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Cap Analysis of Gene Expression (CAGE) is one of the most popular 5-end se-
quencing methods. In a single experiment, CAGE can be used to locate and quantify the
expression of both Transcription Start Sites (TSSs) and enhancers. This workflow is a case
study on how to use the CAGEfightR package to orchestrate analysis of CAGE data within the
Bioconductor project. This workflow starts from BigWig-files and covers both basic CAGE
analyses such as identifying, quantifying and annotating TSSs and enhancers, advanced
analysis such as finding interacting TSS-enhancer pairs and enhancer clusters, to differen-
tial expression analysis and alternative TSS usage. R-code, discussion and references are
intertwined to help provide guidelines for future CAGE studies of the same kind.
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R version: R version 3.6.0 (2019-04-26)
Bioconductor version: 3.9

CAGEfightR version: 1.4.0

Background

Transcriptional regulation is one of the most important aspects of gene expression. Transcription Start Sites
(TSSs) are focal points of this process: The TSS act as an integration point for a wide range of molecular cues
from surrounding genomic areas to determine transcription and ultimately expression levels. These include
proximal factors such as chromatin accessibility, chromatin modification, DNA methylation and transcription
factor binding, and distal factors such as enhancer activity and chromatin confirmation [1, 2, 3, 4].

Cap Analysis of Gene Expression (CAGE) has emerged as one of the dominant high-throughput assays for
studying TSSs [5]. CAGE is based on “cap trapping”: capturing capped full-length RNAs and sequencing only
the first 20-30 nucleotides from the 5-end, so-called CAGE tags [6]. When mapped to a reference genome, the
5’-ends of CAGE tag identify the actual TSS for respective RNA with basepair-level accuracy. Basepair-accurate
TSSs identified this way are referred to as CAGE Transcription Start Sites (CTSSs). RNA polymerase rarely
initiates from just a single nucleotide: this is manifested in CAGE data by the fact that CTSSs are mostly found
in tightly spaced groups on the same strand. The majority of CAGE studies have merged such CTSSs into
genomic blocks typically referred to as Tag Clusters (TCs), using a variety of clustering methods (see below).
TCs are often interpreted as TSSs in the more general sense, given that most genes have many CTSSs, but
only a few TCs that represent a few major transcripts with highly similar CTSSs [7, 8]. Since the number of
mapped CAGE tags in a given TC is indicative of the number of RNAs from that region, the number of CAGE
tags falling in given TC can be seen as a measure of expression [9].

As CAGE tags can be mapped to a reference genome without the need for transcript annotations, it can detect
TSSs of known mRNAs, but also mRNA from novel alternative TSSs (that might be condition or tissue depen-
dent) [7, 10]. Since CAGE captures all capped RNAs, it can also identify long non-coding RNA (lincRNA) [11]
and enhancers RNA (eRNA). It was previously shown that active enhancers are characterized by balanced
bidirectional transcription, making it possible to predict enhancer regions and quantify their expression levels
from CAGE data alone [12, 13]. Thus, CAGE data can predict the locations and activity of mRNAs, lincRNAs
and enhancers in a single assay, providing a comprehensive view of transcriptional regulation across both
inter- and intragenic regions.

Bioconductor contains a vast collection of tools for analyzing transcriptomics datasets, in particular the widely
used RNA-Seq and microarray assays[14]. Only a few packages are dedicated to analyzing 5-end data in
general and CAGE data in particular: TSRchitect [15], icetea [16], CAGEr [17] and CAGEfightR [18], see Table
1.

CAGEr was the first package solely dedicated to the analysis of CAGE data and was recently updated to more
closely adhere to Bioconductor S4-class standards. CAGEr takes as input aligned reads in the form of BAM-
files and can identify, quantify, characterize and annotate TSSs. TSSs are found in individual samples using
either simple clustering of CTSSs (greedy or distance-based clustering) or the more advanced density-based
paraclu clustering method[19], and can be aggregated across samples to a set of consensus clusters. Several
specialized routines for CAGE data is available, such as power law normalization of CTSS counts and fine-
grained TSS shifts. Finally, CAGEr offers easy interface to the large collection of CAGE data from the FANTOM
consortium [10]. TSRchitect and icetea are two more recent additions to Bioconductor. While being less
comprehensive, they aim to be more general and handle more types of 5’-end methods that are conceptually
similar to CAGE (RAMPAGE, PEAT, PRO-Cap, etc. [5]). Both packages can identify, quantify and annotate
TSSs, with TSRchitect using an X-means algorithm and icetea using a sliding window approach. icetea
offers the unique feature of mapping reads to a reference genome by interfacing with Rsubread. Both CAGEr,
TSRchictet and icetea offers built-in capabilities for differential expression (DE) analysis via the popular
DESeq2 or edgeR packages [20, 21].

