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ari_df Help function for computing ARI
Description

Help function for computing ARI

Usage

ari_df(x)

Arguments

X

Value

A data. frame with clustering results.

a data.frame with ARI values for each pair of runs.

clustering_summary_filteredExpr10_Koh_v1

Clustering summaries

Description

Clustering results for the performance evaluation of clustering methods for scRNA-seq data, corre-
sponding to v1 of Duo et al. (2018).

Usage

clustering_summary_filteredExpr10_Koh_v1(metadata = FALSE)
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Arguments

metadata Logical, whether only metadata should be returned

Details

These objects contain clustering results from the performance evaluation of clustering methods for
scRNA-seq data. The clustering results are provided as a data. frame object containing 10 variables
(columns) named dataset, method, cell, run, k, resolution, cluster, trueclass, est_k and
elapsed. For further information see Duo et al. (2018).

Value

Returns a data. frame.

References
Duo A, Robinson MD. and Soneson C. (2018). A systematic performance evaluation of clustering
methods for single-cell RNA-seq data. F1000Res., 7:1141.

Examples

clustering_summary_filteredExpr1@_Koh_v1()

clustering_summary_filteredExpr10_Koh_v2
Clustering summaries

Description
Clustering results for the performance evaluation of clustering methods for scRNA-seq data, corre-
sponding to v2 of Duo et al. (2018).

Usage

clustering_summary_filteredExpr10_Koh_v2(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned

Details

These objects contain clustering results from the performance evaluation of clustering methods for
scRNA-seq data. The clustering results are provided as a data. frame object containing 10 variables
(columns) named dataset, method, cell, run, k, resolution, cluster, trueclass, est_k and
elapsed. For further information see Duo et al. (2018).

Value

Returns a data. frame.
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References

Duo A, Robinson MD. and Soneson C. (2018). A systematic performance evaluation of clustering
methods for single-cell RNA-seq data. F1000Res., 7:1141.

Examples

clustering_summary_filteredExpr1@_Koh_v2()

DuoClustering2018 DuoClustering2018

Description

Data package containing sScCRNA-seq data sets, clustering results and functions for summarizing the
performance of different scRNA-seq clustering methods.

Details

This package contains publicly available scRNA-seq data sets and the accompanying results from
clustering using general-purpose methods and scRNA-seq clustering methods. Several real data sets
a well as simulated data sets are provided. The data sets have been used to evaluate the performance
of clustering algorithms in our previous work and publication (Duo et al., F1000Research 2018).
The data sets are available as SingleCellExperiment objects. For additional details on the data
sets, see the help files for the respective data sets.

Additionally, the clustering results from the evaluation as well as functions for summarization and
visualization of the clustering results are provided.

A description of the basic usage of the package for retrieving data sets and clustering results, and
how to construct various plots summarizing the performance of different methods is outlined in the
package vignettes.

Author(s)

Angelo Duo and Charlotte Sonesson

References

Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-
tering methods for single-cell RNA-seq data. F1000Research, 7:1141.
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duo_clustering_all_parameter_settings_vi
Hyperparameter values

Description
Hyperparameter values for all clustering algorithms and data sets in v1 of Duo et al (F1000Research
2018)

Usage

duo_clustering_all_parameter_settings_v1(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned

Details
List of hyperparameter values used for all clustering algorithms and data sets in vl of Duo et al
(F1000Research 2018).

Value

Returns a 1ist with hyperparameter values for all data sets and methods.

References
Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-

tering methods for single-cell RNA-seq data. F1000Research, 7:1141.

Examples

duo_clustering_all_parameter_settings_v1()

duo_clustering_all_parameter_settings_v2
Hyperparameter values

Description
Hyperparameter values for all clustering algorithms and data sets in v2 of Duo et al (F1000Research
2018)

Usage

duo_clustering_all_parameter_settings_v2(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned
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Details
List of hyperparameter values used for all clustering algorithms and data sets in v2 of Duo et al
(F1000Research 2018).

Value

Returns a 1ist with hyperparameter values for all data sets and methods.

References
Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-
tering methods for single-cell RNA-seq data. F1000Research, 7:1141.

