
Package ‘BiocPkgTools’
July 11, 2025

Type Package

Title Collection of simple tools for learning about Bioconductor
Packages

Version 1.27.7

Date 2025-04-30

Description Bioconductor has a rich ecosystem of metadata around
packages, usage, and build status. This package is a simple
collection of functions to access that metadata from R. The goal
is to expose metadata for data mining and value-added functionality
such as package searching, text mining, and analytics on
packages.

Depends htmlwidgets, R (>= 4.1.0)

Imports BiocFileCache, BiocManager, biocViews, tibble, methods, rlang,
stringr, stats, rvest, dplyr, xml2, readr, httr, htmltools, DT,
tools, utils, igraph (>= 2.0.0), jsonlite, gh, RBGL, graph,
rorcid, curl, glue, lubridate, purrr, tidyr, yaml

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, testthat, tm, networkD3,
visNetwork, clipr, blastula, kableExtra, DiagrammeR,
SummarizedExperiment

License MIT + file LICENSE

BugReports https://github.com/seandavi/BiocPkgTools/issues/new

URL https://github.com/seandavi/BiocPkgTools

Encoding UTF-8

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

SystemRequirements mailsend-go

biocViews Software, Infrastructure

git_url https://git.bioconductor.org/packages/BiocPkgTools

git_branch devel

git_last_commit eb8199f

git_last_commit_date 2025-07-11

Repository Bioconductor 3.22

1

https://github.com/seandavi/BiocPkgTools/issues/new
https://github.com/seandavi/BiocPkgTools

2 Contents

Date/Publication 2025-07-11

Author Shian Su [aut, ctb],
Lori Shepherd [ctb],
Marcel Ramos [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-3242-0582>),

Felix G.M. Ernst [ctb],
Jennifer Wokaty [ctb],
Charlotte Soneson [ctb],
Martin Morgan [ctb],
Vince Carey [ctb],
Sean Davis [aut, cre]

Maintainer Sean Davis <seandavi@gmail.com>

Contents
.getDepGain . 3
.get_cre_orcid . 4
.get_orcid_rec . 4
activitySince . 4
anacondaDownloadStats . 6
biocBuildEmail . 6
biocBuildReport . 8
biocBuildReportDB . 9
biocBuildStatusDB . 10
biocDownloadStats . 10
biocExplore . 11
biocMaintained . 12
biocPkgList . 13
biocPkgRanges . 14
BiocPkgTools . 15
BiocPkgTools-cache . 16
biocRevDepEmail . 17
buildPkgDependencyDataFrame . 18
buildPkgDependencyIgraph . 19
class-dependencies . 20
CRANstatus . 21
dataciteXMLGenerate . 22
firstInBioc . 22
generateBiocPkgDOI . 23
getBiocVignette . 24
getPackageInfo . 25
getPkgYearsInBioc . 25
get_bioc_data . 26
get_cre_orcids . 27
githubDetails . 27
githubURLParts . 28
inducedSubgraphByPkgs . 29
latestPkgStats . 30
orcid_table . 31
pkgBiocDeps . 31
pkgBiocRevDeps . 32

https://orcid.org/0000-0002-3242-0582

.getDepGain 3

pkgCombDependencyGain . 33
pkgDepImports . 34
pkgDepMetrics . 35
pkgDownloadRank . 36
pkgDownloadStats . 37
problemPage . 37
repositoryStats . 38
subgraphByDegree . 40
templatePath . 41

Index 42

.getDepGain Calculate the ’dependency gain’ from excluding one or more direct
dependencies

Description

Calculate the difference between the total number of dependencies of a package and the number of
dependencies that would remain if one or more of the direct dependencies were removed.

Usage

.getDepGain(g, pkg, depsToRemove)

Arguments

g Package dependency graph

pkg Character string representing the package of interest

depsToRemove Character vector representing the dependencies to remove

Value

The ’dependency gain’ that would be achieved by excluding the indicated direct dependencies

Author(s)

Charlotte Soneson

4 activitySince

.get_cre_orcid get the ORCID id from cre field of Authors@R in packageDescription
result

Description

get the ORCID id from cre field of Authors@R in packageDescription result

Usage

.get_cre_orcid(pkgname)

Arguments

pkgname character(1)

.get_orcid_rec process employment data from ORCID

Description

process employment data from ORCID

Usage

.get_orcid_rec(orcid, rename = TRUE)

Arguments

orcid character(1)
rename logical(1) if TRUE use short names

activitySince What are the issues, pulls, commits created since a date?

Description

This function uses the gh package to get a list of either issues, pull requests, or GitHub commits
since the specified date for a particular GitHub repository. The repository must have both the
username / organization and the name, e.g., "Bioconductor/S4Vectors".

Usage

activitySince(
gh_repo,
activity = c("issues", "pulls", "commits"),
status = c("closed", "open", "all"),
Date,
issue_metadata = c("created_at", "number", "title"),
token = NULL

)

activitySince 5

Arguments

gh_repo character(1) The GitHub repository location including the username / organiza-
tion and the repository name, e.g., "Bioconductor/S4Vectors"

activity character(1) The type of repository activity to pull from the GitHub API. It can
be one of "issues" (default), "pulls", or "commits".

status character(1) One of ’closed’, ’open’, or ’all’ corresponding to the issue state
desired from the GitHub API (Default: "closed"). This argument is ignored for
the "commits" activity report.

Date character(1) The date cutoff from which to analyze closed issues in the YYYY-
MM-DD or YYYY-MM-DDTHH:MM:SSZ format (ISO 8601).

issue_metadata character() The metadata labels to extract from the gh::gh response. See ?gh::gh
for more details. Defaults to ’created_at’, ’number’, and ’title’. This argument
is ignored for the "commits" activity report.

token character(1) For big requests, e.g., commit history, you may be prompted to use
a GitHub Personal Access Token. Enter the token as plain text.

Details

The tibble returned by the commits activity report contains five columns:

• ’committer_date’

• ’commit’ - hash

• ’parents’ - hash of parent for merge commits

• ’author’

• ’message’

For information on other columns, refer to the GitHub API under repository issues or pulls (e.g.,
/repos/:repo/issues).

Value

A tibble with three columns corresponding to issue metadata (i.e., "created_at", "number", "title")

Examples

if (interactive()) {

activitySince("Bioconductor/S4Vectors", "issues", "closed", "2021-05-01")
activitySince("Bioconductor/S4Vectors", "issues", "open", "2022-05-01")
activitySince("Bioconductor/S4Vectors", "commits", Date = "2022-05-01")

}

6 biocBuildEmail

anacondaDownloadStats Get download statistics for Bioconductor packages distributed via
Anaconda.

Description

Get download statistics for Bioconductor packages distributed via Anaconda.

Usage

anacondaDownloadStats()

Details

Anaconda provide daily download counts for all software packages they distribute. These are sum-
marised into monthly tables of counts and made available from https://github.com/grimbough/anaconda-
download-stats This function provides a mechanism to download these monthly counts for Biocon-
ductor packages distributed through Anaconda.

