
Package ‘qusage’
July 7, 2025

Version 2.43.0

Date 2013-01-20

Title qusage: Quantitative Set Analysis for Gene Expression

Author Christopher Bolen and Gur Yaari, with contributions from Juilee
Thakar, Hailong Meng, Jacob Turner, Derek Blankenship, and
Steven Kleinstein

Maintainer Christopher Bolen <cbolen1@gmail.com>

Depends R (>= 2.10), limma (>= 3.14), methods

Imports utils, Biobase, nlme, emmeans, fftw

Description This package is an implementation the Quantitative Set
Analysis for Gene Expression (QuSAGE) method described in
(Yaari G. et al, Nucl Acids Res, 2013). This is a novel Gene
Set Enrichment-type test, which is designed to provide a
faster, more accurate, and easier to understand test for gene
expression studies. qusage accounts for inter-gene correlations
using the Variance Inflation Factor technique proposed by Wu et
al. (Nucleic Acids Res, 2012). In addition, rather than simply
evaluating the deviation from a null hypothesis with a single
number (a P value), qusage quantifies gene set activity with a
complete probability density function (PDF). From this PDF, P
values and confidence intervals can be easily extracted.
Preserving the PDF also allows for post-hoc analysis (e.g.,
pair-wise comparisons of gene set activity) while maintaining
statistical traceability. Finally, while qusage is compatible
with individual gene statistics from existing methods (e.g.,
LIMMA), a Welch-based method is implemented that is shown to
improve specificity. The QuSAGE package also includes a mixed
effects model implementation, as described in (Turner JA et al,
BMC Bioinformatics, 2015), and a meta-analysis framework as
described in (Meng H, et al. PLoS Comput Biol. 2019).
For questions, contact Chris Bolen (cbolen1@gmail.com) or
Steven Kleinstein (steven.kleinstein@yale.edu)

License GPL (>= 2)

URL http://clip.med.yale.edu/qusage

biocViews GeneSetEnrichment, Microarray, RNASeq, Software,
ImmunoOncology

git_url https://git.bioconductor.org/packages/qusage

1

http://clip.med.yale.edu/qusage

2 aggregateGeneSet

git_branch devel

git_last_commit 2c42099

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-06

Contents
aggregateGeneSet . 2
calcBayesCI . 4
calcVIF . 4
combinePDFs . 6
fluExample . 7
fluVaccine . 8
GeneSets . 9
getXcoords . 9
makeComparison . 10
newQSarray . 12
plotCIs . 13
plotCIsGenes . 15
plotCombinedPDF . 17
plotDensityCurves . 19
plotGeneSetDistributions . 20
pVal . 22
qgen . 24
QSarray-class . 26
qsTable . 28
qusage . 29
read.gmt . 30

Index 32

aggregateGeneSet Calculate Pathway Activation

Description

Combine individual gene differential expresseion for each pathway

Usage

aggregateGeneSet(geneResults, geneSets, n.points=2^12, silent=TRUE)

Arguments

geneResults A QSarray object, as generated by makeComparison
geneSets A list of pathways to be compared. See description for more details.
n.points The number of points at which to sample the convoluted t-distribution. See

Details for more information on appropriate values for this parameter.
silent If false, print a "." after every fifth pathway, as a way to track progress.

aggregateGeneSet 3

Details

This function convolutes individual gene t-distributions into a single PDF for each gene set.

The geneSets parameter can either be provided as a vector describing a single gene set, or a list
of vectors representing a group of gene sets (such as the ones available from Broad’s Molecular
Signatures Database). Each pathway must be a character vector with entries matching the row
names of eset . If a pathway does not contain any values matching the rownames of eset , a warning
will be printed, and the function will return NAs for the values of that pathway.

By default the parameter n.points is set to 2^12, or 4096 points, which will give very accurate p-
values in most cases. Sampling at more points will increase the accuracy of the resulting p-values,
but will also linearly increase the amount of time needed to calculate the result. With larger sample
sizes, as few as 1/4 this number of points can be used without seriously affecting the accuracy
of the resulting p-values, however when there are a small number of samples (i.e. less than 8
samples total), the t-distribution must be sampled over a much wider range, and the number of
points needed for sampling should be increased accordingly. It is recommended that when running
aggregateGeneSet with less than 8 samples the number of points be increased to at least 2^15 or
2^16. It may also be useful to test higher values of this parameter, as it can often result in a much
more significant p-value with small sample sizes.

The PDF for each individual gene set is generated by using numerical convolution applied to the
individual gene PDFs. Briefly, a Fast Fourier Transform (FFT) is calculated for each individual
gene PDF to arrive at a k-component vector. The product of each component across all of the genes
is then taken to arrive at a new k-component vector for the gene set. The real part of the resulting
product is then transformed back to a PDF using a reverse FFT, and assured to be normalized and
centered around zero. The mean of the combined PDF is simply the mean fold change of the
individual genes. The range for sampling is determined by the lowest degrees of freedom of the
individual genes, such that at most 10^-8 of the cumulative distribution at the tails are excluded
(i.e., assumed to be 0). For example, when nu = 3, the range is (-480,480), and when nu = 120, the
range is (-6,6).

Technically, the output of this step is the PDF of the sum of differences in expressions over all genes
in the gene set under the assumption that the genes are independent. In order to estimate the mean
differential expression PDF, this distribution is scaled by a factor of 1/N, where N is the number of
genes in the gene set. The resulting PDFs of the input gene sets are stored as a matrix in path.PDF
slot of the returned QSarray object. However, the x-coordinates for these PDFs are not stored in the
QSarray object, and must be calculated using the getXcoords function.

Value

A QSarray object.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##first 30 genes are differentially expressed
eset[1:30, labels=="B"] = eset[1:30, labels=="B"] + 1

##compare the two groups
geneResults = makeComparison(eset, labels, "B-A")

##aggregate data for gene sets
geneSets = list(set1=1:30, set2=31:60)

4 calcVIF

set.results = aggregateGeneSet(geneResults, geneSets)

calcBayesCI Calculate pathway Confidence Intervals

Description

A function to calculate the confidence intervals for each of the gene sets in the geneResults object

Usage

calcBayesCI(QSarray,low=0.025,up=1-low,addVIF=!is.null(QSarray$vif))

Arguments

QSarray A QSarray object, as generated by either makeComparison or aggregateGeneSet

low, up the lower and upper bounds of the confidence interval.

addVIF a logical indicating whether the VIF should be used to calculate the variance of
the pathway.

Details

This function can be used to calculate a confidence interval (CI) for the gene sets in QSarray. By de-
fault, a 95% CI is calculated, with the lower and upper bounds at 0.025% and 0.975%, respectively.
This function is used in plotCIs to plot the confidence intervals of each pathway.