Examples

duo_clustering_all_parameter_settings_v2()

plot_entropy Plot entropy of cluster assignments

Description

Plot entropy of cluster assignments

Usage

plot_entropy(res, method_colors = NULL)

Arguments

res A data.frame with clustering results.

method_colors A named vector with colors to use for the different clustering methods. Can be
NULL, in which case colors are chosen automatically.
Value

A named list of ggplot2 objects

Author(s)

Angelo Duo, Charlotte Soneson

Examples

res <- clustering_summary_filteredExpr10_Koh_v2()
plots <- plot_entropy(res)
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plot_k_diff Plot differences between optimal, estimated and true number of clus-
ters

Description

Plot differences between optimal, estimated and true number of clusters

Usage

plot_k_diff(res, method_colors = NULL)

Arguments

res A data.frame with clustering results.

method_colors A named vector with colors to use for the different clustering methods. Can be
NULL, in which case colors are chosen automatically.
Value

A named list of ggplot2 objects

Author(s)

Angelo Duo, Charlotte Soneson

Examples

res <- clustering_summary_filteredExpr10_Koh_v1()
plots <- plot_k_diff(res)

plot_performance Plot performance of clustering methods

Description
Generate various plots of the agreement between each clustering and the true partitioning of the
cells, quantified by the adjusted Rand index (ARI).

Usage

plot_performance(res, method_colors = NULL)

Arguments

res A data.frame with clustering results.

method_colors A named vector with colors to use for the different clustering methods. Can be
NULL, in which case colors are chosen automatically.



8 plot_stability

Value

A named list of ggplot2 objects

Author(s)

Angelo Duo, Charlotte Soneson

Examples

res <- clustering_summary_filteredExpr10_Koh_v1()
plots <- plot_performance(res)

plot_stability Plot stability of methods

Description

Plot the stability of the clusterings obtained for each method

Usage

plot_stability(res, method_colors = NULL)

Arguments

res A data.frame with clustering results.

method_colors A named vector with colors to use for the different clustering methods. Can be
NULL, in which case colors are chosen automatically.

Value

A named list of ggplot2 objects

Author(s)

Angelo Duo, Charlotte Soneson

Examples

res <- clustering_summary_filteredExpr10_Koh_v1()
plots <- plot_stability(res)
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plot_timing Plot timing of methods

Description

Plot the elapsed time for each clustering method

Usage

plot_timing(res, method_colors = NULL, scaleMethod = NULL)

Arguments

res A data.frame with clustering results.

method_colors A named vector with colors to use for the different clustering methods. Can be
NULL, in which case colors are chosen automatically.

scaleMethod Either NULL or one of the clustering methods in the result data.frame. If not
NULL, a plot will be generated where all elapsed times are normalized by di-
viding with the time for scaleMethod. If NULL, this plot will not be generated.

Value

A named list of ggplot2 objects

Author(s)

Angelo Duo, Charlotte Soneson

Examples

res <- clustering_summary_filteredExpr10_Koh_v1()
plots <- plot_timing(res)

sce_full_Koh Koh data sets

Description

Gene or TCC counts for a scRNA-seq data set from Koh et al. (2016), consisting of in vitro cultured
H7 embryonic stem cells (WiCell) and H7-derived downstream early mesoderm progenitors.

Usage

sce_full_Koh(metadata = FALSE)
sce_filteredExpr10_Koh(metadata = FALSE)
sce_filteredHVG10_Koh(metadata = FALSE)
sce_filteredM3Drop10_Koh(metadata = FALSE)
sce_full_KohTCC(metadata = FALSE)
sce_filteredExpr10_KohTCC(metadata = FALSE)
sce_filteredHVG10_KohTCC(metadata = FALSE)
sce_filteredM3Drop1@_KohTCC(metadata = FALSE)
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Arguments

metadata Logical, whether only metadata should be returned
Format

SingleCellExperiment
Details

This is a scRNA-seq data set originally from Koh et al. (2016). The data set consists of gene-level
read counts or TCCs (transcript compatibility counts) of in vitro cultured human H7 embryonic
stem cells (WiCell) and H7-derived downstream early mesoderm progenitors. It contains 9 subpop-
ulations, defined by the cell phenotype given by the authors’ annotations. The data sets have been
used to evaluate the performance of clustering algorithms in Duo et al. (2018).