CAGEfightR is a recent addition to Bioconductor focused on analyzing CAGE data, but applicable to most
5-end data. It aims to be general and flexible to allow for easy interfacing with the wealth of other Biocon-
ductor packages. CAGEfightR takes CTSSs stored in BigWig-files as input and uses only standard Biocon-
ductor S4-classes (GenomicRanges, SummarizedExperiment, InteractionSet[22, 23]) making it easy for users to
learn and combine CAGEfightR with functions from other Bioconductor packages (e.g. instead of providing
custom wrappers around other packages such as differential expression analysis). In addition to TSS anal-
ysis, CAGEfightR is the only package on Bioconductor to also offer functions for enhancer analysis based
on CAGE (and similarly scoped) data. This includes enhancer identification and quantification, linking en-
hancers to TSSs via correlation of expression and finding enhancer clusters, often referred to as stretch- or
super enhancers.

In this workflow, we illustrate how the CAGEf ightR package can be used to orchestrate an end-to-end analysis
of CAGE data by making it easy to interface with a wide range of different Bioconductor packages. Highlights
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Table 1. Comparison of Bioconductor packages for CAGE data analysis.

Analysis icetea  TSRchitect CAGEr CAGEfightR

Simplest input FASTQ BAM BAM BigWig

TSS calling  sliding window X-means distance or paraclu  slice-reduce

TSS shapes - aF aF aF
Differential Expression 4F 4F 4F =

Enhancer calling - = -

TSS-enhancer correlation 5 - ;

+ + +

Super enhancers - - .

include TSS and enhancer candidate identification, differential expression, alternative TSS usage, enrichment
of motifs, GO/KEGG terms and calculating TSS-enhancer correlations.

Materials and methods

Dataset

This workflow uses data from “Identification of Gene Transcription Start Sites and Enhancers Responding to
Pulmonary Carbon Nanotube Exposure in Vivo” by Bornholdt et al [24]. This study uses mouse as a model
system to investigate how nanotubes affect lung tissue when inhaled. Inhaled nanotubes were previously
found to produce a similar response to asbestos, potentially triggering an inflammatory response in the lung
tissue leading to drastic changes in gene expression.

The dataset consists of CAGE data from mouse lung biopsies: 5 mice whose lungs were instilled with water
(Ctrl) and 6 mice wholes lungs were instilled with nanotubes (Nano), with CTSSs for each sample stored in
BigWig-files, shown in Table 2:

Table 2. Overview of samples in the nanotube exposure experiment.

Group Biological Replicates
Ctrl 5 mice

Nano 6 mice

The data is acquired via the nanotubes data package:

library(nanotubes)

R-packages

This workflow uses a large number of R-packages: Bioconductor packages are primarily used for data analysis
while packages from the tidyverse are used to wrangle and plot the results. All these packages are loaded
prior to beginning the workflow:

# CRAN packages for data manipulation and plotting
library(knitr)

library(pheatmap)

library(ggseqlogo)

library(viridis)

library(magrittr)

library(ggforce)

library(ggthemes)

library(tidyverse)

# CAGEfightR and related packages
library(CAGEfightR)
library(GenomicRanges)
library(SummarizedExperiment)
library(GenomicFeatures)
library(BiocParallel)
library(InteractionSet)
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library(Gviz)

# Bioconductor packages for differential expression
library(DESeq2)

library(limma)

library(edgeR)

library(sva)

# Bioconductor packages for enrichment analyses
library (TFBSTools)

library(motifmatchr)

library(pathview)

# Bioconductor data packages
library(BSgenome.Mmusculus.UCSC.mm9)
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
library(org.Mm.eg.db)

library(JASPAR2016)

We also set some script-wide settings for later convenience:

# Rename these for easier access

bsg <- BSgenome.Mmusculus.UCSC.mm9

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
odb <- org.Mm.eg.db

# Script wide settings

register(MulticoreParam(3)) # Parallel execution when possible
theme_set (theme_light()) # White theme for ggplot2 figures

Workflow

The workflow is divided into 3 parts covering different parts of a typical CAGE data analysis:

1. Shows how to use CAGEfightR to import CTSSs and find and quantify TSS and enhancer candidates.

2. Shows examples of how to perform genomic analyses of CAGE dusters using core Bioconductor packages
such as GenomicRanges and Biostrings. This part covers typical analyses made from CAGE data, from
summarizing cluster annotation, TSS shapes and core promoter sequence analysis to more advanced
spatial analyses (finding TSS-enhancer correlation links and clusters of enhancers).