Value

A data.frame of download statistics for all Bioconductor packages distributed by Anaconda, in
tidy format. Note: Anaconda do not provide counts for unique IP addresses. This column is
listed as NA for all packages to provide continuity with data from Bioconductor.org obtained by
biocDownloadStats. The counts are updated monthly, so do not expect to see counts for the cur-
rent month.

Author(s)

Mike L. Smith

Examples

anacondaDownloadStats()

biocBuildEmail Create and copy e-mail package notification template to clipboard

Description

The \code{biocBuildEmail} function provides a template for notifying

maintainers of errors in the Bioconductor Build System (BBS). This convenience function returns
the body of the email from a template within the package and provides a copy in the clipboard.

biocBuildEmail 7

Usage

biocBuildEmail(
pkg,
version = c("release", "devel"),
PS = character(1L),
dry.run = TRUE,
to = NULL,
cc = NULL,
bcc = NULL,
emailTemplate = templatePath(),
core.name = NULL,
core.email = NULL,
core.id = NULL,
textOnly = FALSE,
resend = FALSE,
verbose = FALSE,
credFile = "~/.blastula_creds"

)

sentHistory()

Arguments

pkg character(1) The name of the package in trouble

version character() A vector indicating which version of Bioconductor the package is
failing in (either ’release’ or ’devel’; defaults to both)

PS character(1) Postscript, an additional note to the recipient of the email (i.e., the
package maintainer)

dry.run logical(1) Display the email without sending to the recipient. It only works for
HTML email reports and ignored when textOnly=TRUE

to character() A vector of email addresses serving as primary recipients for the
message. For secondary recipients, use the cc and bcc arguments.

cc, bcc character() A vector of email addresses for sending the message as a carbon
copy or blind carbon copy.

emailTemplate character(1) The path to the email template Rmd file as obtained by templatePath().
A custom template can be provided as file path.

core.name character(1) The full name of the core team member

core.email character(1) The Roswell Park email of the core team member

core.id character(1) The internal identifier for the Roswell employee. This ID usually
matches ^[A-Z]{2}[0-9]{5} for more recent identifiers.

textOnly logical(1) Whether to return the text of the email only. This avoids the use of
the ’blastula’ package and adds the text to the system clipboard if the clipr
package is installed (default: FALSE)

resend logical(1) Whether to force a resend of the email

verbose logical(1) Whether to output full email information from ’smtp_send’ (when
dry.run is FALSE and ’blastula’ is installed)

credFile character(1) An optional file generated by the blastula::create_smtp_creds_file
function containing email authentication information (default: "~/.blastula_creds").
See ?biocBuildEmail details.

8 biocBuildReport

Details

The credFile argument is a convenience for avoiding password entry at every instance an email is
sent. If the default file ~/.blastula_creds does not exist, the user will be prompted for authoriza-
tion information. Currently it is configured to emails for the core-team:

blastula::create_smtp_creds_file(
file = "~/.blastula_creds",
user = "user.email@domain.org",
host = "smtp.office365.com",
port = 587,
use_ssl = TRUE

)

Value

A character string of the email

sentHistory

Check the history of emails sent

biocBuildReport Tidy Bioconductor build report results

Description

The online Bioconductor build reports are great for humans to look at, but they are not easily
computable. This function scrapes HTML and text files available from the build report online pages
to generate a tidy data frame version of the build report.

Usage

biocBuildReport(
version = BiocManager::version(),
pkgType = c("software", "data-experiment", "data-annotation", "workflows"),
stage.timings = FALSE

)

Arguments

version character(1) the character version number as used to access the online build
report. For example, "3.14". The default is the "current version" as given by
BiocManager::version(). Note that this is a character vector of length one
and not a number.

pkgType character(1) The type of packages for which to get build status information
for. Valid values are:

• software: Software packages
• data-experiment: Experiment data packages
• data-annotation: Annotation data packages

biocBuildReportDB 9

• workflows: Workflow packages

stage.timings logical(1) Whether to include the start, end, and elapsed time for each build,
check, install stage from each building in the result (default: FALSE)

Value

A tbl_df object with columns pkg, version, author, commit, date, node, stage, and result.

Examples

Set the stage--what version of Bioc am I using?
BiocManager::version()

latest_build <- biocBuildReport()
head(latest_build)

biocBuildReportDB Parse the Build Report tarball for a Bioconductor release

Description

This function parses the Build Report tarball for a Bioconductor release. By default it will pull all
the report.tgz files for each Bioconductor package type. The Bioconductor Build System (BBS)
Build Report tarball contains build status information for all packages in a Bioconductor release.
This function is mainly used by biocBuildReport().

Usage

biocBuildReportDB(
version = BiocManager::version(),
pkgType = c("software", "data-experiment", "data-annotation", "workflows"),
stage.timings = FALSE

)

Arguments

version character(1) The numeric version of Bioconductor to use, e.g., "3.19". Key-
words "release" and "devel" are also accepted.

pkgType character(1) The type of packages for which to get build status information
for. Valid values are:

• software: Software packages
• data-experiment: Experiment data packages
• data-annotation: Annotation data packages
• workflows: Workflow packages

stage.timings logical(1) Whether to include the start, end, and elapsed time for each build,
check, install stage from each building in the result (default: FALSE)

10 biocDownloadStats

biocBuildStatusDB Download and parse the build status information for Bioconductor
packages

Description

This function downloads and parses the build status information for Bioconductor packages. The
build status information is available for the current release and the previous release. Other versions
may be available.

Usage

biocBuildStatusDB(
version = BiocManager::version(),
pkgType = c("software", "data-experiment", "data-annotation", "workflows")

)

Arguments

version character(1) The numeric version of Bioconductor to use, e.g., "3.19". Key-
words "release" and "devel" are also accepted.

pkgType character(1) The type of packages for which to get build status information
for. Valid values are:

• software: Software packages
• data-experiment: Experiment data packages
• data-annotation: Annotation data packages
• workflows: Workflow packages

Value

A data.frame with the following columns:

• pkg: The name of the package

• node: The builder on which the package was built

• stage: The stage of the build, e.g., ’install’, ’buildsrc’, ’checksrc’, etc.

• result: The status of the build, e.g., ’OK’, ’ERROR’, ’WARNINGS’, etc.

biocDownloadStats Get Bioconductor download statistics

Description

Get Bioconductor download statistics

Usage

biocDownloadStats(
pkgType = c("software", "data-experiment", "workflows", "data-annotation")

)

biocExplore 11

Arguments

pkgType character() All, some, or one of ’software’, ’data-experiment’, ’workflows’, or
’data-annotation’ (defaults to all types)

Details

Note that Bioconductor package download stats are not version-specific.

Value

A tibble of download statistics for all Bioconductor packages

Examples

biocDownloadStats()

biocExplore Explore Bioconductor packages interactively

Description

Explore Bioconductor packages through an interactive bubble plot. Click on bubbles to bring up
additional information about the package. Size and proximity to center of a bubble is based on the
downloads the package has in the past month.