Value

Matrix of size (2 x numPathways(QSarray)) containing the lower and upper bounds of the confi-
dence intervals for each pathway in QSarray.

calcVIF Calculate Variance Inflation Factor

Description

A function to calculate the Variance Inflation Factor (VIF) for each of the gene sets in the geneRe-
sults object

Usage

calcVIF(eset, geneResults, useCAMERA = geneResults$var.method=="Pooled",
useAllData = TRUE)

calcVIF 5

Arguments

eset An objet of class ExpressionSet containing log normalized expression data (as
created by the affy and lumi packages), OR a matrix of log2(expression values).
This must be the same dataset that was used to create geneResults

geneResults A QSarray object, as generated by either makeComparison or aggregateGeneSet

useCAMERA The method used to calculate variance. See the description for more details.

useAllData Boolean parameter determining whether to use all data in eset to calculate the
VIF, or to only use data from the groups being contrasted. Only used if use-
CAMERA is set to FALSE

Details

This method calculates the Variance Inflation Factor (VIF) for each gene set in geneSets , which is
used to correct for the correlation of genes in the gene set. This method builds off of a technique
proposed by Wu et al. (Nucleic Acids Res, 2012), which calculates the VIF for each gene set based
on the correlation of the genes in that set. The Wu et al. method, referred to as CAMERA, uses the
linear model framework created by LIMMA to calculate gene-gene correlations, but consequently
it must assume equal variance not only between all groups in the dataset, but also across each
gene in the gene set. While this assumption leads to a slightly more computationally efficient VIF
calculation, it is not valid for most gene sets, and its violation can greatly impact specificity.

This function provides two options for calculating the VIF: the CAMERA method established by
Wu et al. (if useCAMERA is TRUE), or an alternative implementation of the VIF calculation (if
useCAMERA is FALSE) which does not assume equal variance of individual groups or genes. By
default, calcVIF will choose useCAMERA based on the options specified in makeComparison. If
var.equal was set to TRUE, then by default the variance will be calculated using CAMERA.

If the internal VIF calculation is used (i.e. useCAMERA=FALSE), the parameter useAllData can
be specified to determine which samples in eset should be used to calculate the VIF. By default
(useAllData=TRUE), all of the samples in eset will be used to calculate the VIF. If useAllData=FALSE,
only the samples in eset which were used to generate geneResults will be included in the calcula-
tion. Generally, using all data will provide a more accurate esimate of the gene-gene correlations,
but if the samples in eset are from very different conditions (e.g. different tissues or platforms), it
may make more sense to limit the VIF calculation to a subset of samples.

Value

A version of geneResults with VIF added into the object.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##a few of the genes are made to be strongly correlated
corGenes = t(apply(eset[1:30,],1,sort))
eset[1:30,] = corGenes[,sample(1:ncol(eset))]

##genes 1:60 are differentially expressed
eset[1:60, labels=="B"] = eset[1:60, labels=="B"] + 1
geneSets = list(cor.set=1:30, random.set=31:60)

##Run qusage

6 combinePDFs

geneResults = makeComparison(eset, labels, "B-A")
set.results = aggregateGeneSet(geneResults, geneSets)

##calc VIF for gene sets
set.results = calcVIF(eset, set.results)

##Look at results with and without VIF
par(mfrow=c(1,2))
plotDensityCurves(set.results, addVIF=FALSE, col=1:2, main="No VIF")
plotDensityCurves(set.results, addVIF=TRUE, col=1:2, main="With VIF")
legend("topleft",legend=names(geneSets),col=1:2, lty=1)

combinePDFs Combine PDFs from multiple QuSAGE comparisons

Description

This function combines the results of multiple qusage runs into a single, joint PDF. The resulting
PDFs will be the average of the PDFs from each individual QSarray object, weighted by the number
of samples in each dataset.

Usage

combinePDFs(QSarrayList, n.points=2^14)

Arguments

QSarrayList A list of QSarray objects, each generated from the same list of geneSets

n.points integer; the number of points at which to sample the convoluted t-distribution.
For best results, this should be about 2-4 times higher than the n.points used in
the individual QSarray objects.

Details

Like aggregateGeneSet, combinePDFs uses numerical convolution to calculate the combined PDFs
for individual pathways, with each individual PDF weighted by the total number of samples used
in the comparison. This method is useful for meta-analysis of multiple datasets, or for a meta
comparison where the difference between two QuSAGE pdfs is of interest.

The results of combinePDFs can be plotted (on a pathway-by-pathway basis) using the plotCombinedPDF
function, or by simply calling "plot" on a QSarray object which contains the QSlist field.

Value

A QSarray object containing a convolution of the original QSarrays. The new QSarray object will
contain an additional field, QSlist, containing the input QSarrayList.

fluExample 7

Examples

##create example data - a set of 500 genes normally distributed across 40 patients
eset = matrix(rnorm(500*40),500,40, dimnames=list(1:500,1:40))
labels = rep(c("A","B","C","D"),each=10)

##create a number of gene sets with varying levels of differential expression.
geneSets = list()
for(i in 0:10){
genes = ((30*i)+1):(30*(i+1))
eset[genes,labels=="B"] = eset[genes,labels=="B"] + 2 + rnorm(1)
eset[genes,labels=="D"] = eset[genes,labels=="D"] + 1 + rnorm(1)

geneSets[[paste("Set",i)]] = genes
}

##calculate qusage results
qsList = lapply(c("B-A","D-C"), function(comparison){

qusage(eset,labels, comparison, geneSets)
})

##combine the two QSarrays
qsComb = combinePDFs(qsList)

plot(qsComb, path.index=1)

fluExample Example gene expression set

Description

This is a matrix containing microarray gene expression values taken from a publicly available
dataset (GEO ID: GSE30550; Huang Y et al. PLoS Genet 2011). This dataset contains samples
from 17 patients who were exposed to Influenza and had blood drawn approximately every 8 hours
for a week. Patients were classified as either symptomatic (sx) or asymptomatic (asx) based on the
severity of their symptoms.

The portion of the dataset included here contains a total of 15 time points, including a pre-exposure
point (time 0) and points approximately every 8 hours up to 108 hours. eset.full is arranged by
donor, and the information for each sample is contained in a table, flu.meta. The metadata table
contains 7 columns:

SampleID The GEO sample IDs, matching the column names of eset.full

Subject the subject ID

Hours The hour-post-infection that the sample was collected (stored as a factor)

Hours.Numeric Same as above, but stored as a numeric vector

Condition The condition of the donor, either symptomatic (sx) or asymptomatic (asx)

Gender The donor gender

Age Age of the donor at recruitment

8 fluVaccine

Usage

eset.full
flu.meta

Format

eset.full is a matrix of gene expression measurements, with rows of genes and columns rep-
resenting samples. flu.meta is a data frame, with rows of samples and columns of metadata
information.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550

References

Huang Y et al. (PLoS Genet 2011)

fluVaccine Gene expression sets from Flu Vaccine trials

Description

fluVaccine is a list containing data from two separate Flu Vaccine treatment studies, GSE59635
and GSE59654. The top-level list contains two entries, esets and phenoData.

fluVaccine$esets is a list containing two expression matrices. Each matrix, which is labeled
with the name of the GEO dataset it originates from, contains rows of gene expression levels and
columns of samples.

fluVaccine$phenoData is a list containing two data frames. The rows of each data frame cor-
respond to the columns in the expression matrices, and each data frame contains the following
columns:

subjectID The subject ID
responder Factor describing the subject’s response to flu vaccination, either "high" or "low".
bloodDrawDay The day post-vaccination that the sample was taken.