For the sce_full_Koh data set, all genes except those with zero counts across all cells are retained.
The gene counts are gene-level length-scaled TPM values derived from Salmon (Patro et al. (2017))
quantifications (see Soneson and Robinson (2018)). For the TCC data set we estimated transcripts
compatibility counts using kallisto as an alternative to the gene-level count matrix (Bray et al.
(2016), Ntranos et al. (2016)).

The scater package was used to perform quality control of the data sets (McCarthy et al. (2017)).
Features with zero counts across all cells, as well as all cells with total count or total number of
detected features more than 3 median absolute deviations (MADs) below the median across all cells
(on the log scale), were excluded.

The sce_full_Koh data set consists of 531 cells and 48,981 features, and the sce_full_KohTCC
data set of 531 cells and 811,938 features. The filteredExpr, filteredHVGand filteredM3Drop10
are further reduced data sets. For each of the filtering methods, we retained 10 percent of the number
of genes (with a non-zero count in at least one cell) in the original data sets.

For the filteredExpr data sets, only the genes/TCCs with the highest average expression (log-
normalized count) value across all cells were retained. Using the Seurat package (Satija et al.
(2015)), the filteredHVG data sets were filtered on the variability of the features and only the most
highly variable ones were retained. Finally, the M3Drop package was used to model the dropout rate
of the genes as a function of the mean expression level using the Michaelis-Menten equation and
select variables to retain for the filteredM3Drop10 data sets (Andrews and Hemberg (2018)).

The scater package was used to normalize the count values, based on normalization factors calcu-
lated by the deconvolution method from the scran package (Lun et al. (2016)).

This data set is provided as a SingleCellExperiment object (Lun and Risso (2017)). Raw data files
for the original data set (SRP073808) are available from https://www.ncbi.nlm.nih.gov/sra?term=SRP073808.

Value

Returns a SingleCellExperiment object.

References

Andrews, T.S., and Hemberg, M. (2018). Dropout-based feature selection for scRNASeq. bioRxiv
doi:https://doi.org/10.1101/065094.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq
quantification. Nat. Biotechnol. 34: 525-527.

Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-
tering methods for single-cell RNA-seq data. F1000Res. 7:1141.
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Koh, P.W,, Sinha, R., Barkal, A.A., Morganti R.M., Chen, A., Weissman, L.L., Ang, L.T., Kundaje,
A., and Loh, K.M. (2016). An atlas of transcriptional, chromatin accessibility, and surface marker
changes in human mesoderm development. Scientific Data 3:160109.

Lun, A.T.L., Bach, K., and Marioni, J.C. (2016) Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17(1): 75.

Lun, A.T.L., and Risso, D. (2017). SingleCellExperiment: S4 Classes for Single Cell Data. R
package version 1.0.0.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017): Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics
33(8): 1179-1186.

Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L., and Tse, D.N. (2016): Fast and accu-
rate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol.
17:112.

Patro, R., Duggal, G., Love, M1, Irizarry, R.A., and Kingsford, C. (2017): Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14:417-419.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of
single-cell gene expression data. Nat. Biotechnol. 33(5): 495-502.

Soneson, C., and Robinson, M.D. (2018). Bias, robustness and scalability in single-cell differential
expression analysis. Nat. Methods, 15(4): 255-261.

Examples

sce_filteredHVG10_Koh()

sce_full_Kumar Kumar data sets

Description

Gene or TCC counts for scRNA-seq data set from Kumar et al. (2014), consisting of mESCs with
various genetic perturbations which are cultured in different media.

Usage

sce_full_Kumar(metadata = FALSE)
sce_filteredExpr10_Kumar(metadata = FALSE)
sce_filteredHVG10_Kumar(metadata = FALSE)
sce_filteredM3Drop1@_Kumar (metadata = FALSE)
sce_full_KumarTCC(metadata = FALSE)
sce_filteredExpr1@_KumarTCC(metadata = FALSE)
sce_filteredHVG10_KumarTCC(metadata = FALSE)
sce_filteredM3Drop10_KumarTCC(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned

Format

SingleCellExperiment
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Details

This is a scRNA-seq data set originally from Kumar et al. (2014). The data set consists of gene-
level read counts or TCCs (transcript compatibility counts) for mESCs from Mus musculus with
various genetic perturbations which are cultured in different media. It contains 3 subpopulations,
defined by the cell phenotype given by the authors’ annotations. The data sets have been used to
evaluate the performance of clustering algorithms in Duo et al. (2018).