Usage

biocExplore(top = 500L, ...)

Arguments

top maximum number of packages displayed in any biocView

... parameters passed to htmlwidgets::createWidget()

Value

A bubble plot of Bioconductor packages

12 biocMaintained

biocMaintained Bioconductor Maintained Packages

Description

List all the packages associated with a maintainer. By default, it will return all packages associated
with the maintainer@bioconductor.org email. hasBiocMaint returns a logical vector corre-
sponding to the input character vector of packages indicating whether any package is maintained by
the Bioconductor core team.

Usage

biocMaintained(
main = "maintainer@bioconductor.org",
version = BiocManager::version(),
pkgType = c("software", "data-experiment", "workflows", "data-annotation")

)

hasBiocMaint(
pkg,
version = BiocManager::version(),
main = "maintainer@bioconductor\\.org",
repo = c("BioCsoft", "BioCexp", "BioCworkflows", "BioCann")

)

Arguments

main character(1) A regex string to search for in the Maintainer column from the
biocPkgList() output.

version character(1) the character version number as used to access the online build
report. For example, "3.14". The default is the "current version" as given by
BiocManager::version(). Note that this is a character vector of length one
and not a number.

pkgType character(1) The type of packages for which to get build status information
for. Valid values are:

• software: Software packages
• data-experiment: Experiment data packages
• data-annotation: Annotation data packages
• workflows: Workflow packages

pkg character(1) A vector of package names (case sensitive).

repo character() A vector of Bioconductor repositories to search through. By de-
fault, it will search through all Bioconductor repositories.

Value

For biocMaintained: a tibble of packages associated with the maintainer.

For hasBiocMaint: a logical vector indicating whether the package is maintained by Bioconductor.

biocPkgList 13

Examples

biocMaintained()

maintained by Hervé and not maintainer at bioconductor dot org
hasBiocMaint("BiocGenerics")

biocPkgList Get full Bioconductor software package listing, with details

Description

The BiocViews-generated VIEWS file is available for Bioconductor release and devel repositories. It
contains quite a bit more information from the package DESCRIPTION files than the PACKAGES file.
In particular, it contains biocViews annotations and URLs for vignettes and developer URLs.

Usage

biocPkgList(
version = BiocManager::version(),
repo = c("BioCsoft", "BioCexp", "BioCworkflows", "BioCann", "CRAN"),
addBiocViewParents = TRUE

)

Arguments

version The requested Bioconductor version. Will default to use the BiocManager de-
faults (i.e., version()).

repo character(1) The requested Bioconductor repository. The default is to pull
from the "BioCsoft" repository. Possible repositories include "BioCsoft", "Bio-
Cexp", "BioCworkflows", "BioCann", and "CRAN". Note that not all repos are
available for all versions, particularly older versions.

addBiocViewParents

logical(1) whether to add all biocViews parents to biocViews annotations.

Details

Since packages are annotated with the most specific views, the default functionality here is to add
parent terms for all views for each package. For example, in the bioCsoft repository, all packages
will have at least "Software" added to their biocViews. If one wants to stick to only the most specific
terms, set addBiocViewParents to FALSE.

Value

An object of class tbl_df.

14 biocPkgRanges

Examples

bpkgl <- biocPkgList(repo = "BioCsoft")
bpkgl
unlist(bpkgl[1,'Depends'], use.names = FALSE)

Get a list of all packages that
import "GEOquery"
library(dplyr)
bpkgl |>

filter(Package == 'GEOquery') |>
pull('importsMe') |>
unlist()

biocPkgRanges Grab build report results from BUILD_STATUS_DB for a particular
package range

Description

Grab build report results from BUILD_STATUS_DB for a particular package range

Usage

biocPkgRanges(
start,
end,
condition = c("ERROR", "WARNINGS"),
phase = "buildsrc",
version = c("devel", "release")

)

Arguments

start character(1) alphabetically first package name in range

end character(1) alphabetically last package name in range

condition character(1) condition string, typically ’ERROR’ or ’WARNING’

phase character(1) string for phase of event: ’install’, ’checksrc’, or ’buildsrc’ (default)

version character(1) string indication Bioconductor version, either ’devel’ (default) or
’release’

Author(s)

Vincent J. Carey

BiocPkgTools 15

Examples

Not run:
biocPkgRanges(

start = "a4", end = "CMA",
condition = "ERROR", version = "devel"

)

End(Not run)

BiocPkgTools BiocPkgTools: Examine and analyze Bioconductor package metadata

Description

Bioconductor has a rich ecosystem of metadata around packages, usage, and build status. This
package is a simple collection of functions to access that metadata from R. The goal is to expose
metadata for data mining and value-added functionality such as package searching, text mining, and
analytics on packages.

For developers

The biocBuildReport function returns a computable form of the Bioconductor Build Report.

For users

The biocDownloadStats function gets Bioconductor download stats, allowing users to quickly
find commonly used packages. The biocPkgList is useful for getting a complete listing of all
Bioconductor packages.

Infrastructure

Bioconductor packages all have Digital Object Identifiers (DOIs). This package contains basic
infrastructure for creating, updating, and de-referencing DOIs.

Author(s)

Maintainer: Sean Davis <seandavi@gmail.com>

Authors:

• Shian Su <su.s@wehi.edu.au> [contributor]

• Marcel Ramos <marcel.ramos@roswellpark.org> (ORCID) [contributor]

Other contributors:

• Lori Shepherd <Lori.Shepherd@roswellpark.org> [contributor]

• Felix G.M. Ernst <felix.gm.ernst@outlook.com> [contributor]

• Jennifer Wokaty <jennifer.wokaty@gmail.com> [contributor]

• Charlotte Soneson <charlottesoneson@gmail.com> [contributor]

• Martin Morgan <martin.morgan@roswellpark.org> [contributor]

• Vince Carey <stvjc@channing.harvard.edu> [contributor]

https://orcid.org/0000-0002-3242-0582

16 BiocPkgTools-cache

See Also

Useful links:

• https://github.com/seandavi/BiocPkgTools

• Report bugs at https://github.com/seandavi/BiocPkgTools/issues/new

BiocPkgTools-cache Manage cache for BiocPkgTools

Description

Managing user data is important to allow use of email functions such as biocBuildEmail and made
easy with BiocFileCache.

Usage

setCache(
directory = tools::R_user_dir("BiocPkgTools", "cache"),
verbose = TRUE,
ask = interactive()

)

pkgToolsCache(...)