3. Shows how CAGEfightR can be used to prepare data for differential expression analysis with popular
R packages, including DESeq2, limma and edgeR [20, 25, 21]. Borrowing from RNA-Seq terminology,
differential expression can be assessed at multiple different levels: Tag cluster- and enhancer-level,
gene-level and differential TSS usage[26]. Once differential expression results have been obtained,
they can be combined with other sources of information such as motifs from JASPAR [27] and GO/KEGG

terms[Hancock2014; Gene2019; 28].

Part 1: Locating, quantifying and annotating TSSs and enhancers

CAGEfightR starts analysis from CTSSs, which is the number of CAGE tag 5’-ends mapping to each basepair
(bp) in the genome. CTSSs are normally stored as either BED-files or BigWig-files. CAGEfightR works on

BigWig-files, since these can be efficiently imported and allow for random access.

Before starting the analysis, we recommend gathering all information (Filenames, groups, batches, preparation
data, etc.) about the samples to be analyzed in a single data.frame, sometimes called the design matrix.

CAGEfightR can keep track of the design matrix throughout the analysis:

data(nanotubes)
kable(nanotubes,

caption = "The initial design matrix for the nanotubes experiment")
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Table 3. The initial design matrix for the nanotubes experiment

Class | Name | BigWigPlus BigWigMinus
C547 | Ctl | C547 | mm9.CAGE_7J7P_NANO KON 547.plus.bw | mm9.CAGE_7J7P_ NANO KON _547.minus.bw
C548 | Ctrl C548 | mm9.CAGE_ULAC NANO_KON_548.plus.bw | mm9.CAGE_ULAC_NANO KON_548.minus.bw
C549 | Ctrl C549 | mm9.CAGE_YM4F Nano KON _549.plus.bw | mm9.CAGE_YM4F Nano KON_549.minus.bw
C559 | Ctrl C559 | mm9.CAGE_RSAM NANO 559.plus.bw mm9.CAGE_RSAM_NANO_559.minus.bw
C560 | Ctrl C560 | mm9.CAGE_CCLF_NANO_560.plus.bw mm9.CAGE_CCLF_NANO_560.minus.bw
N13 Nano | N13 mm9.CAGE_KTRA Nano_13.plus.bw mm9.CAGE_KTRA Nano_13.minus.bw
N14 | Nano | N14 mm9.CAGE_RSAM_NANO_14.plus.bw mm9.CAGE_RSAM_NANO_14.minus.bw
N15 Nano | N15 mm9.CAGE_RFQS_Nano_15.plus.bw mm9.CAGE_RFQS_Nano_15.minus.bw
N16 Nano | N16 mm9.CAGE_CCLF_NANO_16.plus.bw mm9.CAGE_CCLF_NANO_16.minus.bw
N17 Nano | N17 mm9.CAGE_RSAM_NANO_17.plus.bw mm9.CAGE_RSAM_NANO_17.minus.bw
N18 Nano | N18 mm9.CAGE_CCLF_NANO_18.plus.bw mm9.CAGE_CCLF_NANO_18.minus.bw

Importing CTSSs

We need to tell CAGEfightR where to find the BigWig-files containing CTSSs on the hard drive. Normally,
one would supply the paths to each file (e.g. /CAGEdata/BigWigFiles/Samplel_plus.bw), but here we
will use data from the nanotubes data package:

# Setup paths to file on hard drive

bw_plus <- system.file("extdata", nanotubes$BigWigPlus,
package = "nanotubes",
mustWork = TRUE)

bw_minus <- system.file("extdata", nanotubes$BigWigMinus,
package = '"nanotubes",
mustWork = TRUE)

# Save as named BigWigFileList
bw_plus <- BigWigFileList (bw_plus)

bw_minus <- BigWigFileList(bw_minus)
names (bw_plus) <- names(bw_minus) <- nanotubes$Name

The first step is quantifying CTSS usage across all samples. This is often one of the most time consuming
step in a CAGEfightR analysis, but it can be speed up by using multiple cores (if available, see Materials and
Methods). We also need to specify the genome, which we can get from the BSgenome.Mmusculus.UCSC.mm9
genome package:

CTSSs <- quantifyCTSSs(plusStrand = bw_plus,
minusStrand = bw_minus,
genome = seqinfo(bsg),
design = nanotubes)

## Checking supplied genome compatibility...
## Iterating over 28 genomic tiles in 11 samples using 3 worker(s)...
## Importing CTSSs from plus strand...