For the sce_full_Kumar data set, all genes except those with zero counts across all cells are re-
tained. The gene counts are gene-level length-scaled TPM values derived from Salmon (Patro et
al. (2017)) quantifications (see Soneson and Robinson (2018)). For the TCC data set we estimated
transcripts compatibility counts using kallisto as an alternative to the gene-level count matrix
(Bray et al. (2016), Ntranos et al. (2016)).

The scater package was used to perform quality control of the data sets (McCarthy et al. (2017)).
Features with zero counts across all cells, as well as all cells with total count or total number of
detected features more than 3 median absolute deviations (MADs) below the median across all cells
(on the log scale), were excluded. Additionally, cells with a large fraction of ERCC reads were
filtered out.

The sce_full_Kumar data set consists of 246 cells and 45,159 features, the sce_full_KumarTCC
data set of 246 cells and 803,405 features, respectively. The filteredExpr, filteredHVG and
filteredM3Drop10 are further reduced data sets. For each filtering method, we retained 10 percent
of the original number of genes (with a non-zero count in at least one cell) in the original data sets.

For the filteredExpr data sets, only the genes/TCCs with the highest average expression (log-
normalized count) value across all cells were retained. Using the Seurat package, the filteredHVG
data sets were filtered on the variability of the features and only the most highly variable ones were
retained (Satija et al. (2015)). Finally, the M3Drop package was used to model the dropout rate
of the genes as a function of the mean expression level using the Michaelis-Menten equation and
select variables to retain for the filteredM3Drop10 data sets (Andrews and Hemberg (2018)).

The scater package was used to normalize the count values, based on normalization factors calcu-
lated by the deconvolution method from the scran package (Lun et al. (2016)). This data set is pro-
vided as a SingleCellExperiment object (Lun and Risso (2017)). For further information on the
SingleCellExperiment class, see the corresponding manual. Raw data files for the original data
set (GSE60749) are available from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60749.

Value

Returns a SingleCellExperiment object.

References

Andrews, T.S., and Hemberg, M. (2018). Dropout-based feature selection for scRNASeq. bioRxiv
doi:https://doi.org/10.1101/065094.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq
quantification. Nat. Biotechnol. 34: 525-527.

Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-
tering methods for single-cell RNA-seq data. F1000Res. 7:1141.

Kumar R.M., Cahan P., Shalek A.K., Satija R., DaleyKeyser A.J., Li H., Zhang J., Pardee K., Gen-
nert D., Trombetta J.J., Ferrante T.C., Regev A., Daley G.Q., and Collins J.J. (2014) Deconstructing
transcriptional heterogeneity in pluripotent stem cells. Nature 516(7529): 56-61.

Lun, A.T.L., Bach, K., and Marioni, J.C. (2016) Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17(1): 75.
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Lun, A.T.L., and Risso, D. (2017). SingleCellExperiment: S4 Classes for Single Cell Data. R
package version 1.0.0.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017): Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics
33(8): 1179-1186.

Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L., and Tse, D.N. (2016): Fast and accu-
rate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol.
17:112.

Patro, R., Duggal, G., Love, ML, Irizarry, R.A., and Kingsford, C. (2017): Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14:417-419.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of
single-cell gene expression data. Nat. Biotechnol. 33(5): 495-502.

Soneson, C., and Robinson, M.D. (2018). Bias, robustness and scalability in single-cell differential
expression analysis. Nat. Methods 15(4): 255-261.

Examples

sce_filteredExpr10_Kumar()

sce_full_SimKumar4easy
SimKumar data sets

Description

Gene counts for scRNA-seq data sets simulated with the splatter package.

