Package 'UPDhmm'

July 12, 2025

```
Title Detecting Uniparental Disomy through NGS trio data
Version 1.5.0
```

```
BugReports https://github.com/martasevilla/UPDhmm/issues
```

Description Uniparental disomy (UPD) is a genetic condition where an individual inherits both copies of a chromosome or part of it from one parent, rather than one copy from each parent. This package contains a HMM for detecting UPDs through HTS (High Throughput Sequencing) data from trio assays. By analyzing the genotypes in the trio, the model infers a hidden state (normal, father isodisomy, mother isodisomy, father heterodisomy and mother heterodisomy).

biocViews Software, HiddenMarkovModel, Genetics

```
License MIT + file LICENSE
```

Encoding UTF-8

LazyData false

RoxygenNote 7.3.1

Depends R (>= 4.3.0)

Imports HMM, utils, VariantAnnotation, GenomicRanges, S4Vectors, IRanges, stats

Suggests knitr, testthat (>= 2.1.0), BiocStyle, rmarkdown, markdown, karyoploteR, regioneR, dplyr

Roxygen list(markdown = TRUE)

 ${\bf URL}\ {\tt https://github.com/martasevilla/UPDhmm}$

Language en-US

git_url https://git.bioconductor.org/packages/UPDhmm

git_branch devel

git_last_commit 3e10e49

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-11

2 UPDhmm-package

Maintainer Marta Sevilla <marta.sevilla@upf.edu>

Contents

addOr																		
applyViter	bi																	
asDfVcf .																		
blocksVcf																		
calculateE	vents																	
hmm																		
vcfCheck																		

UPDhmm-package

UPDhmm: Detecting Uniparental Disomy through NGS trio data

Description

Uniparental disomy (UPD) is a genetic condition where an individual inherits both copies of a chromosome or part of it from one parent, rather than one copy from each parent. This package contains a HMM for detecting UPDs through HTS (High Throughput Sequencing) data from trio assays. By analyzing the genotypes in the trio, the model infers a hidden state (normal, father isodisomy, mother isodisomy, father heterodisomy and mother heterodisomy).

Author(s)

Maintainer: Marta Sevilla <marta.sevilla@upf.edu>(ORCID)

Authors:

• Carlos Ruiz-Arenas <cruizarenas@unav.es> (ORCID)

See Also

Useful links:

- https://github.com/martasevilla/UPDhmm
- Report bugs at https://github.com/martasevilla/UPDhmm/issues

addOr 3

add0r	Function to transform a large collapsed VCF into a dataframe, incorporating predicted states along with the log-likelihood ratio and
	p-value.

Description

Function to transform a large collapsed VCF into a dataframe, incorporating predicted states along with the log-likelihood ratio and p-value.

Usage

```
addOr(filtered_def_blocks_states, largeCollapsedVcf, hmm, genotypes)
```

Arguments

filtered_def_blocks_states

data.frame object containing the blocks

largeCollapsedVcf

Input VCF file

hmm

Hidden Markov Model used to infer the events. The format should adhere to the general HMM format from HMM package with a series of elements:

- 1. The hidden states names in the "States" vector.
- 2. All possible observations in the "Symbols" vector.
- 3. Start probabilities of every hidden state in the "startProbs" vector.
- 4. Transition probabilities matrix of the hidden states in "transProbs".
- 5. Probabilities associated between every hidden state and all possible observations in the "emissionProbs" matrix.

genotypes

Possible GT formats and its correspondence with the hmm

Value

data.frame containing the transformed information.

applyViterbi

Apply the hidden Markov model using the Viterbi algorithm.

Description

Apply the hidden Markov model using the Viterbi algorithm.

Usage

```
applyViterbi(largeCollapsedVcf, hmm, genotypes)
```

4 blocksVcf

Arguments

largeCollapsedVcf

input vcf file

hmm Hidden Markov Model used to infer the events

genotypes Possible GT formats and its correspondence with the hmm

Value

largeCollapsedVcf

asDfVcf Function to transform a large collapsed VCF into a dataframe with

predicted states, including chromosome, start position, end position

and metadata.

Description

Function to transform a large collapsed VCF into a dataframe with predicted states, including chromosome, start position, end position and metadata.