Arguments

directory The file location where the cache is located. Once set future downloads will go
to this folder.

verbose Whether to print descriptive messages

ask logical (default TRUE when interactive session) Confirm the file location of the
cache directory

... For pkgToolsCache, arguments are passed to setCache

pkgToolsCache

Get the directory location of the cache. It will prompt the user to create a cache if not already
created. A specific directory can be used via setCache.

setCache

Specify the directory location of the data cache. By default, it will got to the user’s home/.cache/R
and "appname" directory as specified by tools::R_user_dir (with package="BiocPkgTools" and
which="cache").

https://github.com/seandavi/BiocPkgTools
https://github.com/seandavi/BiocPkgTools/issues/new

biocRevDepEmail 17

biocRevDepEmail Notify downstream maintainers of changes in upstream packages

Description

The biocRevDepEmail function collects all the emails of the reverse dependencies and sends a
notification that upstream package(s) have been deprecated or removed. It uses a template found in
inst/resources with the templatePath() function.

Usage

biocRevDepEmail(
packages,
which = c("strong", "most", "all"),
PS = character(1L),
version = BiocManager::version(),
dry.run = TRUE,
cc = NULL,
emailTemplate = templatePath("revdepnote"),
core.name = NULL,
core.email = NULL,
core.id = NULL,
textOnly = FALSE,
verbose = FALSE,
credFile = "~/.blastula_creds",
...,
pkg

)

Arguments

packages character() A vector of CRAN and/or Bioconductor packages for whose re-
verse dependencies are to be checked and notified.

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances", character string "strong" (default) for the first three elements of
that vector.

PS character(1) Postscript, an additional note to the recipient of the email (i.e., the
package maintainer)

version character() A vector indicating which version of Bioconductor the package is
failing in (either ’release’ or ’devel’; defaults to both)

dry.run logical(1) Display the email without sending to the recipient. It only works for
HTML email reports and ignored when textOnly=TRUE

cc character() A vector of email addresses for sending the message as a carbon
copy.

emailTemplate character(1) The path to the email template Rmd file as obtained by templatePath().
A custom template can be provided as file path.

core.name character(1) The full name of the core team member

18 buildPkgDependencyDataFrame

core.email character(1) The Roswell Park email of the core team member

core.id character(1) The internal identifier for the Roswell employee. This ID usually
matches ^[A-Z]{2}[0-9]{5} for more recent identifiers.

textOnly logical(1) Whether to return the text of the email only. This avoids the use of
the ’blastula’ package and adds the text to the system clipboard if the clipr
package is installed (default: FALSE)

verbose logical(1) Whether to output full email information from ’smtp_send’ (when
dry.run is FALSE and ’blastula’ is installed)

credFile character(1) An optional file generated by the blastula::create_smtp_creds_file
function containing email authentication information (default: "~/.blastula_creds").
See ?biocBuildEmail details.

pkg character(1) DEPRECATED. The name of a single package whose reverse
dependencies are to be checked and notified.

... Additional inputs to internal functions (not used).

Examples

biocRevDepEmail(
"FindMyFriends", version = "3.13", dry.run = TRUE, textOnly = TRUE

)

buildPkgDependencyDataFrame

Work with Bioconductor package dependencies

Description

Bioconductor is built using an extensive set of core capabilities and data structures. This leads to
package developers depending on other packages for interoperability and functionality. This func-
tion extracts package dependency information from biocPkgList and returns a tidy data.frame
that can be used for analysis and to build graph structures of package dependencies.

Usage

buildPkgDependencyDataFrame(dependencies = c("strong", "most", "all"), ...)

Arguments

dependencies character() a vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all" is short-
hand for that vector, character string "most" for the same vector without "En-
hances", character string "strong" (default) for the first three elements of that
vector.

... parameters passed along to biocPkgList

Value

A data.frame (also a tbl_df) of S3 class "biocDepDF" including columns "Package", "depen-
dency", and "edgetype".

buildPkgDependencyIgraph 19

Note

This function requires network access.

See Also

See buildPkgDependencyIgraph, biocPkgList.

Examples

performs a network call, so must be online.
library(BiocPkgTools)
depdf <- buildPkgDependencyDataFrame()
head(depdf)
library(dplyr)
filter to include only "Imports" type
dependencies
imports_only <- depdf |> filter(edgetype=='Imports')

top ten most imported packages
imports_only |> select(dependency) |>

group_by(dependency) |> tally() |>
arrange(desc(n))

The Bioconductor packages with the
largest number of imports
largest_importers <- imports_only |>

select(Package) |>
group_by(Package) |> tally() |>
arrange(desc(n))

not sure what these packages do. Join
to their descriptions
biocPkgList() |> select(Package, Description) |>

left_join(largest_importers) |> arrange(desc(n)) |>
head()

buildPkgDependencyIgraph

Work with package dependencies as a graph

Description

Package dependencies represent a directed graph (though Bioconductor dependencies are not an
acyclic graph). This function simply returns an igraph graph from the package dependency data
frame from a call to buildPkgDependencyDataFrame or any tidy data frame with rows of (Package,
dependency) pairs. Additional columns are added as igraph edge attributes (see graph_from_data_frame).

Usage

buildPkgDependencyIgraph(pkgDepDF)

Arguments

pkgDepDF a tidy data frame. See description for details.

20 class-dependencies

Value

An igraph directed graph. See the igraph package for details of what can be done.

See Also

See buildPkgDependencyDataFrame, graph_from_data_frame, inducedSubgraphByPkgs, subgraphByDegree,
igraph-es-indexing, igraph-vs-indexing

Examples

library(igraph)

pkg_dep_df = buildPkgDependencyDataFrame()

at this point, filter or join to manipulate
dependency data frame as you see fit.

g = buildPkgDependencyIgraph(pkg_dep_df)
g

Look at nodes and edges
head(V(g)) # vertices
head(E(g)) # edges

subset graph by attributes

head(sort(degree(g, mode='in'), decreasing=TRUE))
head(sort(degree(g, mode='out'), decreasing=TRUE))

class-dependencies Retrieve Class relationships

Description

As the title says it should do something with class relationships

Usage

buildClassDepGraph(class, includeUnions = FALSE)

buildClassDepData(class, includeUnions = FALSE)

buildClassDepFromPackage(pkg, includeUnions = FALSE)

plotClassDep(class, includeUnions = FALSE)

plotClassDepData(data)

plotClassDepGraph(g)

CRANstatus 21

Arguments

class a single character value defining a ‘S4’ class name

includeUnions TRUE or FALSE: Should union definitions included in the result? (default: FALSE)

pkg a single character value defining a package name

data a data.frame with compatible columns. See output of buildClassDepData

g an igraph object with compatible edge attributes. See output of buildClassDepGraph

Examples

library("SummarizedExperiment")
depData <- buildClassDepData("RangedSummarizedExperiment")
depData
g <- buildClassDepGraph("RangedSummarizedExperiment")
plotClassDepGraph(g)

CRANstatus Check the CRAN build report page and email a notification

Description

The CRANstatus function allows users to check the status of a package and send an email report of
any failures.