Usage

sce_full_SimKumar4easy(metadata = FALSE)
sce_filteredExpr10_SimKumar4easy(metadata = FALSE)
sce_filteredHVG10_SimKumar4easy(metadata = FALSE)
sce_filteredM3Drop10_SimKumar4easy(metadata = FALSE)
sce_full_SimKumar4hard(metadata = FALSE)
sce_filteredExpr1@_SimKumar4hard(metadata = FALSE)
sce_filteredHVG10_SimKumar4hard(metadata = FALSE)
sce_filteredM3Drop10_SimKumar4hard(metadata = FALSE)
sce_full_SimKumar8hard(metadata = FALSE)
sce_filteredExpr10_SimKumar8hard(metadata = FALSE)
sce_filteredHVG10_SimKumar8hard(metadata = FALSE)
sce_filteredM3Drop10_SimKumar8hard(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned

Format

SingleCellExperiment
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Details

Using one subpopulation of the sce_full_Kumar data set as input, scRNA-seq data with known
group structure was simulated with the splatter package from Zappia et al. (2017). The simulated
data have been used to evaluate the performance of clustering algorithms in Duo et al. (2018).

Three data sets have been generated, each consisting of 500 cells and approximately 43,000 fea-
tures, with varying degree of cluster separability. The sce_full_SimKumar4easy data set con-
sists of 4 subpopulations with relative abundances 0.1, 0.15, 0.5 and 0.25, and probabilities of
differential expression set to 0.05, 0.1, 0.2 and 0.4 for the four subpopulations, respectively. The
sce_full_SimKumar4hard data set consists of 4 subpopulations with relative abundances 0.2, 0.15,
0.4 and 0.25, and probabilities of differential expression 0.01, 0.05, 0.05 and 0.08. Finally, the
sce_full_SimKumar8hard data set consists of 8 subpopulations with relative abundances 0.13,
0.07, 0.1, 0.05, 0.4, 0.1, 0.1 and 0.05, and probabilities of differential expression equal to 0.03,
0.03, 0.03, 0.05, 0.05, 0.07, 0.08 and 0.1, respectively.

The scater package was used to perform quality control of the data sets (McCarthy et al. (2017)).
Features with zero counts across all cells, as well as cells with total count or total number of detected
features more than 3 median absolute deviations (MADs) below the median across all cells (on the
log scale), were excluded. The filteredExpr, filteredHVG and filteredM3Drop1@ are further
reduced data sets. For each of the filtering method, we retained 10 percent of the original number
of genes (with a non-zero count in at least one cell) in the original data sets.

For the filteredExpr data sets, only the genes with the highest average expression (log-normalized
count) value across all cells were retained. Using the Seurat package, the filteredHVG data sets
were filtered on the variability of the features and only the most highly variable ones were retained
(Satija et al. (2015)). Finally, the M3Drop package was used to model the dropout rate of the genes
as a function of the mean expression level using the Michaelis-Menten equation and select variables
to retain for the filteredM3Drop1@ data sets (Andrews and Hemberg (2018)).

The scater package was used to normalize the count values, based on normalization factors cal-
culated by the deconvolution method from the scran package (Lun et al. (2016)). This data set is
provided as a SingleCellExperiment object (Lun and Risso (2017)). For further information on
the SingleCellExperiment class, see the corresponding manual.

Value

Returns a SingleCellExperiment object.

References

Andrews, T.S., and Hemberg, M. (2018). Dropout-based feature selection for scRNASeq. bioRxiv
doi:https://doi.org/10.1101/065094.

Duo, A., Robinson, M.D., and Soneson, C. (2018). A systematic performance evaluation of clus-
tering methods for single-cell RNA-seq data. F1000Res. 7:1141.

Lun, A.T.L., Bach, K., and Marioni, J.C. (2016) Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17(1): 75.

Lun, A.T.L., and Risso, D. (2017). SingleCellExperiment: S4 Classes for Single Cell Data. R
package version 1.0.0.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017): Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics
33(8): 1179-1186.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of
single-cell gene expression data. Nat. Biotechnol. 33(5): 495-502.
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Zappia, L., Phipson, B., and Oshlack, A. (2017). Splatter: simulation of single-cell RNA sequencing
data. Genome Biol. 18(1): 174.