Usage

fluVaccine

Format

fluVaccine is a list.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59635 http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE59654

References

Thakar J et al., Aging, 2015

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59635
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59654
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59654

GeneSets 9

GeneSets Example Gene Sets

Description

ISG.geneSet A vector contains a list of probable ISGs based on Schoggins et al. (Nature, 2011).

MSIG.geneSet A list containing a set of vectors representing the MSigDB’s Canonical Pathways
gene set database.

BTM.geneSet A list containing a set of vectors. Each entry describes one of the blood transcription
modules (BTMs) from Li et al (Nat Immunol., 2014)

Usage

ISG.geneSet
MSIG.geneSets
BTM.geneSet

Source

http://www.broadinstitute.org/gsea/msigdb/

References

ISG: Schoggins et al. (Nature, 2011).

MSIG: Liberzon et al. (Bioinformatics, 2011)

BTM: Li et al. (Nat Immunol., 2014).

getXcoords Get the X coordinates for the points of the PDF

Description

Calculates the x-coordinates for the PDF of a given pathway.

Usage

getXcoords(QSarray, path.index=1, addVIF=!is.null(QSarray$vif))

Arguments

QSarray A QSarray object as output by qusage (or aggregateGeneSet)

path.index either an integer between 1 and numPathways(QSarray), or the name of the
pathway to retrieve.

addVIF a logical indicating whether to use the VIF when calculating the variance

http://www.broadinstitute.org/gsea/msigdb/

10 makeComparison

Details

The calculation of the x-coordinates for a PDF is not straightforward, and as such they are not
included in the QSarray object initially. During the numerical convolution step, the gene set PDF is
calculated at a number of points (equal to QSarray$n.points) over a range defined by:

c(path.mean - range, path.mean + range)

However, the resulting PDF is actually the sum of the individual gene PDFs, rather than the desired
average PDF. Therefore the range which is stored in the resulting QSarray is divided by the number
of genes in the pathway, QSarray$path.size.

In addition, the width of the PDF can be expanded by the Variance Inflation Factor (VIF), which
is equivalent to multiplying the range of the x-coordinates by the sqrt(VIF). If the parameter
addVIF=TRUE, the VIF calculatd using the calcVIF method will be included in the calculation of
the x-coordinates.

In general, the x-coordinates for a pathway are calculated for each point n using the following
formula:

xn = (−1 +
2(n− 1)

Npts − 1
)× r ×

√
V IF + µ̂path

Value

A numeric vector of length QSarray$n.points.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##first 30 genes are differentially expressed
eset[1:30, labels=="B"] = eset[1:30, labels=="B"] + 1
geneSets = list(diff.set=1:30, base.set=31:60)

##Run qusage
set.results = qusage(eset, labels, "B-A", geneSets)

##Plot the PDF (see also: plotDensityCurves())
x = getXcoords(set.results, 1)
y = set.results$path.PDF[,1]
plot(x,y, type="l")

makeComparison Compare Genes Between Two Groups

Description

A function to calculate comparisons between groups in a dataset.

makeComparison 11

Usage

makeComparison(eset, labels, contrast, pairVector=NULL,
var.equal = FALSE, bayesEstimation = TRUE,
min.variance.factor=10^-8)

Arguments

eset An objet of class ExpressionSet containing log normalized expression data (as
created by the affy and lumi packages), OR a matrix of log2(expression values),
with rows of features and columns of samples

labels Vector of labels representing each column of eset
contrast A string describing which of the groups in labels we want to compare. This

is usually of the form ‘trt-ctrl’, where ‘trt’ and ‘ctrl’ are groups represented in
labels .

pairVector A vector of factors (usually just 1,2,3,etc.) indicating which samples are paired.
This is often just a vector of patient IDs or something similar. If not provided,
all samples are assumed to be independent.

var.equal A logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch approximation is used.

bayesEstimation

A logical variable. If true, use a bayesian framework to estimate the standard
deviation (via limma’s eBayes function).

min.variance.factor

A factor to add to the SDs to ensure that none are equal to 0. Only used if
var.equal==FALSE or bayesEstimation==FALSE.

Details

This function is the first step in the qusage algorithm. It defines the t-distributions for each gene
in the input dataset by calculating the fold change and standard deviation between two groups of
samples.

There are two primary methods to compare two groups of data, based on whether variances of the
genes in the two groups should be considered equal (as specified by the the parameter var.equal).
If var.equal=F, the t-distributions are estimated using a Welch’s formalism, which is implemented
internally. Else, the LIMMA package is used to calculate the t-distribution of each gene using a
pooled formalism.

A note on var.equal: LIMMA’s linear model function can only be run when assuming equal vari-
ances. If var.equal==TRUE, then a linear model will be created on the entire dataset at once. One
benefit of using LIMMA’s pooled variance calculation is that the linear models allow for more com-
plicated comparisons (e.g. "(A+B)-C" or similar). This may be of interest to some users, but in
order to do this, you must assume equal variances between all groups.

One caveat regarding paired samples: LIMMA can not fit a linear model when the paired samples
are convoluted with the groups (e.g. one set of paired (trt vs mock) samples in patients with disease,
combined with a set of paired samples from healthy controls). If var.equal==TRUE, these groups
must be run separately to correctly fit the model (e.g. run disease first, then healthy controls).

Value

A QSarray object.

12 newQSarray

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##first 30 genes are differentially expressed
eset[1:30, labels=="B"] = eset[1:30, labels=="B"] + 1

##compare the two groups
results = makeComparison(eset, labels, "B-A")

Paired Samples
##Group A and group B are two samples from the same set of 10 patients
pairVector = c(1:10,1:10)
results.paired = makeComparison(eset, labels,"B-A",pairVector=pairVector)

newQSarray The qusage Array Object

Description

The constructor for the QSarray object. Should primarily be used internally by qusage or makeComparison.
See QSarray-class for a full description of the fields in the QSarray object.

Usage

newQSarray(obj=NULL,
...
)

Arguments

obj The features of QSarray can be supplied as a list of objects. The objects in the
list must be named appropriately. See QSarray-class for a description of the
parameters which can be stored in the QSarray object.

... The fields of the QSarray object can also be specified individually. If obj is
specified and additional fields are provided, the parameters will be combined to-
gether into a single QSarray object, with the parameters specified by . . . replacing
those in obj (this will also produce a warning).

Details

This is the constructor for use in creating QSarray objects. This is primarily intended for internal
use, but advanced users may find it useful to construct their own QSarray objects without going
through the process of running qusage.

In order to create a QSarray object from scratch, the constructor requires the following three fields:
mean, sd, and dof. All other fields can be either left blank or added after. Note that in some cases,
various methods will not be able to run without more information. For a complete list of the fields
that the QSarray object can contain, refer to QSarray-class.

plotCIs 13

plotCIs Plot Pathway Mean and Confidence Intervals

Description

Functions for plotting the mean and confidence intervals of a set of pathways.