Usage

CRANstatus(
pkg,
core.name = NULL,
core.email = NULL,
core.id = NULL,
to.mail = "maintainer@bioconductor.org",
dry.run = TRUE,
emailTemplate = templatePath("cranreport")

)

Arguments

pkg character(1) The name of the package in trouble

core.name character(1) The full name of the core team member

core.email character(1) The Roswell Park email of the core team member

core.id character(1) The internal identifier for the Roswell employee. This ID usually
matches ^[A-Z]{2}[0-9]{5} for more recent identifiers.

to.mail The email of the CRAN report recipient

dry.run logical(1) Display the email without sending to the recipient. It only works for
HTML email reports and ignored when textOnly=TRUE

emailTemplate character(1) The path to the email template Rmd file as obtained by templatePath().
A custom template can be provided as file path.

22 firstInBioc

dataciteXMLGenerate The Bioconductor datacite.org XML generator

Description

This function is used internally to generate XML elements from the datacite.org website for incom-
ing Bioconductor packages.

Usage

dataciteXMLGenerate(pkg)

Arguments

pkg The name of a Bioconductor package

Value

An xml_document object from the xml2 package.

See Also

?xml2::`xml_document-class`

firstInBioc When did a package enter Bioconductor?

Description

This function uses the biocDownloadStats data to approximate when a package entered Bioconduc-
tor. Note that the download stats go back only to 2009.

Usage

firstInBioc(download_stats)

Arguments

download_stats a data.frame from biocDownloadStats

Examples

dls <- biocDownloadStats()
tail(firstInBioc(dls))

generateBiocPkgDOI 23

generateBiocPkgDOI Generate a DOI for a Bioconductor package

Description

This function makes calls out to the DataCite REST API described here: https://support.
datacite.org/docs/api-create-dois. The function creates a new DOI for a Bioconductor
package (cannot already exist). The target URL for the DOI is the short Bioconductor package
URL.

Usage

generateBiocPkgDOI(pkg, authors, pubyear, event = "publish", testing = TRUE)

Arguments

pkg character(1) package name

authors character vector of authors (will be "pasted" together)

pubyear integer(1) publication year

event Either "hide", "register", or publish". Typically, we use "publish" to make the
DOI findable.

testing logical(1) If true, will use the apitest user with the password apitest. These
DOIs will expire. The same apitest:apitest combination can be used to login to
the website for doing things using the web interface. If false, the Bioconductor-
specific user credentials should be in the correct environment variables

Details

The login information for the "real" Bioconductor account should be stored in the environment
variables "DATACITE_USERNAME" and "DATACITE_PASSWORD

The GUI is available here: https://doi.datacite.org/.

Value

The DOI as a character(1) vector.

Examples

Not run:
x = generateBiocPkgDOI('RANDOM_TEST_PACKAGE','Sean Davis',1972)

End(Not run)

https://support.datacite.org/docs/api-create-dois
https://support.datacite.org/docs/api-create-dois
https://doi.datacite.org/

24 getBiocVignette

getBiocVignette Download a Bioconductor vignette

Description

The actual vignette path is available using biocPkgList.

Usage

getBiocVignette(
vignettePath,
destfile = tempfile(),
version = BiocManager::version()

)

Arguments

vignettePath character(1) the additional path information to get to the vignette

destfile character(1) the file location to store the vignette

version character(1) such as "3.7", defaults to user version

Value

character(1) The filename of the downloaded vignette

Examples

x = biocPkgList()
tmp = getBiocVignette(x$vignettes[[1]][1])
tmp

Not run:
library(pdftools)
y = pdf_text(tmp)
y = paste(y,collapse=" ")
library(tm)
v = VCorpus(VectorSource(y))

v <- v |>
tm_map(stripWhitespace) |>
tm_map(content_transformer(tolower)) |>
tm_map(removeWords, stopwords("english")) |>
tm_map(stemDocument)

dtm = DocumentTermMatrix(v)
inspect(DocumentTermMatrix(v,

list(dictionary = as.character(x$Package))))

End(Not run)

getPackageInfo 25

getPackageInfo Generate needed information to create DOI from a package directory.

Description

Generate needed information to create DOI from a package directory.

Usage

getPackageInfo(dir)

Arguments

dir character(1) Path to package

Value

A data.frame

getPkgYearsInBioc Calculate the years in Bioconductor

Description

This function determines the number of years a package has been in Bioconductor. Available in-
formation includes first Bioconductor version a package appeared and the current length of time in
Bioconductor. If a package has been removed from Bioconductor, information on the last Biocon-
ductor version and approximate time in Bioconductor before removal is available.

Usage

getPkgYearsInBioc(pkglist = NULL)

Arguments

pkglist List of packages to retrieve information. If default NULL, returns a tibble of all
Bioconductor packages.

Value

’tibble’ with the following columns:

• package: name of Bioconductor package

• category: bioc, data/experiment, data/annotation, workflow

• first_version_available: Bioconductor version (e.g. 1.9, 3.21) the package first became avail-
able

• first_version_release_date: Equivalent calendar date of given Bioconductor release

• approx_years_in: Numeric indicator of years in Bioconductor. If empty, indicates package
was removed. See final three columns for more information.

26 get_bioc_data

• last_version_available: If package was removed from Bioconductor, the last Bioconductor
version (e.g. 1.9, 3.21) the package was able to be installed

• last_version_release_date: Equivalent calendar date of given Bioconductor release

• years_before_rm: If removed, how many years it was in Bioconductor

Author(s)

Lori Shepherd Kern, Robert Shear

Examples

Not run:
full table all Bioconductor packages
tbl <- getPkgYearsInBioc()

example of package list. Packages active in Bioconductor
tbl <- getPkgYearsInBioc(c("BiocFileCache", "BiocPkgTools"))

example of a package that has been removed from Bioconductor
tbl <- getPkgYearsInBioc("ensemblVEP")

End(Not run)

get_bioc_data Get data from Bioconductor

Description

Get data from Bioconductor

Usage

get_bioc_data()

Value

A JSON string containing Bioconductor package details

Examples

bioc_data <- get_bioc_data()

get_cre_orcids 27

get_cre_orcids get ORCID ids from cre fields of Authors@R in packageDescription
results

Description

get ORCID ids from cre fields of Authors@R in packageDescription results

Usage

get_cre_orcids(pkgnames)

Arguments

pkgnames character() must be installed

Note

returns NA if no ORCID provided in Authors@R for package description

Examples

get_cre_orcids(c("BiocPkgTools", "utils"))

githubDetails Get package details from GitHub

Description

For packages that live on GitHub, we can mine further details. This function returns the GitHub
details for the listed packages.

Usage

githubDetails(pkgs, sleep = 0)

Arguments

pkgs a character() vector of username/repo for one or more GitHub repos, such as
seandavi/GEOquery.

sleep numeric() denoting the number of seconds to sleep between GitHub API calls.
Since GitHub rate limits its APIs, it might be necessary to either use small
chunks of packages iteratively or to supply a non-zero argument here. See the
details section for a better solution using GitHub tokens.

28 githubURLParts

Details

The gh function is used to do the fetching. If the number of packages supplied to this function is
large (>40 or so), it is possible to run into problems with API rate limits. The gh package uses the
environment variable "GITHUB_PAT" (for personal access token) to authenticate and then provide
higher rate limits. If you run into problems with rate limits, set sleep to some small positive number
to slow queries. Alternatively, create a Personal Access Token on GitHub and register it. See the gh
package for details.