## Registered S3 method overwritten by ’pryr’:
##  method from
##  print.bytes Rcpp

## Importing CTSSs from minus strand...
## Merging strands...
## ### CTSS summary ###

## Number of samples: 11
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Number of CTSSs: 9.339 millions
Sparsity: 81.68

Final object size: 282 MB

The circa 9 million CTSSs are stored as RangedSummarizedExperiment, which is the standard representa-
tion of high-throughput experiments in Bioconductor. We can inspect both the ranges and the CTSS counts:

# Get a summary
CTSSs

#i#t
##
#it
##
#i#t
##
#it
##

class: RangedSummarizedExperiment

dim: 9338802 11

metadata(0):

assays(1): counts

rownames: NULL

rowData names(0):

colnames(11): C547 C548 ... N17 N18

colData names(4): Class Name BigWigPlus BigWigMinus

# Extract CTSS positions

rowRanges (CTSSs)

## GPos object with 9338802 positions and O metadata columns:
## segnames pos strand

#i#t <Rle> <integer> <Rle>

#it [1] chrl 3024556 +

## [2] chri 3025704 +

## [3] chrl 3025705 +

## [4] chri 3028283 +

## [5] chrli 3146133 +

## ce ca R

## [9338798] chrUn_random 5810899 -

##  [9338799] chrUn_random 5813784 -

## [9338800] chrUn_random 5880838 -

##  [9338801] chrUn_random 5893536 -

## [9338802] chrUn_random 5894263 -

## -

##  seqinfo: 35 sequences (1 circular) from mm9 genome

# Extract CTSS counts
assay(CTSSs, "counts") U>J

##

#it

##
#it
##
#it
##
##
##

head

6 x 11 sparse Matrix of class "dgCMatrix"

[[ suppressing 11 column names ’C547’, ’C548’, ’C549’ ... 1]

(1,1 . .1 ..

2,17 . . .1..
3,1 ... .1.
4,1 . .. . 1. ..
5,1 . . . . . . 1.
6,1 . 1

Unidirectional and bidirectional clustering for finding TSS and enhancer candidates:

CAGEfightR finds clusters by calculating the pooled CTSS signal across all samples: We first normalize CTSSs
count in each sample to Tags-Per-Million (TPM) values, and them sum TPM values across samples:
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CTSSs <- CTSSs %>%
calcTPM() %>V
calcPooled()

## Calculating library sizes...
## Calculating TPM...

This will add several new pieces of information to CTSSs: The total number of tags in each library, a new
assay called TPM, and the pooled signal for each CTSS.

We can use unidirectional clustering to locate unidirectional clusters, often simply called Tag Clusters (TCs),
which are candidates for TSSs. The quickTSSs will both locate and quantify TCs in a single function call:

TCs <- quickTSSs(CTSSs)

## Using existing score column!

##
## - Running clusterUnidirectionally:

## Splitting by strand...

## Slice-reduce to find clusters...
## Calculating statistics...

## Preparing output...

## Tag clustering summary:

#it Width Count Percent
##  Total 3602099 1e+02 Y%
## >=1 2983433 8e+01 Y
#t >=10 577786 2e+01 Y%
##  >=100 40842 1e+00 %
## >=1000 38 1e-03 Y%

##
## - Running quantifyClusters:

## Finding overlaps...
## Aggregating within clusters...

Note: quickTSSs runs CAGEfightR with default settings. If you have larger or more noisy datasets you
most likely want to do a more robust analysis with different settings. See the CAGEf ightR vignette for more
information.

Many of the identified TCs will only be very lowly expressed. To obtain likely biologically relevant TSSs, we
keep only TSSs expressed at more than 1 TPM in at least 5 samples (5 samples being the size of the smallest
experimental group):

TSSs <- TCs %>%
calcTPM() %>%
subsetBySupport (inputAssay="TPM",
unexpressed=1,
minSamples=4)

## Calculating library sizes...
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Warning in calcTotalTags(object = object, inputAssay = inputAssay,
outputColumn = outputColumn): object already has a column named totalTags
in colData: It will be overwritten!