Usage

plotCIs(QSarray,
path.index=1:numPathways(QSarray),
sort.by=c("mean","p","none"),
lowerBound=0.025,
upperBound=1-lowerBound,

col=NULL,
use.p.colors=TRUE,
p.breaks=NULL,
p.adjust.method = "fdr",
addLegend=use.p.colors,
lowerColorBar="none",
lowerColorBar.cols=NULL,

addGrid=TRUE,
x.labels=NULL,
cex.xaxis=1,
shift=0.0,

add=FALSE,
ylim=NULL, xlim=NULL,
ylab=NULL, xlab=NULL,
main=NULL,
sub=NULL,
type="p",
...
)

Arguments

QSarray QSarray object

path.index vector describing which pathways to plot. Can either be numeric or a character
vector containing the names of the pathways to plot.

sort.by One of c("mean","p","none") indicating the order that the pathways should be
plotted in. If "none", the pathways will not be reordered, and the order specified
in path.index will be maintained

lowerBound, upperBound
numeric indicating the lower and upper bounds of the confidence intervals. De-
fault is for a 95% confidence interval.

14 plotCIs

col an optional vector indicating the color for the points. If use.p.colors=FALSE
is specified, these colors will also be used for the error bars.

use.p.colors logical indicating whether error bars should be colored based on the significance
of the p-value.

p.breaks a vector indicating where the breaks in the p-value color scheme should be. By
default, breaks will be at 0.001, 0.005, 0.01, 0.05, & 0.1

p.adjust.method

The method to use to adjust the p-values. Must be one of the methods in
p.adjust.methods.

addLegend a logical specifying if a legend for the p-value color scheme be plotted

lowerColorBar Options for plotting a color bar below each point. Automatically generated color
bars have not yet been implemented, but custom bars can be created using the
"lowerColorBar.cols" parameter.

lowerColorBar.cols

a vector of colors to plot as a bar below each point.

addGrid Should guiding dashed lines be plotted?

x.labels character vector of the same length as path.index giving the names of the path-
ways. By default, will use the names stored in QSarray.

cex.xaxis set cex parameter seperately for x axis label

shift a number between 0 and 1 decribing the amount to shift points with respects to
the guiding lines and axis labels. Useful when add=TRUE

add logical indicating whether a new plot should be created. If FALSE, a new plot
will be generated.

xlim, ylim, xlab, ylab, main, sub, type, ...
parameters to be passed on to plot

Details

This function uses the data produced by aggregateGeneSet to plot the means and confidence
intervals of the gene sets in QSarray. By default, the gene sets will be ordered by decreasing mean,
and the 95% confidence intervals of each point (as calculated by calcBayesCI) will be added. To
specify a different order, sort.by must be set to "none", and the order specified by path.index
will be used.

The points in the plot can be optionally color-coded by the significance of the (corrected) p-values.
The p-values are adjusted using R’s built in p.adjust method, which uses the p.adjust.method
parameter to determine the algorithm being used. The colors of the points are based on the breaks
specified in p.breaks. By default, more significant p-values will be plotted in bright red/green. If
use.p.colors is specified and addLegend=TRUE, a legend describing the p-values will be added
to the top left corner of the plot. Alternatively, if you want to specify the colors of the points
individually, you can provide a vector of colors to the col parameter.

The plotCIs function can also add a color bar along the bottom of the plot to provide additional
information about the pathways. We are currently working on implementing various metrics which
can be added automatically using the lowerColorBar parameter, but in the mean time, the bar
can be added manually by providing a vector of colors the same length as path.index to the
lowerColorBar.cols parameter.

plotCIsGenes 15

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

geneSets = list()

##create a number of gene sets with varying levels of differential expression.
for(i in 0:10){
genes = ((30*i)+1):(30*(i+1))
eset[genes,labels=="B"] = eset[genes,labels=="B"] + rnorm(1)

geneSets[[paste("Set",i)]] = genes
}

##calculate qusage results
results = qusage(eset,labels, "B-A", geneSets)

##Plot gene set CIs
plotCIs(results)

plotCIsGenes Plot Gene Mean and Confidence Intervals

Description

Functions for plotting the mean and confidence intervals of the genes in a pathway.

Usage

plotCIsGenes(QSarray,
path.index=1,
gene.list=NULL,
sort.by=NULL,
lowerBound=0.025,
upperBound=1-lowerBound,
asBand=FALSE,

col=NULL,
addGrid=TRUE,
x.labels=NULL,
cex.xaxis=1,
shift=0.0,
pathwayCI=c("band","bar","none"),
meanCol=4,

add=FALSE,
ylim=NULL, xlim=NULL,
ylab=NULL, xlab=NULL,

16 plotCIsGenes

main=NULL,
sub=NULL,
...
)

Arguments

QSarray QSarray object

path.index which pathway to plot. Can either be numeric or a character vector containing
the names of the pathways to plot. Must be of length 1

gene.list Character vector specifying the genes in the gene set to be plotted. If sort.by='none',
the order of these genes will be used. NAs are accepted.

sort.by one of c(mean,p,none), specifying how to order the genes. If NULL and gene.list
is provided, default is "none", else, default is "mean".

lowerBound, upperBound
numeric indicating the lower and upper bounds of the confidence intervals. De-
fault is for a 95% confidence interval.

asBand logical indicating if CIs should be plotted as a grey band or as arrows

col an optional vector indicating the color for the points.

addGrid Should guiding dashed lines be plotted?

x.labels character vector indicating the names of the genes to be plotted along the x-axis.
By default, will use the names stored in QSarray, or gene.list, if specified.

cex.xaxis set cex parameter seperately for x axis label

shift a number between 0 and 1 decribing the amount to shift points with respects to
the guiding lines and axis labels. Useful when add=TRUE

pathwayCI A string, one of "band", "bar", or "none", determining whether to add the con-
fidence interval for the gene set PDF to the plot. By default ("band"), a band
will be plotted behind the bars for the individual genes. If "bar" is specificied,
another error bar will be added before the genes’ error bars. To suppress the
plotting of the pathway band, specify pathwayCI="none".

meanCol color for the line indicating the mean of the pathway. Only used if pathwayCI
is either 'band' or 'bar'

add logical indicating whether a new plot should be created. If FALSE, a new plot
will be generated.

xlim, ylim, xlab, ylab, main, sub, ...
parameters to be passed on to plot. If NULL, defaults will be used.

Details

This function uses the data produced by makeComparison to plot the means and confidence intervals
of the genes in an individual gene set. To only plot the means and CIs of a subset of the genes in
a pathway, a list of the genes to be plotted can be specified using the gene.list parameter. By
default, the genes will be ordered by decreasing mean, and the 95% confidence intervals of each
point will be added. To specify a different order, sort.by must be set to "none", and the order
specified by gene.list will be used.

The mean of the overall pathway will automatically be added as a dashed line (with color specified
by meanCol), but information on the confidence interval of the aggregated pathway can optionally

plotCombinedPDF 17

be plotted as well. If pathwayCI is set to either "band" or "bar", the mean and CI of the gene set
will be added to the plot. Specifying "band" will add the CI as a band behind the individual points,
whereas "bar" will add an additional point at the left side of the plot with the mean and CI of the
pathway itself.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##first 30 genes are differentially expressed for the 2 vs. 1 comparison
diffSet = 1:30
eset[diffSet, labels=="B"] = eset[diffSet, labels=="B"] + 1

#a second gene set of non-D.E. genes
normSet = 31:60

geneSets = list(diffSet=diffSet, normSet=normSet)

##calculate qusage results
results = qusage(eset,labels, "B-A", geneSets)

##Plot gene data from first gene set
plotCIsGenes(results, path.index=1)

##Add a bar to represent the differential expression of the gene set
plotCIsGenes(results, path.index=1, pathwayCI="bar")

plotCombinedPDF Plot combined PDF for an individual pathway

Description

A function for plotting out the pdfs for an indivdiual pathway in the QScomb object.