Examples

pkglist = biocPkgList()

example of "pkgs" format.
head(pkglist$URL)

gh_list = githubURLParts(pkglist$URL)
gh_list = gh_list[!is.null(gh_list$user_repo),]

head(gh_list$user_repo)

ghd = githubDetails(gh_list$user_repo[1:5])
lapply(ghd, '[[', "stargazers")

githubURLParts Extract GitHub user and repo name from GitHub URL

Description

Extract GitHub user and repo name from GitHub URL

Usage

githubURLParts(urls)

Arguments

urls character() A vector of URLs

Value

A data.frame with four columns:

• url: The original GitHub URL

• user_repo: The GitHub "username/repo", combined

• user: The GitHub username

• repo: The GitHub repo name

inducedSubgraphByPkgs 29

Examples

find GitHub URL details for
Bioconductor packages
bpkgl = biocPkgList()
urldetails = githubURLParts(bpkgl$URL)
urldetails = urldetails[!is.na(urldetails$url),]
head(urldetails)

inducedSubgraphByPkgs Return a minimal subgraph based on package name(s)

Description

Find the subgraph induced by including specific packages. The induced subgraph is the graph that
includes the named packages and all edges connecting them. This is useful for a developer, for
example, to examine her packages and their intervening dependencies.

Usage

inducedSubgraphByPkgs(g, pkgs, pkg_color = "red")

Arguments

g an igraph graph, typically created by buildPkgDependencyIgraph

pkgs character() vector of packages to include. Package names not included in the
graph are ignored.

pkg_color character(1) giving color of named packages. Other packages in the graph that
fall in connecting paths will be colored as the igraph default.

Examples

library(igraph)
g <- buildPkgDependencyIgraph(buildPkgDependencyDataFrame())
subgraph of only the first 10 packages maintained by Bioconductor
biocmaintained <- head(biocMaintained()[["Package"]], 10L)
g2 <- inducedSubgraphByPkgs(g, pkgs = biocmaintained)
g2
V(g2)

plot(g2)

subgraph of a package's strong Bioconductor package dependencies
maedeps <- unlist(pkgBiocDeps(

"MultiAssayExperiment", which = "strong",
recursive = TRUE, only.bioc = TRUE

), use.names = FALSE)
g3 <- inducedSubgraphByPkgs(g, pkgs = maedeps)
plot(g3)

same subgraph with networkD3::forceNetwork
library(networkD3)

30 latestPkgStats

wt <- cluster_walktrap(g3)
members <- membership(wt)
ndg3 <- igraph_to_networkD3(g3, group = members)
forceNetwork(

Links = ndg3$links, Nodes = ndg3$nodes, Source = 'source',
Target = 'target', NodeID = 'name', Group = 'group', zoom = TRUE,
linkDistance = 200, fontSize = 20, opacity = 0.9, opacityNoHover = 0.9

)

latestPkgStats Summary of the latest package statistics

Description

The latestPkgStats function combines outputs from several functions to generate a table of rele-
vant statistics for a given package.

Usage

latestPkgStats(
gh_repo,
Date,
pkgType = c("software", "data-experiment", "workflows", "data-annotation")

)

Arguments

gh_repo character(1) The GitHub repository location including the username / organiza-
tion and the repository name, e.g., "Bioconductor/S4Vectors"

Date character(1) The date cutoff from which to analyze closed issues in the YYYY-
MM-DD or YYYY-MM-DDTHH:MM:SSZ format (ISO 8601).

pkgType character(1) One of ’software’, ’data-experiment’, ’workflows’, or ’data-annotation’
(defaults to ’software’)

Examples

if (interactive()) {

latestPkgStats("Bioconductor/BiocGenerics", "2021-05-05")

}

orcid_table 31

orcid_table get data.frame of employment info from orcid

Description

get data.frame of employment info from orcid

Usage

orcid_table(orcids)

Arguments

orcids character()

Examples

if (interactive()) { # need a token?
oids <- c("0000-0003-4046-0063", "0000-0003-4046-0063")
print(orcid_table(oids))
oids <- c(oids, NA)
print(orcid_table(oids))
print(orcid_table(oids[1]))

}

pkgBiocDeps Look up a package’s Bioconductor dependencies

Description

The function uses the pkgType argument to restrict the look up to only the relevant Bioconductor
repository. It works for multiple packages of the same type.

Usage

pkgBiocDeps(
pkg,
pkgType = c("software", "data-experiment", "workflows", "data-annotation"),
which = "strong",
only.bioc = TRUE,
recursive = FALSE,
version = BiocManager::version()

)

32 pkgBiocRevDeps

Arguments

pkg character(1) The package for which to look up dependencies.

pkgType character() Any of ’software’, ’data-experiment’, ’workflows’, and / or ’data-
annotation’ (defaults to all)

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances", character string "strong" (default) for the first three elements of
that vector.

only.bioc logical(1) Whether to only return Bioconductor dependencies in the list (de-
fault TRUE)

recursive a logical indicating whether (reverse) dependencies of (reverse) dependencies
(and so on) should be included, or a character vector like which indicating the
type of (reverse) dependencies to be added recursively.

version (Optional) character(1) or package_version indicating the Bioconductor
version (e.g., "3.8") for which repositories are required.

Examples

pkgBiocDeps("MultiAssayExperiment", only.bioc = TRUE)

pkgBiocDeps("MultiAssayExperiment", only.bioc = FALSE)

pkgBiocRevDeps Obtain all the reverse dependencies for a Bioconductor package

Description

The function returns a slightly upgraded list with dependency types as elements and package names
in each of those elements, if any. The types of dependencies can be seen in the which argument
documentation.

Usage

pkgBiocRevDeps(
pkg,
pkgType = c("software", "data-experiment", "workflows", "data-annotation"),
which = "all",
only.bioc = TRUE,
version = BiocManager::version(),
recursive = FALSE

)

S3 method for class 'biocrevdeps'
summary(object, ...)

pkgCombDependencyGain 33

Arguments

pkg character(1) The package for which to look up dependencies.

pkgType character() Any of ’software’, ’data-experiment’, ’workflows’, and / or ’data-
annotation’ (defaults to all)

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances", character string "strong" (default) for the first three elements of
that vector.

only.bioc logical(1) Whether to only return Bioconductor dependencies in the list (de-
fault TRUE)

version (Optional) character(1) or package_version indicating the Bioconductor
version (e.g., "3.8") for which repositories are required.

recursive a logical indicating whether (reverse) dependencies of (reverse) dependencies
(and so on) should be included, or a character vector like which indicating the
type of (reverse) dependencies to be added recursively.

object an object for which a summary is desired.

... additional arguments affecting the summary produced.

Details

The summary method of the biocrevdeps class given by pkgBiocRevDeps provides a tally in each
dependency field.