Calculating TPM...
Calculating support...
Subsetting...

Removed 3573214 out of 3602099 regions (99.2%)

This removed a large number of very lowly expressed TCs, leaving us with almost 30.000 TSSs candidates for
analysis.

Then we turn to bidirectional clustering for identifying bidirectional clusters (BCs), which are candidate for
enhancers. Similarly, we can use quickEnhancers to locate and quantify BCs:

BCs <- quickEnhancers(CTSSs)

##

#i#t
##

##

#

##

#it

##

#it

##

#i#t

#

##

#it

##

#it

##

#i#t

##
#i#t

#

Using existing score column!

- Running clusterBidirectionally:
Pre-filtering bidirectional candidate regiomns...
Retaining for analysis: 68.3%
Splitting by strand...
Calculating windowed coverage on plus strand...
Calculating windowed coverage on minus strand...
Calculating balance score...
Slice-reduce to find bidirectional clusters...
Calculating statistics...
Preparing output...
# Bidirectional clustering summary:
Number of bidirectional clusters: 106779
Maximum balance score: 1
Minimum balance score: 0.950001090872574
Maximum width: 1866

Minimum width: 401

- Running subsetByBidirectionality:

Calculating bidirectionality...
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## Subsetting...
## Removed 73250 out of 106779 regions (68.6%)

##
## - Running quantifyClusters:

## Finding overlaps...
## Aggregating within clusters...

Note: quickEnhancers runs CAGEfightR with default settings. If you have larger or more noisy datasets
you most likely want to do a more robust analysis with different settings. See the CAGEfightR vignette for
more information.

Again, we are not usually interested in very lowly expressed BCs. As they are overall lowly expressed, we will
simply filter out BCs without at least 1 count in 5 samples:

BCs <- subsetBySupport(BCs, inputAssay="counts", unexpressed=0, minSamples=4)

## Calculating support...
## Subsetting...

## Removed 20017 out of 33529 regions (59.7%)

Annotating clusters with transcript models

After having located unidirectional and bidirectional clusters, we can annotate them according to known
transcript and gene models. These types of annotation are store via TxDb-objects in Bioconductor. Here we
will simply use UCSC transcripts included in the TxDb.Mmusculus.UCSC.mm9.knownGene package, but the
CAGEfightR vignette includes examples of how to obtain a TxDb object from other sources (GFF/GTF files,
AnnotationHub, etc.).

Starting with the TSS candidates, we can not only annotate a TSS with overlapping transcripts, but also in
what part of a transcript a TSS lies by using a hierarchical annotation scheme. As some TSSs might be very
wide, we only use the TSS peak for annotation purposes:

# Annotate with transcript IDs
TSSs <- assignTxID(TSSs, txModels = txdb, swap="thick")

## Extracting transcripts...

## Finding hierachical overlaps...

## ### Overlap Summary: ###

## Features overlapping transcripts: 87.65 %

## Number of unique transcripts: 31898

# Annotate with transcript context
TSSs <- assignTxType(TSSs, txModels = txdb, swap="thick")

## Finding hierachical overlaps with swapped ranges...

## ### Overlap summary: ###
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## txType count percentage
## 1  promoter 13395 46.4
## 2  proximal 2246 7.8
## 3 fiveUTR 2112 7.3
## 4  threeUTR 1200 4.2
## 5 CDS 3356 11.6
## 6 exon 161 0.6
#H T intron 2810 9.7
## 8 antisense 1294 4.5

9 8.0

## 9O intergenic 2311

Almost half of TSSs were found at annotated promoters, while the other half is novel compared to the UCSC
known transcripts.

Transcript annotation is particularly useful for enhancer candidates, as bidirectional clustering might also
detect bidirectional promoters. Therefore, a commonly used filtering approached is to only consider BCs in
intergenic or intronic regions as enhancer candidates:

# Annotate with transcript context

BCs <- assignTxType(BCs, txModels = txdb, swap="thick")

## Finding hierachical overlaps with swapped ranges...

## ### Overlap summary: ###

#i# txType count percentage
## 1  promoter 766 5.7
## 2  proximal 1649 12.2
## 3 fiveUTR 67 0.5
## 4  threeUTR 596 4.4
## 5 CDS 420 3.1
## 6 exon 71 0.5
#HT intron 6815 50.4
## 8 antisense 0 0.0
## 9 intergenic 3128 23.1

# Keep only non-exonic BCs as enhancer candidates
Enhancers <- subset(BCs, txType ’in), c("intergenic", "intron"))

This leaves almost 10000 enhancer candidates for analysis.