Usage

plotCombinedPDF(QScomb,
path.index=1,
zeroLine=TRUE,
comb.lwd=3,path.lwd=1,
comb.col=par("col"),
path.col=NULL,
legend=FALSE,legend.labs=NULL,
add=FALSE,
xlim=NULL,ylim=NULL,
xlab=NULL,ylab=NULL,
main=NULL,
type="l",
...)

18 plotCombinedPDF

Arguments

QScomb QScomb object

path.index index describing which pathway to plot. Can either be numeric or a string con-
taining the names of the pathway to plot. Must be of length 1

zeroLine a logical indicating whether to include a vertical line at 0.

comb.lwd the lwd for the combined PDF curve.

path.lwd the lwd for the individual dataset curves. Can be a vector of the same length as
QScomb$QSlist specifying the lwd of each individual curve.

comb.col the color of the combined PDF curve.

path.col the color of the individual dataset curves. Can be a vector of the same length as
QScomb$QSlist specifying the color of each individual curve.

legend boolean; should a legend be added to the plot? Can also be a character vector
specifying the location of the legend (i.e "topleft" vs "topright", etc. See legend
for details)

legend.labs character vector; the names of each dataset in QScomb$QSlist. If not provided,
the function will attempt to pull the labels from QScomb$QSlist, or will use
default names if those are undefined.

add, xlim, ylim, xlab, ylab, main, type, ...
parameters to be passed on to plot

Details

This function uses the data produced by combinePDFs to plot both the individual dataset PDFs and
the combined PDF for a single pathway. By default, plotCombinedPDF will plot the PDFs for the
first pathway in QScomb, but this behavior can be controlled by the path.index parameter.

Examples

##create 5 example datasets of different sizes
esets = lapply(1:5, function(i){

n = 20 + i*5
eset = matrix(rnorm(500*n),500,n, dimnames=list(1:500,1:n))

labels = c(rep("A",10+5*floor(i/2)),
rep("B",10+5*ceiling(i/2))
)

##genes 1:30 are differentially expressed
eset[1:30, labels=="B"] = eset[1:30, labels=="B"] + rnorm(30,rnorm(1,0.5,0.5),1)

return(list(eset=eset, labels=labels))
})

##gene sets
geneSets = list(diff.set=1:30, baseline.set=31:60)

##Run qusage on each dataset
set.results = lapply(esets, function(dat){

qusage(dat$eset, dat$labels, "B-A", geneSets)
})

##run the combinePDFs function

plotDensityCurves 19

combined = combinePDFs(set.results)

##plot the combined PDF result for "diff.set"
plotCombinedPDF(combined, path.index="diff.set")

plotDensityCurves Plot gene set PDFs

Description

A function for plotting out the pdfs of a set of pathways.

Usage

plotDensityCurves(QSarray,
path.index=1:numPathways(QSarray),
zeroLine=TRUE,
addVIF=!is.null(QSarray$vif),
col=NULL,
plot=TRUE,
add=FALSE,
xlim=NULL,ylim=NULL,
xlab=NULL,ylab=NULL,
type="l",
...)

Arguments

QSarray QSarray object

path.index vector describing which pathways to plot. Can either be numeric or a character
vector containing the names of the pathways to plot.

zeroLine a logical indicating whether to include a vertical line at 0.

addVIF a logical indicating whether the VIF should be used to calculate the variance of
the pathway.

col the color of the curves. Can be a vector of the same length as path.index speci-
fying the color of each individual curve.

plot Logical indicating whether to create the plot. If FALSE, only the coordinates for
the plot will be returned, and no new plot will be created.

add, xlim, ylim, xlab, ylab, type, ...
parameters to be passed on to plot

Details

This function uses the data produced by aggregateGeneSet to plot the PDFs of the pathways in
QSarray. By default, plotDensityCurves will plot a curve for each pathway in the QSarray path-
way, but this behavior can be controlled by the path.index parameter. For the best plots, it is
suggested that you limit the number of curves plotted to below ten.

20 plotGeneSetDistributions

Value

Invisibly returns a list of the same length as path.index, where each entry is a matrix of x- and
y-coordinates for that pathway.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##genes 1:30 are differentially expressed
eset[1:30, labels=="B"] = eset[1:30, labels=="B"] + 1
geneSets = list(diff.set=1:30, base.set=31:60)

##Run qusage
set.results = qusage(eset, labels, "B-A", geneSets)

##Plot results
plotDensityCurves(set.results)

##plot just the first curve with a different color
plotDensityCurves(set.results, path.index=1, col=2, lwd=2)

##plot the CDFs of the curves
coords = plotDensityCurves(set.results, plot=FALSE)
plot(0, type="n", xlim=c(-1,2),ylim=c(0,1),xlab="x",ylab="CDF")
for(i in 1:length(coords)){

points = coords[[i]]
x = points$x
y = cumsum(points$y)/sum(points$y)
lines(x,y,col=i)

}

plotGeneSetDistributions

Plot gene and gene set PDFs

Description

A function for plotting out the pdfs of all the genes in a gene set

Usage

plotGeneSetDistributions(QSarray1, QSarray2=NULL,
path.index=1,
colorScheme="sdHeat",
alpha=1,
normalizePeaks=FALSE,

addBarcode=TRUE,
barcode.col=NULL,

plotGeneSetDistributions 21

barcode.hei=0.2,

groupLabel=NULL,
labelLoc="left",
xlab="Activity",
ylab=NA,
main=NULL,
lwds=c(1,3),
cex=1,
...)

Arguments

QSarray1, QSarray2
QSarray objects containing PDFs of a gene set

path.index either an integer between 1 and numPathways(QSarray), or the name of the
pathway to retrieve. This can be of length 1 or 2 to specify different gene sets
for the top and bottom plot (see details)

colorScheme This parameter specifies the color scheme to be used when plotting the indi-
vidual gene PDFs. This can either be one of c("rainbow", "sdHeat") for a cus-
tomized color scheme, or a vector of colors of the same length as the gene set.
See the details section for more information.

alpha numeric value between 0 and 1 specifying the alpha channel for the individual
gene curves. Only used if colorScheme is set to one of "rainbow" or "sdHeat"

normalizePeaks logical indicating whether curve heights will be normalized to the same value.

addBarcode logical indicating whether a barcode-style plot should be added below the PDFs
representing the means activity of each individual gene.

barcode.col The color used for the bars of the barcode plot. Can be a vector of colors, or a
single color which is repeated for each bar in the plot.

barcode.hei a numeric value specifying the height of the barcode plot relative to the size of
the PDF plot.

groupLabel Vector of labels for the individual plots. If left blank, labels will be generated
automatically.

labelLoc vector of length 1 or 2 determining the location on the plot of where to put the
label. One of "left","center", or "right"

lwds a numeric vector of length 2 specifying the lwd parameters for the gene and gene
set curves, respectively.

xlab, ylab, main, cex, ...
parameters to be passed on to plot

Details

The plotGeneSetDistribution function is designed to provide a quick and intuitive look at how
individual genes contribute to the overall expression of a gene set. This function plots the PDFs
of each individual gene in a gene set alongside the convoluted PDF of those genes. In addition, a
barcode plot representing the location of the mean fold change of each individual gene is added by
default below the plot. The appearance of the curves can be controlled by the colorScheme and
alpha parameters, and the barcode plot by addBarcode, barcode.col, and barcode.hei.