Value

A biocrevdeps list class object

Examples

rdeps <- pkgBiocRevDeps("MultiAssayExperiment", which = "all")
rdeps
summary(rdeps)

pkgCombDependencyGain Calculate dependency gain achieved by excluding combinations of
packages

Description

Calculate dependency gain achieved by excluding combinations of packages

Usage

pkgCombDependencyGain(pkg, depdf, maxNbr = 3L)

34 pkgDepImports

Arguments

pkg character, the name of the package for which we want to estimate the depen-
dency gain

depdf a tidy data frame with package dependency information obtained through the
function buildPkgDependencyDataFrame

maxNbr numeric, the maximal number of direct dependencies to leave out simultane-
ously

Value

A data frame with three columns: ExclPackages (the excluded direct dependencies), NbrExcl (the
number of excluded direct dependencies), DepGain (the dependency gain from excluding these
direct dependencies)

Author(s)

Charlotte Soneson

Examples

depdf <- buildPkgDependencyDataFrame(
dependencies=c("Depends", "Imports"),
repo=c("BioCsoft", "CRAN")

)
pcd <- pkgCombDependencyGain('GEOquery', depdf, maxNbr = 3L)
head(pcd[order(pcd$DepGain, decreasing = TRUE),])

pkgDepImports Report package imported functionality

Description

Function adapted from ’itdepends::dep_usage_pkg’ at https://github.com/r-lib/itdepends to obtain
the functionality imported and used by a given package.

Usage

pkgDepImports(pkg)

Arguments

pkg character() name of the package for which we want to obtain the functionality
calls imported from its dependencies and used within the package.

Details

Certain imported elements, such as built-in constants, will not be identified as imported functional-
ity by this function.

pkgDepMetrics 35

Value

A tidy data frame with two columns:

• pkg: name of the package dependency.

• fun: name of the functionality call imported from the the dependency in the column pkg and
used within the analyzed package.

Author(s)

Robert Castelo

Examples

pkgDepImports('BiocPkgTools')

pkgDepMetrics Report package dependency burden

Description

Elaborate a report on the dependency burden of a given package.

Usage

pkgDepMetrics(pkg, depdf)

Arguments

pkg character() name of the package for which we want to obtain metrics on its
dependency burden.

depdf a tidy data frame with package dependency information obtained through the
function buildPkgDependencyDataFrame.

Value

A tidy data frame with different metrics on the package dependency burden. More concretely, the
following columns:

• ImportedAndUsed: number of functionality calls imported and used in the package.

• Exported: number of functionality calls exported by the dependency.

• Usage: (ImportedAndUsedx 100) / Exported. This value provides an estimate of what frac-
tion of the functionality of the dependency is actually used in the given package.

• DepOverlap: Similarity between the dependency graph structure of the given package and
the one of the dependency in the corresponding row, estimated as the Jaccard index between
the two sets of vertices of the corresponding graphs. Its values goes between 0 and 1, where
0 indicates that no dependency is shared, while 1 indicates that the given package and the
corresponding dependency depend on an identical subset of packages.

• DepGainIfExcluded: The ’dependency gain’ (decrease in the total number of dependencies)
that would be obtained if this package was excluded from the list of direct dependencies.

https://en.wikipedia.org/wiki/Jaccard_index

36 pkgDownloadRank

The reported information is ordered by the Usage column to facilitate the identification of depen-
dencies for which the analyzed package is using a small fraction of their functionality and therefore,
it could be easier remove them. To aid in that decision, the column DepOverlap reports the over-
lap of the dependency graph of each dependency with the one of the analyzed package. Here a
value above, e.g., 0.5, could, albeit not necessarily, imply that removing that dependency could
substantially lighten the dependency burden of the analyzed package.

An NA value in the ImportedAndUsed column indicates that the function pkgDepMetrics() could
not identify what functionality calls in the analyzed package are made to the dependency.

Author(s)

Robert Castelo

Charlotte Soneson

Examples

depdf <- buildPkgDependencyDataFrame(
dependencies=c("Depends", "Imports"),
repo=c("BioCsoft", "CRAN")

)
pkgDepMetrics('BiocPkgTools', depdf)

pkgDownloadRank What is a package’s download rank?

Description

This function uses available.packages to calculate the download rank percentile of a given pack-
age. It approximates what is observed in the Bioconductor landing page.

Usage

pkgDownloadRank(
pkg,
pkgType = c("software", "data-experiment", "workflows", "data-annotation"),
version = BiocManager::version()

)

Arguments

pkg character(1) The name of a Bioconductor package

pkgType character(1) One of ’software’, ’data-experiment’, ’workflows’, or ’data-annotation’
(defaults to ’software’)

version (Optional) character(1) or package_version indicating the Bioconductor
version (e.g., "3.8") for which repositories are required.

Value

The package’s percentile rank, in terms of download statistics, and proportion in the name

pkgDownloadStats 37

Examples

Percentile rank for BiocGenerics (top 1%)
pkgDownloadRank("BiocGenerics", "software")

pkgDownloadStats Get Bioconductor download statistics for a package

Description

Get Bioconductor download statistics for a package

Usage

pkgDownloadStats(
pkg,
pkgType = c("software", "data-experiment", "workflows", "data-annotation"),
years = format(Sys.time(), "%Y")

)

Arguments

pkg character(1) The name of a Bioconductor package

pkgType character(1) One of ’software’, ’data-experiment’, ’workflows’, or ’data-annotation’
(defaults to ’software’)

years numeric(), character() A vector of years from which to obtain download statis-
tics (defaults to current year)

Value

A tibble of download statistics

Examples

pkgDownloadStats("GenomicRanges")

problemPage generate hyperlinked HTML for build reports for Bioc packages

Description

This is a quick way to get an HTML report of packages maintained by a specific developer or which
depend directly on a specified package. The function is keyed to filter based on either the maintainer
name or by using the ’Depends’, ’Suggests’ and ’Imports’ fields in package descriptions.

38 repositoryStats

Usage

problemPage(
authorPattern = "V.*Carey",
dependsOn,
ver = "devel",
includeOK = FALSE

)

Arguments

authorPattern character(1) regexp used with grep() to filter author field of package DESCRIP-
TION for listing

dependsOn character(1) name of a Bioconductor package. The function will return the sta-
tus of packages that directly depend on this package Can only be used when
’authorPattern’ is the empty string.

ver character(1) version tag for Bioconductor
includeOK logical(1) include entries from the build report that are listed as "OK". Default

FALSE will result in only those entries that are in WARNING or ERROR state.

Value

DT::datatable call; if assigned to a variable, must evaluate to get the page to appear

Author(s)

Vince Carey, Mike L. Smith

Examples

if (interactive()) {
problemPage()
problemPage(dependsOn = "limma")

}

repositoryStats Bioconductor Binary Repository Statistics

Description

Summarize binary packages compatible with the Bioconductor or Terra container in use.