Examples

sce_filteredExpr10_SimKumar4easy()

sce_full_Trapnell Trapnell data sets

Description

Gene or TCC counts for scRNA-seq data set from Trapnell et al. (2014), consisting of primary
myoblasts over a time course of serum-induced differentiation.

Usage

sce_full_Trapnell(metadata = FALSE)
sce_filteredExpr1@_Trapnell(metadata = FALSE)
sce_filteredHVG10_Trapnell(metadata = FALSE)
sce_filteredM3Drop10_Trapnell(metadata = FALSE)
sce_full_TrapnellTCC(metadata = FALSE)
sce_filteredExpr10_TrapnellTCC(metadata = FALSE)
sce_filteredHVG10_TrapnellTCC(metadata = FALSE)
sce_filteredM3Drop10_TrapnellTCC(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned
Format

SingleCellExperiment
Details

This is a scRNA-seq data set originally from Trapnell et al. (2014). The data set consists of gene-
level read counts or TCCs (transcript compatibility counts) from human primary myoblasts over a
time course of serum-induced differentiation. It contains 3 subpopulations, defined by the cell phe-
notype given by the authors’ annotations. The data sets have been used to evaluate the performance
of clustering algorithms in Duo et al. (2018).

For the sce_full_Trapnell data set, all genes except those with zero counts across all cells are
retained. The gene counts are gene-level length-scaled TPM values derived from Salmon (Patro et
al. (2017)) quantifications (see Soneson and Robinson (2018)). For the TCC data set we estimated
transcripts compatibility counts using kallisto as an alternative to the gene-level count matrix
(Bray et al. (2016), Ntranos et al. (2016)).

The scater package was used to perform quality control of the data sets (McCarthy et al. (2017)).
Features with zero counts across all cells, as well as all cells with total count or total number of
detected features more than 3 median absolute deviations (MADs) below the median across all cells
(on the log scale), were excluded. Additionally, cells that were classified as doublets or debris were
filtered out.
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The sce_full_Trapnell data set consists of 222 cells and 41,111 features, the sce_full_TrapnellTCC
data set of 227 cells and 684,953 features, respectively. The filteredExpr, filteredHVG and
filteredM3Drop1@ are further reduced data sets. For each of the filtering method, we retained 10
percent of the original number of genes (with a non-zero count in at least one cell) in the original
data sets.

For the filteredExpr data sets, only the genes/TCCs with the highest average expression (log-
normalized count) value across all cells were retained. Using the Seurat package, the filteredHVG
data sets were filtered on the variability of the features and only the most highly variable ones were
retained (Satija et al. (2015)). Finally, the M3Drop package was used to model the dropout rate
of the genes as a function of the mean expression level using the Michaelis-Menten equation and
select variables to retain for the filteredM3Drop10 data sets (Andrews and Hemberg (2018)).

The scater package was used to normalize the count values, based on normalization factors calcu-
lated by the deconvolution method from the scran package (Lun et al. (2016)).

This data set is provided as a SingleCellExperiment object (Lun and Risso (2017)). For further
information on the SingleCellExperiment class, see the corresponding manual. Raw data files for
the original data set (GSE52529) are available from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529.

Value

Returns a SingleCellExperiment object.
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Examples

sce_filteredExpr10_Trapnell()

sce_full_Zhengmix4eq Zheng data sets

Description

Gene counts for sScRNA-seq data sets from Zheng et al. (2017), consisting of pre-sorted cell types
combined into three artificial data sets with different cell proportions.

Usage

sce_full_Zhengmix4eq(metadata = FALSE)
sce_filteredExpr10_zZhengmix4eq(metadata = FALSE)
sce_filteredHVG10_Zhengmix4eq(metadata = FALSE)
sce_filteredM3Drop10_Zhengmix4eq(metadata = FALSE)
sce_full_Zhengmix4uneq(metadata = FALSE)
sce_filteredExpri10_zhengmix4uneq(metadata = FALSE)
sce_filteredHVG10_Zhengmix4uneq(metadata = FALSE)
sce_filteredM3Drop10_Zhengmix4uneq(metadata = FALSE)
sce_full_Zhengmix8eq(metadata = FALSE)
sce_filteredExpr10_Zhengmix8eq(metadata = FALSE)
sce_filteredHVG10_Zhengmix8eq(metadata = FALSE)
sce_filteredM3Drop1@_Zhengmix8eq(metadata = FALSE)