Usage

```
asDfVcf(largeCollapsedVcf, genotypes)
```

Arguments

largeCollapsedVcf

Name of the large collapsed VCF file.

genotypes Possible GT formats and its correspondence with the hmm

Value

dataframe

blocksVcf Function to simplify contiguous variants with the same state into

blocks.

Description

Function to simplify contiguous variants with the same state into blocks.

Usage

blocksVcf(df)

Arguments

df data.frame resulting from the as_df_vcf function.

calculateEvents 5

Value

data.frame containing information on the chromosome, start #' position of the block, end position of the block, and predicted state.

calculateEvents

Calculate UPD events in trio VCFs.

Description

This function predicts the hidden states by applying the Viterbi algorithm using the Hidden Markov Model (HMM) from the UPDhmm package. It takes the genotypes of the trio as input and includes a final step to simplify the results into blocks.

Usage

```
calculateEvents(largeCollapsedVcf, hmm = NULL)
```

Arguments

largeCollapsedVcf

The VCF file in the general format (largeCollapsedVcf) with VariantAnnotation package. Previously edited with vcfCheck() function from UPDhmm package

hmm

Default = NULL. If no arguments are added, the package will use the default HMM already implemented, based on Mendelian inheritance. If an optional HMM is desired, it should adhere to the general HMM format from HMM package with the following elements inside a list:

- 1. The hidden state names in the "States" vector.
- 2. All possible observations in the "Symbols" vector.
- 3. Start probabilities of every hidden state in the "startProbs" vector.
- 4. Transition probabilities matrix between states in "transProbs".
- 5. Probabilities associated between every hidden state and all possible observations in the "emissionProbs" matrix.

Value

A data.frame object containing all detected events in the provided trio. If no events are found, the function will return an empty data.frame.

Examples

```
file <- system.file(package = "UPDhmm", "extdata", "test_het_mat.vcf.gz")
vcf <- VariantAnnotation::readVcf(file)
processedVcf <- vcfCheck(vcf,
    proband = "NA19675", mother = "NA19678",
    father = "NA19679"
)</pre>
```

6 vcfCheck

hmm

HMM data for predicting UPD events in trio genomic data

Description

This dataset provides Hidden Markov Model (HMM) parameters for predicting uniparental disomy (UPD) events in trio genomic data.

states Five different possible states.

symbols Code symbols used for genotype combinations.

startProbs The initial probabilities of each state.

transProbs Probabilities of transitioning from one state to another.

emissionProbs Given a certain genotype combination, the odds of each possible state.

Usage

data(hmm)

Format

A list with 5 different elements

Source

Created in-house based on basic Mendelian rules for calculating UPD events.

Examples

data(hmm)

vcfCheck

Check quality parameters (optional) and change IDs.

Description

This function takes a VCF file and converts it into a largeCollapsedVcf object using the VariantAnnotation package. It also rename the sample for subsequent steps needed in UPDhmm package. Additionally, it features an optional parameter, quality_check, which triggers warnings when variants lack sufficient quality based on RD and GQ parameters in the input VCF.

Usage

```
vcfCheck(largeCollapsedVcf, father, mother, proband, check_quality = FALSE)
```

vcfCheck 7

Arguments

large Collapsed Vcf

The file in large Collapsed V cf format.

father Name of the father's sample.

mother Name of the mother's sample.

proband Name of the proband's sample.

 $\label{lem:check_quality} Check_quality \quad Optional \ argument. \ TRUE/FALSE. \ If \ quality \ parameters \ want \ to \ be \ measured.$

Default = FALSE

Value

 $large Collapsed Vcf\ (Variant Annotation\ VCF\ format).$

Examples

```
fl <- system.file("extdata", "test_het_mat.vcf.gz", package = "UPDhmm")
vcf <- VariantAnnotation::readVcf(fl)
processedVcf <-
    vcfCheck(vcf, proband = "Sample1", mother = "Sample3", father = "Sample2")</pre>
```

Index

```
* datasets
hmm, 6
* internal
UPDhmm-package, 2

addOr, 3
applyViterbi, 3
asDfVcf, 4

blocksVcf, 4

calculateEvents, 5

hmm, 6

UPDhmm (UPDhmm-package), 2
UPDhmm-package, 2
vcfCheck, 6
```