22 pVal

The default colorScheme, sdHeat, will automatically color-code the gene PDFs by their stan-
dard deviations, with hotter colors being used for smaller standard deviations. This, along with
colorScheme="rainbow", are the only automatic color schemes, but colorScheme also accepts
custom colors. This can be a vector of colors in any format accepted by par(col). If the vector
provided is shorter than the number of genes in the gene set, the vector will be repeated. NOTE:
The order that the colors are used in is not the same as the order of genes in the original gene set. All
gene sets are reordered when they are stored in the QSarray$pathways slot, and the vector provided
to colorScheme will be used in this order. This also applies to any colors provided to barcode.col

By default, the first pathway in the QSarray object will be plotted. If you wish to change this
parameter, you can provide an alternatve pathway using the path.index parameter. This can either
be an integer between 1 and numPathways(QSarray1), or it can be a string representing the name
of the pathway.

The plotGeneSetDistribution function can also be used to compare the results from two dif-
ferent pathways or datasets. In order to analyze two different pathways from the same QSarray
object, you can provide a path.index parameter of length 2 representing the two pathways to be
compared. Alternatively, a separate QSarray object can be provided as the parameter QSarray2,
and the second plot will be drawn from this object. If QSarray2 is provided and path.index is of
length 2, the second path.index will be drawn from QSarray2.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A1",5),rep("A2",5),rep("B1",5),rep("B2",5))

##first 30 genes are differentially expressed much more strongly in group "B" than in group "A"
geneSet = 1:30
eset[geneSet, labels=="A2"] = eset[geneSet, labels=="A2"] + 1
eset[geneSet, labels=="B2"] = eset[geneSet, labels=="B2"] + 2

##calculate qusage results
A.results = qusage(eset,labels, "A2-A1", geneSet)
B.results = qusage(eset,labels, "B2-B1", geneSet)

##plot the gene set distribution for group A and group B side-by-side
plotGeneSetDistributions(A.results,B.results)

##add labels to the right side of the plots
plotGeneSetDistributions(A.results,B.results,groupLabel = c("A2-A1", "B2-B1"), labelLoc="right")

##change the colors of the curves
plotGeneSetDistributions(A.results,B.results, colorScheme="rainbow")

pVal Calculate p-values for gene set activity

Description

Methods for calculating the significance of gene set activity, compared either to a null hypothesis
(pdf.pVal), or to a separate PDF (twoCurve.pVal).

pVal 23

Usage

pdf.pVal(QSarray, alternative=c("two.sided","less","greater"),
direction=FALSE, addVIF=!is.null(QSarray$vif), selfContained=TRUE)

twoCurve.pVal(grp1, grp2, path.index1 = 1:numPathways(grp1), path.index2 = 1:numPathways(grp2),
alternative=c("two.sided","less","greater"), direction=FALSE,
addVIF=!(is.null(grp1$vif) | is.null(grp2$vif)))

Arguments

QSarray, grp1, grp2
A QSarray object as output by qusage (or aggregateGeneSet)

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

direction a logical indicating whether the p-values should be signed (i.e. negative fold
changes return negative p-values). Ignored if alternative!="two.sided".

addVIF a logical indicating whether to use the VIF when calculating the variance

selfContained a logical indicating whether the test should be self-contained or competitive. See
details for more information.

path.index1, path.index2
numeric vectors indicating which gene sets in grp1 to compare to grp2. The
length of path.index1 and path.index2 must match.

Details

The pVal functions are designed to estimate the level of significance for the gene set activity ca-
cluated using qusage. Because the QSarray object contains gene set information stored as a Prob-
ability Density Function (PDF), we can determine significance of an individual gene set using the
pdf.pVal function by comparing the PDF to our null hypothesis (zero by default. See below). If
alternative="greater", pdf.pVal tests whether the fold change of the gene set is greater than
the null mean, and the p-value is calcuated based on the proportion of the lower tail of the PDF
which is below the null hypothesis.

There are two options for the null hypothesis in this method, controlled by the logical parameter
"selfContained". By default, pdf.pVal performs a self-contained test, where the null hypothesis
is that the mean fold change is 0. If selfContained=FALSE is specified, pdf.pVal instead performs
a competitive test, where the null hypothesis is the mean fold change of all genes which are not in
the pathway.

An individual gene set’s PDF can also be compared with a second PDF, created from either com-
paring a different set of samples or using a different gene set, using the twoCurve.pVal function.
This function takes two QSarray objects, grp1 and grp2, and by default compares the PDFs for
each gene set in the two QSarray objects in order. However, this behavior can be controlled by the
path.index1 and path.index2 parameters, which are numeric vectors specifying which gene sets
should be compared. The two vectors must be the same length, and the first index in path.index1
will be compared with the first index in path.index2 and so on.

Value

A vector of p-values for each gene set in QSarray, or for each gene set specified with path.index
when using twoCurve.pVal.

24 qgen

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A1",5),rep("A2",5),rep("B1",5),rep("B2",5))

geneSets = list()

##first 30 genes are differentially expressed for the 2 vs. 1 comparison
geneSets[["simple.diffSet"]] = 1:30
eset[geneSets[[1]], labels=="A2"] = eset[geneSets[[1]], labels=="A2"] + 1
eset[geneSets[[1]], labels=="B2"] = eset[geneSets[[1]], labels=="B2"] + 1

##second set of 30 genes different in only group B
geneSets[["complex.diffSet"]] = 31:60
eset[geneSets[[2]], labels=="B2"] = eset[geneSets[[2]], labels=="B2"] + 1

#a third gene set of non-D.E. genes
geneSets[["normSet"]] = 61:90

##calculate qusage results
A.results = qusage(eset,labels, "A2-A1", geneSets)
B.results = qusage(eset,labels, "B2-B1", geneSets)

##calculate p-values for initial comparison
pdf.pVal(A.results)
pdf.pVal(B.results)

##compare the pdfs of the two groups
twoCurve.pVal(A.results,B.results)

qgen Run qusage while incoprating generalized least squares and linear
mixed model analysis at the gene level to account for repeated mea-
sures, continous covariates, and confounder adjusting.

Description

A wrapper function for the three primary steps in the qusage algorithm. The first step replaces the
conventional t-test framework, with additional flexibility to incorporate general linear models from
the nlme package, specifically the lme and gls function calls.

