("a", "b", "c"))

)
tbl %>%

group_by(y, .drop = FALSE) %>%
group_rows()

Index

∗ internal
group_data, 17

+, 20
==, 10
>, 10
>=, 10
&, 10

all(), 32, 34
all_of(), 25
any(), 32, 34
any_of(), 25
arrange, 10, 20, 23, 29, 30, 32, 35
arrange(), 7, 14, 15, 39
arrange.DataFrame, 3
as.character, 12
AsIs, 12

between(), 10

case_when(), 20
cat, 12
coalesce(), 20
contains(), 25
context, 18
count.DataFrame, 5
cumall(), 20
cumany(), 20
cume_dist(), 20
cummax(), 20
cummean(), 20
cummin(), 20
cumsum(), 20

dense_rank(), 20
desc, 6
desc(), 3
DFplyr (DFplyr-package), 2
DFplyr-package, 2
distinct.DataFrame, 7

encodeString, 12
ends_with(), 25
everything(), 25

filter, 4, 20, 23, 29, 30, 32, 35
filter(), 29
filter.DataFrame, 9
first(), 32, 34
format.DataFrame, 11
format.Date, 11
format.info, 12
format.POSIXct, 11
formatC, 12

get_group_data (group_data), 17
getOption, 12
group_by(), 5, 9
group_by.DataFrame, 13
group_by_drop_default(), 14
group_by_drop_default.DataFrame, 16
group_cols(), 25
group_data, 17
group_data.DataFrame, 17
group_keys(), 32, 34
group_map, 15, 39
group_nest, 15, 39
group_split, 15, 39
group_trim, 15, 39
group_vars(), 38
group_vars.DataFrame, 18
grouped_df, 14, 29, 32, 34, 38

if_else(), 20
IQR(), 32, 34
is.na(), 10
isS4, 12

lag(), 20
last(), 32, 34
last_col(), 25

41

42 INDEX

lead(), 20
log(), 20

mad(), 32, 34
matches(), 25
max(), 32, 34
mean(), 32, 34
median(), 32, 34
min(), 32, 34
min_rank(), 20
mutate, 4, 10, 23, 29, 30, 32, 35
mutate(), 32, 34
mutate.DataFrame, 19

n(), 32, 34
n_distinct(), 32, 34
na_if(), 20
nchar, 12
near(), 10
nth(), 32, 34
ntile(), 20
num_range(), 25

paste, 12
percent_rank(), 20
prettyNum, 12
print, 12
print.default, 12
pull.DataFrame, 22

quasiquotation, 22

recode(), 20
reframe, 4, 10, 20, 23, 29, 30, 32, 35
reframe(), 32, 34
rename, 4, 10, 20, 29, 30, 32, 35
rename2, 23
row_number(), 20, 29
rowwise, 32, 34

S4Vectors::DataFrame, 17
S4Vectors::DataFrame(), 18, 19
sd(), 32, 34
select, 4, 10, 20, 23, 30, 32, 35
select.DataFrame, 24
set_group_data (group_data), 17
slice, 4, 10, 20, 23, 29, 32, 35
slice.DataFrame, 29
sprintf, 12
starts_with(), 25, 26

summarise, 4, 10, 20, 23, 29, 30
summarise(), 14, 39
summarise.DataFrame, 31
summarize.DataFrame, 33

tally.DataFrame, 36
tbl(), 38
tbl_vars.DataFrame, 37
tibble, 32, 34
toString, 12

ungroup(), 9
ungroup.DataFrame, 38
unique.data.frame(), 7
unlist, 12

where(), 25

xor(), 10

	DFplyr-package
	arrange.DataFrame
	count.DataFrame
	desc
	distinct.DataFrame
	filter.DataFrame
	format.DataFrame
	group_by.DataFrame
	group_by_drop_default.DataFrame
	group_data
	group_data.DataFrame
	group_vars.DataFrame
	mutate.DataFrame
	pull.DataFrame
	rename2
	select.DataFrame
	slice.DataFrame
	summarise.DataFrame
	summarize.DataFrame
	tally.DataFrame
	tbl_vars.DataFrame
	ungroup.DataFrame
	Index