Arguments

metadata Logical, whether only metadata should be returned
Format

SingleCellExperiment
Details

This is a scRNA-seq data set originally from Zheng et al. (2017). The data set consists of eight
pre-sorted cell types (B-cells, naive cytotoxic T-cells, CD14 monocytes, regulatory T-cells, CD56
NK cells, memory T-cells, CD4 T-helper cells and naive T-cells) from Homo sapiens combined
into three artificial data sets with different cell proportions. The annotated cell type (obtained by
pre-sorting of the cells) is used as the true cell label. The data sets have been used to evaluate the
performance of clustering algorithms in Duo et al. (2018).

For the Zhengmix4eq data set, randomly selected B-cells, CD14 monocytes, naive cytotoxic T-cells
and regulatory T-cells were combined in equal proportions (1,000 cells per subpopulation). The
Zhengmix4uneq data set consists of four cell types, combined in unequal proportions (1,000 B-
cells, 500 naive cytotoxic T-cells, 2,000 CD14 monocytes and 3,000 regulatory T-cells). For the
Zhengmix8eq data set, all eight populations were combined in approximately equal proportions
(400-600 cells per population).

For the sce_full_Zhengmix4eq, sce_full_Zhengmix4uneq and sce_full_Zhengmix8eq data
set, all genes except those with zero counts across all cells are retained. The gene counts are unique
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molecular identifiers (UMIs) counts. The scater package was used to perform quality control of
the data (McCarthy et al. (2017)). Features with zero counts across all cells, as well as all cells with
total count or total number of detected features more than 3 median absolute deviations (MADs)
below the median across all cells (on the log scale), were excluded.

The sce_full_Zhengmix4eq data set consists of 3,994 cells and 15,568 features, the sce_full_Zhengmix4uneq
data set of 6,498 cells and 16,443 features and the sce_full_Zhengmix8eq of 3,994 cells and

16,443 features, respectively. The filteredExpr, filteredHVG and filteredM3Drop10@ are fur-

ther reduced data sets. For each of the filtering method, we retained 10 percent of the original

number of genes (with a non-zero count in at least one cell) in the original data sets.

For the filteredExpr data sets, only the genes with the highest average expression (log-normalized
count) value across all cells were retained. Using the Seurat package, the filteredHVG data sets
were filtered on the variability of the features and only the most highly variable ones were retained
(Satija et al. (2015)). Finally, the M3Drop package was used to model the dropout rate of the genes
as a function of the mean expression level using the Michaelis-Menten equation and select variables
to retain for the filteredM3Drop1@ data sets (Andrews and Hemberg (2018)).

The scater package was used to normalize the count values, based on normalization factors cal-
culated by the deconvolution method from the scran package (Lun et al. (2016)). This data set
is provided as a SingleCellExperiment object (Lun and Risso (2017)). For further information
on the SingleCellExperiment class, see the corresponding manual. Raw data files or the original
data sets are available from https://support.10xgenomics.com/single-cell-gene-expression/datasets.

Value

Returns a SingleCellExperiment object.
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sequencing data with many zero counts. Genome Biol. 17(1): 75.

Lun, A.T.L., and Risso, D. (2017). SingleCellExperiment: S4 Classes for Single Cell Data. R
package version 1.0.0.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017): Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics
33(8): 1179-1186.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of
single-cell gene expression data. Nat. Biotechnol. 33(5): 495-502.

Zheng, G.X., Terry, J.M., Belgrader P., Ryvkin, P1, Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler,
T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Underwood, J.G.,
Masquelier, D.A., Nishimura, S.Y., Schnall-Levin, M., Wyatt, PW., Hindson, C.M., Bharadwaj,
R., Wong, A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J.,
Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., and Bielas, J.H. (2017).
Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049.

Examples

sce_filteredExpr10_zZhengmix4eq()
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shannon_entropy Calculate Shannon entropy

Description

Calculate Shannon entropy

Usage

shannon_entropy(cluster_assignments)

Arguments

cluster_assignments
A vector with cluster assignments

Value

The Shannon entropy of the assignment vector
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