Usage

qgen(eset,design,fixed,geneSets,
contrast.factor,contrast,
random=NULL,correlation=NULL,design.sampleid=NULL)

Arguments

eset A matrix of log2(expression values), with rows of features and columns of sam-
ples.

qgen 25

design A data frame consisting of sample annotation information such as the various
fixed effects that wished to be included in modeling and subject identifiers for
the inclusion of random effects.It is recommended that the design file have a
column which consists of the column names of eset . See design.sampleid

fixed A one-sided linear formula object describing the fixed-effects part of the model.
The formula should always begin with a ~ operator followed by the fixed effect
terms, seperated by the + operator.

geneSets Either a list of pathways to be compared, or a vector of gene names representing
a single gene set. See Description for more details.

contrast.factor

A one sided formula indicating the factor in which the user whishes to create a
contrast. ~X1 indicates that a differences between the levels of X1 are of inter-
est, where ~X1*X2 indicates that a difference between the level combinations
of the the two factors are of interest. Factors included in the formula must be
included in fixed .

contrast A character string indicating which specific levels of contrast.factor the user
wishes to compare. This is usually of the form "TrtA - TrtB". For contrast
involving level combinations of the form ~X1*X2, the levels are concatonated
ie "TrtADay1 - TrtADay0". The order of concatenation must conform to the
order in contrast.factor .

random An optional formula to specify random effects and is passed directly to the lme
function. For simple repeated measures study designs, the form is usually ~ 1|g
where g specifies the donor or subject id’s. Defaults to NULL.

correlation An optional corStruct object to specify within-group correlation structure through
the residual covariance matrix and is passed directly to the lme or gls functions.
Defaults to NULL.

design.sampleid

A character string indicating a variable name in design indicating the column
names of eset . If set to NULL, it is assumed that the column ordering in eset
corresponds to the row ordering in design . Defaults to NULL.

Details

This function runs the entire qusage method on the input data, returning a single QSarray object
containing the results. Rather than conducting gene level Welch’s or paired t-tests, the user can
specify more general linear models inherent to lme and gls functions within the nlme package. This
requires the specification of a design file to link the necessary covariates and repeated measures
information. One consideration when running more complex linear models is that complexity com-
bined with poorly behaved data can sometimes yield convergence issues during the optimization
step. We encourage users to run their models on individual genes through gls and lme directly to
ensure their models are paramaterized correctly and as expected. Additional filtering of probes may
need to be conducted for genes that have little variation as this can cause convergence issues.

Gene sets are commonly obtained from online databases such as Broad’s Molecular Signatures
Database. Gene set lists can be obtained from these sites in the form of .gmt files, which can be
read into R using the read.gmt function. Once the data has been read into R, the information can
be passed into the qusage function as either a vector describing a single gene set, or a list of vectors
representing a group of gene sets. Each pathway must be a character vector with entries matching
the row names of eset . If a pathway does not contain any values matching the rownames of eset , a
warning will be printed, and the function will return NAs for the values of that pathway.

26 QSarray-class

Value

A QSarray object.

Examples

##Creating a design file of 20 patients (10 in conditionA/10 in conditionB
with 5 timepoints)
In addition, we also create a dummy continous covariate that is partially confounded
with condition. Condition B will have a higher mean for the covariate than condition A.

des<-data.frame(SampleID=paste("Sample",1:100,sep=""),
Condition=rep(c("A","B"),each=50),
Donor=rep(letters[1:20],each=5),
Time=rep(paste("D",0:4,sep=""),20),
stringsAsFactors=TRUE)

##Create example data - a set of 500 genes normally dstributed across 20 patients
##with 5 timepoints
eset = matrix(rnorm(500*100),500,100, dimnames=list(1:500,1:100))
colnames(eset)= paste("Sample",1:100,sep="")

##create a number of gene sets with varying levels of differential expression between
##conditions and between timepoints
geneSets = list()
for(i in 0:10){

genes = ((30*i)+1):(30*(i+1))
eset[genes,des$Condition=="B"] = eset[genes,des$Condition=="B"] + rnorm(1)
eset[genes,des$Time=="D1"]=eset[genes,des$Time=="D1"]+rnorm(1)

geneSets[[paste("Set",i)]] = genes
}

##Adding additional subject specific variability to generate repeated measures correlations
for(i in 1:500){

eset[i,]<-eset[i,]+rep(rnorm(20,0,4),each=5)
}

##Running a linear mixed model to test for D1 vs D0 for Condition B, with a subject
specific random effect

qs.result<-qgen(eset,des,geneSets=geneSets,
fixed= ~Condition+Time+Time*Condition,random=~1|Donor,
contrast.factor=~Condition*Time,contrast="BD1-BD0",
design.sampleid="SampleID")

plot(qs.result)

QSarray-class Class "QSarray"

QSarray-class 27

Description

A list-based class which contains the results of running qusage. Generally created by qusage or
makeComparison

Objects from the Class

QSarray objects should not be created directly, but rather through the makeComparison function.
They can also be created manually via a call to the newQSarray function, although this should be
done by advanced users only.

Components

QSarray objects do not contain any slots (apart from .Data) but they should contain the following
list components:

mean numeric vector containing mean fold changes for individual genes

SD numeric vector of standard deviations for individual genes
dof numeric vector. Degrees of Freedom for each gene
var.method one of ("Welch’s","Pooled"), indicating the method used to calculate the variance
sd.alpha The factor each sd is multiplied by (either due to the min.variance.factor parameter in makeComparison or because of the Bayesian shrinkage of the SDs). This is used when calculating the VIF in order to correct for genes with 0 (or very small) variance.
labels The labels as input in makeComparisons, describing the group structure of the data.
pairVector A vector indicating which samples should be treated as pairs.
contrast A string describing which of the two groups in labels was compared.

The following additional components are appended to the object by running aggregateGeneSet
and calcVIF

pathways the list of genes in each gene set. Represented as a list of indices.
path.mean vector describing the mean fold change for each of the pathways provided to AggregateGeneSet
path.PDF Matrix describing the probability distributions for each of the pathways provided to AggregateGeneSet, where each column is a different gene set, and each row is a different point where this set was sampled. x-coordinates must be generated using getXcoords
path.size numeric vector containing the number of features in each pathway that mapped to the input data.
ranges the (uncorrected) range that all PDFs were calculated over. If the VIF is not used to correct the range, the x-coordinates of the PDF are the sequence of n.points from path.mean-ranges to path.mean+ranges
n.points The number of points that the PDF was calculated at. This is equal to the number of rows in path.PDF
vif the Variance Inflation Factor for each pathway, as calculated by calcVIF

Methods

newQSarray The constructor for the QSarray object. Should primarily be used internally by
qusage or makeComparison. See newQSarray for additional details.

numFeatures Returns the number of features (i.e. genes or probesets) in the dataset

numPathways Returns the number of pathways provided to aggregateGeneSet

dim dimensions of the QSarray object, as c(numFeatures, numPathways)

print, head Prints a summarized version of all fields in the QSarray object.

summary Prints a brief summary of the QSarray object.

plot Plots the information stored in QSarray by either calling plotDensityCurves (if numPathways
< 10) or plotCIs (if numPathways >= 10)

qsTable Print a table with a summary of the information on the most significant gene sets in QSar-
ray. See qsTable for more details.