Usage

repositoryStats(
version = BiocManager::version(),
binary_repository = BiocManager::containerRepository(version),
local = FALSE

)

S3 method for class 'repositoryStats'
print(x, ...)

repositoryStats 39

Arguments

version (Optional) character(1) or package_version indicating the Bioconductor
version (e.g., "3.8") for which repositories are required.

binary_repository

character(1) location of binary repository as given by BiocManager::containerRepository
(default)

local logical(1) whether to check the local file system for the PACKAGES file’s last
modified date (default: FALSE).

x the object returned by repositoryStats().

... further arguments passed to or from other methods (not used).

Details

For local repositories, use the local = TRUE argument. Local repositories will typically start with
the file:// URI. The function checks the mtime of the output of file.info on the PACKAGES
file in the local repository. Otherwise, by default, it will check the last-modified header of the
PACKAGES file via httr::HEAD().

Value

a list of class repositoryStats with the following fields:

• container: character(1) container label, e.g., bioconductor_docker, or NA if not evaluated
on a supported container

• bioconductor_version: package_version the Bioconductor version provided by the user.

• repository_exists: logical(1) TRUE if a binary repository exists for the container and Bio-
conductor_Version version.

• bioconductor_binary_repository: character(1) repository location, if available, or NA if the
repository does not exist.

• n_software_packages: integer(1) number of software packages in the Bioconductor source
repository.

• n_binary_packages: integer(1) number of binary packages available. When a binary repos-
itory exists, this number is likely to be larger than the number of source software packages,
because it includes the binary version of the source software packages, as well as the (possibly
CRAN) dependencies of the binary packages

• n_binary_software_packages: integer(1) number of binary packages derived from Biocon-
ductor source packages. This number is less than or equal to n_software_packages.

• missing_binaries: integer(1) the number of Bioconductor source software packages that are
not present in the binary repository.

• out_of_date_binaries: integer(1) the number of Bioconductor source software packages that
are newer than their binary counterpart. A newer source software package might occur when
the main Bioconductor build system has updated a package after the most recent run of the
binary build system.

Methods (by generic)

• print(repositoryStats): Print a summary of package availability in binary repositories.

40 subgraphByDegree

Author(s)

M. Morgan

Examples

stats <- repositoryStats() # obtain statistics
stats # display a summary
stats$container # access an element for further computation

subgraphByDegree Subset graph by degree

Description

While the inducedSubgraphByPkgs returns the subgraph with the minimal connections between
named packages, this function takes a vector of package names, a degree (1 or more) and returns
the subgraph(s) that are within degree of the package named.

Usage

subgraphByDegree(g, pkg, degree = 1, ...)

Arguments

g an igraph graph, typically created by buildPkgDependencyIgraph

pkg character(1) package name from which to measure degree.

degree integer(1) degree, limit search for adjacent vertices to this degree.

... passed on to distances

Value

An igraph graph, with only nodes and their edges within degree of the named package

Examples

g <- buildPkgDependencyIgraph(buildPkgDependencyDataFrame())
g2 <- subgraphByDegree(g, 'GEOquery')
plot(g2)

templatePath 41

templatePath Obtain the location of available email templates

Description

These templates are used with biocBuildEmail to notify maintainers regarding package errors and
final deprecation warning.

Usage

templatePath(
type = c("buildemail", "deprecation", "deprecguide", "cranreport", "revdepnote")

)

Arguments

type character(1) Either one of "buildemail", "deprecation", "deprecguide", "cranre-
port", or "revdepnote". See the templates in the resources folder.

Index

∗ Internal
generateBiocPkgDOI, 23
getPackageInfo, 25

∗ internal
.getDepGain, 3
dataciteXMLGenerate, 22

.getDepGain, 3

.get_cre_orcid, 4

.get_orcid_rec, 4

activitySince, 4
anacondaDownloadStats, 6

biocBuildEmail, 6
biocBuildReport, 8, 15
biocBuildReport(), 9
biocBuildReportDB, 9
biocBuildStatusDB, 10
biocDownloadStats, 6, 10, 15, 22
biocExplore, 11
biocMaintained, 12
biocPkgList, 13, 15, 18, 19, 24
biocPkgRanges, 14
BiocPkgTools, 15
BiocPkgTools-cache, 16
BiocPkgTools-package (BiocPkgTools), 15
biocRevDepEmail, 17
buildClassDepData (class-dependencies),

20
buildClassDepFromPackage

(class-dependencies), 20
buildClassDepGraph

(class-dependencies), 20
buildPkgDependencyDataFrame, 18, 19, 20,

34, 35
buildPkgDependencyIgraph, 19, 19, 29, 40

class-dependencies, 20
CRANstatus, 21

dataciteXMLGenerate, 22
distances, 40

firstInBioc, 22

generateBiocPkgDOI, 23
get_bioc_data, 26
get_cre_orcids, 27
getBiocVignette, 24
getPackageInfo, 25
getPkgYearsInBioc, 25
gh, 28
githubDetails, 27
githubURLParts, 28
graph_from_data_frame, 19, 20

hasBiocMaint (biocMaintained), 12

inducedSubgraphByPkgs, 20, 29, 40

latestPkgStats, 30

orcid_table, 31

pkgBiocDeps, 31
pkgBiocRevDeps, 32
pkgCombDependencyGain, 33
pkgDepImports, 34
pkgDepMetrics, 35
pkgDownloadRank, 36
pkgDownloadStats, 37
pkgToolsCache (BiocPkgTools-cache), 16
plotClassDep (class-dependencies), 20
plotClassDepData (class-dependencies),

20
plotClassDepGraph (class-dependencies),

20
print.repositoryStats

(repositoryStats), 38
problemPage, 37

repositoryStats, 38

sentHistory (biocBuildEmail), 6
setCache (BiocPkgTools-cache), 16
subgraphByDegree, 20, 40
summary.biocrevdeps (pkgBiocRevDeps), 32

templatePath, 41

42

	.getDepGain
	.get_cre_orcid
	.get_orcid_rec
	activitySince
	anacondaDownloadStats
	biocBuildEmail
	biocBuildReport
	biocBuildReportDB
	biocBuildStatusDB
	biocDownloadStats
	biocExplore
	biocMaintained
	biocPkgList
	biocPkgRanges
	BiocPkgTools
	BiocPkgTools-cache
	biocRevDepEmail
	buildPkgDependencyDataFrame
	buildPkgDependencyIgraph
	class-dependencies
	CRANstatus
	dataciteXMLGenerate
	firstInBioc
	generateBiocPkgDOI
	getBiocVignette
	getPackageInfo
	getPkgYearsInBioc
	get_bioc_data
	get_cre_orcids
	githubDetails
	githubURLParts
	inducedSubgraphByPkgs
	latestPkgStats
	orcid_table
	pkgBiocDeps
	pkgBiocRevDeps
	pkgCombDependencyGain
	pkgDepImports
	pkgDepMetrics
	pkgDownloadRank
	pkgDownloadStats
	problemPage
	repositoryStats
	subgraphByDegree
	templatePath
	Index

