Package ‘parglms’

July 12, 2025
Title support for parallelized estimation of GLMs/GEEs
Version 1.41.0
Author VJ Carey <stvjc@channing.harvard.edu>

Description This package provides support for parallelized estimation of GLMs/GEE:s,
catering for dispersed data.

Suggests RUnit, sandwich, MASS, knitr, GenomeInfoDb, GenomicRanges,
gwascat, BiocStyle, rmarkdown

VignetteBuilder knitr

Depends methods

Imports BiocGenerics, BatchJobs, foreach, doParallel
Maintainer VJ Carey <stvjc@channing.harvard.edu>
License Artistic-2.0

LazyLoad yes

BiocViews statistics, genetics

ByteCompile TRUE

git_url https://git.bioconductor.org/packages/parglms
git_branch devel

git_last_commit 8e8dd3e

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-11

Contents

parglms-package e e e e e
parGLM-methods e

Index

2 parGLM-methods

parglms-package support for parallelized estimation of GLMs/GEEs

Description

This package provides support for parallelized estimation of GLMs/GEEs, catering for dispersed
data.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

In version 0.0.0 we established an approach to fitting GLM from data that have been persistently
dispersed and managed by a Registry.

Author(s)

VIJ Carey <stvjc@channing.harvard.edu>

Maintainer: VJ Carey <stvjc@channing.harvard.edu>

References

This package shares an objective with the bigglm methods of biglm. In bigglm, a small-RAM-
footprint algorithm is employed, with sequential chunking to update statistics in each iteration. In
parGLM the footprint is likewise controllable, but statistics in each iteration are evaluated in parallel
over chunks.

Examples

showMethods ("parGLM")

parGLM-methods fit GLM-like models with parallelized contributions to sufficient statis-
tics

Description

This package addresses the problem of fitting GLM-like models in a scalable way, recognizing that
data may be dispersed, with chunks processed in parallel, to create low-dimensional summaries
from which model fits may be constructed.

parGLM-methods 3

Methods

signature(formula = "formula”, store = "Registry”) The model data are assumed to lie in

the file.dir/jobs/* folders, with file.dir defined in the store, which is an instance of
Registry.

Additional arguments must be supplied:

family a function that serves as a family for stats::glm

binit a vector of initial values for regression parameter estimation, must conform to expecta-
tions of formula

maxit an integer giving the maximum number of iterations allowed
tol a numeric giving the tolerance criterion

Failure to specify these triggers a fatal error.

The Registry instance can be modified to include a list element ’extractor’. This must be a
function with arguments store, and codei. The standard extraction function is

function(store, i) loadResult(store, i)

It must return a data frame, conformant with the expectations of formula. Limited checking
is performed.

The predict method computes the linear predictor on data identified by jobid in a BatchJobs
registry. Results are returned as output of foreach over the jobids specified in the predict call.
Note that setting option parGLM.showiter to TRUE will provide a message tracing progress
of the optimization.

Examples

if (require(MASS) & require(BatchJobs)) {
here is the 'sharding' of a small dataset
data(anorexia) # N =72

in

.BatchJobs.R:

best setting for sharding a small dataset on a small machine:
cluster.functions = BatchJobs: :makeClusterFunctionsInteractive()

myr
chs
‘F =

= makeRegistry("abc”, file.dir=tempfile())
= chunk(1:nrow(anorexia), n.chunks=18) # 4 recs/chunk
function(x) {library(MASS); data(anorexia); anorexial[x,]}

batchMap(myr, f, chs)
submitJobs(myr) # now getResult(myr,1) gives back a data.frame
waitForJobs(myr) # simple dispersal
now myr is populated
oldopt = options()$parGLM.showiter
options(parGLM. showiter=TRUE)
pp = parGLM(Postwt ~ Treat + Prewt, myr,
family=gaussian, binit = ¢(0,0,0,0), maxit=10, tol=.001)
print(summary(theLM <- lm(Postwt~Treat+Prewt, data=anorexia)))
print(pp$coefficients - coef(thelLM))
if (require(sandwich)) {
hc@® <- vcovHC(thelLM, type="HC@")
print(pp$robust.variance - hc®)

b
3

predict(pp, store=myr, jobids=2:3)
options(parGLM. showiter=oldopt)

Index

* methods
parGLM-methods, 2

* modeling
parGLM-methods, 2

+ package
parglms-package, 2

parGLM (parGLM-methods), 2

parGLM, formula,Registry-method
(parGLM-methods), 2

parGLM-methods, 2

parglms (parglms-package), 2

parglms-package, 2

predict (parGLM-methods), 2

print (parGLM-methods), 2

Registry, 2, 3

summary (parGLM-methods), 2

	parglms-package
	parGLM-methods
	Index