28 qsTable

Author(s)

Christopher Bolen

qsTable Summary of QSarray Results

Description

Print a table with a summary of the information on the most significant gene sets in QSarray.

Usage

qsTable(QSarray, number=20, sort.by=c("fdr","p","logFC"))

Arguments

QSarray A QSarray object

number The number of gene sets to include in the table

sort.by character vector; a list of metrics to be used to sort the gene sets in QSarray. Can
be any combination and order of c("fdr","p","logFC"), or NULL to specify no
re-ordering of gene sets.

Details

This method will return a table with a summary of the results of qusage.

Value

A data frame containing the following columns:

• pathway.name - The name of the pathway

• log.fold.change - Average log2 fold change value of the genes in the pathway

• p.Value - The p-value for the gene set, as calculated using pdf.pVal

• FDR - The Benjamini-Hochberg False Discovery rate. Calculated using R’s built-in p.adjust
method.

Examples

##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

geneSets = list()

##create a number of gene sets with varying levels of differential expression.
for(i in 0:10){
genes = ((30*i)+1):(30*(i+1))
eset[genes,labels=="B"] = eset[genes,labels=="B"] + rnorm(1)

geneSets[[paste("Set",i)]] = genes

qusage 29

}

##calculate qusage results
results = qusage(eset,labels, "B-A", geneSets)

qsTable(results)

##show the first 5 sets, sorted by log fold change
qsTable(results, number=5, sort.by="logFC")

qusage Run qusage on an expression dataset

Description

A wrapper function for the three primary steps in the qusage algorithm

Usage

qusage(eset, labels, contrast, geneSets, pairVector=NULL,
var.equal=FALSE, filter.genes=FALSE, n.points=2^12)

Arguments

eset An objet of class ExpressionSet containing log normalized expression data (as
created by the affy and lumi packages), OR a matrix of log2(expression values),
with rows of features and columns of samples

labels Vector of labels representing each column of eset

contrast A string describing which of the groups in ’labels’ we want to compare. This
is usually of the form ’trt-ctrl’, where ’trt’ and ’ctrl’ are groups represented in
’labels’

geneSets Either a list of pathways to be compared, or a vector of gene names representing
a single gene set. See Description for more details.

pairVector A vector of factors (usually just 1,2,3,etc.) describing the sample pairings. This
is often just a vector of patient IDs or something similar. If not provided, all
samples are assumed to be independent.

var.equal A logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwises the
Welch approximation is used.

filter.genes A boolean indicating whether the genes in eset should be filtered to remove
genes with low mean and sd.

n.points The number of points at which to sample the convoluted t-distribution. This
should be increased when running qusage with a small number of samples (i.e.
6 or less in total). See aggregateGeneSet for more information.

30 read.gmt

Details

This function runs the entire qusage method on the input data, returning a single QSarray object
containing the results of the three primary steps in the qusage algorithm: makeComparison, cal-
cVIF, and aggregateGeneSet. Many of the parameters are left out of this function for simplicity, so
for greater control each of the functions must be called separately.

Gene sets are commonly obtained from online databases such as Broad’s Molecular Signatures
Database. Gene set lists can be obtained from these sites in the form of .gmt files, which can be
read into R using the read.gmt function. Once the data has been read into R, the information can
be passed into the qusage function as either a vector describing a single gene set, or a list of vectors
representing a group of gene sets. Each pathway must be a character vector with entries matching
the row names of eset . If a pathway does not contain any values matching the rownames of eset , a
warning will be printed, and the function will return NAs for the values of that pathway.

Value

A QSarray object.

Examples

##create example data - a set of 500 genes normally distributed across 20 patients
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))

##create a number of gene sets with varying levels of differential expression.
geneSets = list()
for(i in 0:10){
genes = ((30*i)+1):(30*(i+1))
eset[genes,labels=="B"] = eset[genes,labels=="B"] + rnorm(1)

geneSets[[paste("Set",i)]] = genes
}

##calculate qusage results
results = qusage(eset,labels, "B-A", geneSets)

read.gmt Read in gene set information from .gmt files

Description

This function reads in and parses information from the MSigDB’s .gmt files. Pathway information
will be returned as a list of gene sets.

Usage

read.gmt(file)

read.gmt 31

Arguments

file The .gmt file to be read

Details

The .gmt format is a tab-delimited list of gene sets, where each line is a separate gene set. The first
column must specify the name of the gene set, and the second column is used for a short description
(which this function discards). For complete details on the .gmt format, refer to the Broad In-
stitute’s Data Format’s page (url: http://www.broadinstitute.org/cancer/software/gsea/
wiki/index.php/Data_formats).

Value

A list, where each index represents a separate gene set.

Warning

The function does not check that the file is correctly formatted, and may return incorrect or par-
tial gene sets, e.g. if the first two columns are omitted. Please make sure that files are correctly
formatted before reading them in using this function.

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats

Index

∗ classes
QSarray-class, 26

∗ datasets
fluExample, 7
fluVaccine, 8
GeneSets, 9

aggregateGeneSet, 2, 6, 9, 23, 27, 29, 30

BTM.geneSets (GeneSets), 9

calcBayesCI, 4, 14
calcVIF, 4, 27, 30
combinePDFs, 6
corStruct, 25

dim,QSarray-method (QSarray-class), 26

eset.full (fluExample), 7
ExpressionSet, 5, 11, 29

flu.meta (fluExample), 7
fluExample, 7
fluVaccine, 8

GeneSets, 9
getXcoords, 3, 9, 27
gls, 25

head,QSarray-method (QSarray-class), 26

ISG.geneSet (GeneSets), 9

legend, 18
lme, 25

makeComparison, 5, 10, 12, 16, 27, 30
MSIG.geneSets (GeneSets), 9

newQSarray, 12, 27
nlme, 25
numFeatures (QSarray-class), 26
numFeatures,QSarray-method

(QSarray-class), 26
numPathways (QSarray-class), 26

numPathways,QSarray-method
(QSarray-class), 26

oneWay.pVal (pVal), 22

p.adjust, 14
p.adjust.methods, 14
pdf.pVal (pVal), 22
plot,QSarray-method (QSarray-class), 26
plotCIs, 4, 13, 27
plotCIsGenes, 15
plotCombinedPDF, 6, 17
plotDensityCurves, 19, 27
plotGeneSetDistributions, 20
print,QSarray-method (QSarray-class), 26
pVal, 22

qgen, 24
QSarray, 3, 11, 26, 30
QSarray-class, 26
qsTable, 27, 28
qusage, 6, 9, 12, 23, 27, 29

read.gmt, 25, 30, 30

summary,QSarray-method (QSarray-class),
26

twoCurve.pVal (pVal), 22
twoWay.pVal (pVal), 22

32

	aggregateGeneSet
	calcBayesCI
	calcVIF
	combinePDFs
	fluExample
	fluVaccine
	GeneSets
	getXcoords
	makeComparison
	newQSarray
	plotCIs
	plotCIsGenes
	plotCombinedPDF
	plotDensityCurves
	plotGeneSetDistributions
	pVal
	qgen
	QSarray-class
	qsTable
	qusage
	read.gmt
	Index