Merging into a single dataset

For many downstream analyses, in particular normalization and differential expression, it is useful to combine
both TSS and enhancers candidates into a single dataset. This ensures that TSSs and enhancers do not overlap,
so each CAGE tag is only counted once.

We must first ensure that the enhancer and TSS candidates have the same information attached to them, since
CAGEfightR will only allow merging of clusters if they have the same sample and cluster information:

# Clean colData
TSSs$totalTags <- NULL
Enhancers$totalTags <- NULL

# Clean rowData

rowData(TSSs) $balance <- NA
rowData(TSSs)$bidirectionality <- NA
rowData(Enhancers) $txID <- NA

# Add labels for making later retrieval easy
rowData(TSSs) $clusterType <- "TSS"
rowData(Enhancers) $clusterType <- "Enhancer"
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Then the clusters can be merged: As enhancers are the most complicated type, we keep only enhancers if a
TSS and enhancer overlaps:

RSE <- combineClusters(object1=TSSs,

object2 = Enhancers,
removelfOverlapping="objectl")

## Removing overlapping features from objectl: 374

## Keeping assays: counts

## Keeping columns: score, thick, support, txID, txType, balance, bidirectionality, clusterType
## Merging metadata...

## Stacking and re-sorting...

We finally calculate the total number of tags and TPM-scaled counts for the final merged dataset:

RSE <- calcTPM(RSE)

## Calculating library sizes...

## Calculating TPM...

Part 2: Genomic analysis of TSSs and enhancers
Genome-browser figures of TSSs and enhancers

First we can simply plot some examples of TSSs and enhancers in a genome browser style figure using the
Gviz package [29]. It takes a bit of code to setup, but the resulting tracks can be reused for later examples:

# Genome track
axis_track <- GenomeAxisTrack()

# Annotation track
tx_track <- GeneRegionTrack(txdb,

name = "Gene Models",
col = NA,

fill = "bisque4d",
shape = "arrow",

showId = TRUE)

A good general strategy for quickly generating genome browser plots is to first define a region of interest, and
then only plotting data within that region using subsetBy0Overlaps. The following code demonstrates this
using the first TSS:

# Extract 100 bp around the first TSS.
plot_region <- RSE >/
rowRanges 7>/,
subset (clusterType == "TSS") %>%
L[11 %%
add (100) %>%
unstrand()

# CTSSs track
ctss_track <- CTSSs %>
rowRanges >/

subsetByOverlaps(plot_region) 7>/,
trackCTSS(name = "CTSSs'")

## Splitting pooled signal by strand...

## Preparing track...
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Figure 1. Genome browser example of TSS candidate

# Cluster track
cluster_track <- RSE %>
subsetByOverlaps(plot_region) 7>/
trackClusters(name = "Clusters",
col = NA,
showId=TRUE)

## Setting thick and thin features...
## Merging and sorting...

## Preparing track...

# Plot at tracks together
plotTracks(list(axis_track,
ctss_track,
cluster_track,
tx_track),
from = start(plot_region),
to=end(plot_region),
chromosome = seqnames(plot_region))

The top track shows the pooled CTSS signal and the middle track shows the identified TC with the thick bar
indicating the TSS peak (the overall most used CTSSs within the TC). The bottom track shows the known
transcript model at this genomic location. In this case, the CAGE-defined TSS corresponds well to the anno-

tation.

We can also plot the first enhancer:
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# Make plotting region
plot_region <- RSE >/
rowRanges 7>/,
subset (clusterType == "Enhancer") 7%>%
(11 %%
add (100) %>%
unstrand()

# CTSSs track

ctss_track <- CTSSs %>
rowRanges >/
subsetByOverlaps(plot_region) 7>/,
trackCTSS(name = "CTSSs'")

## Splitting pooled signal by strand...

## Preparing track...

# Cluster track
cluster_track <- RSE %>%
rowRanges >/
subsetByOverlaps(plot_region) 7>/,
trackClusters(name = "Clusters",
col = NA,
showId=TRUE)

## Setting thick and thin features...
## Merging and sorting...

## Preparing track...

# Plot at tracks together
plotTracks(list(axis_track,
ctss_track,
cluster_track,
tx_track),
from = start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

Here we see the bidirectional pattern characteristic of active enhancers. The bidirectional cluster is seen in
the middle track, with the midpoint in thick marking the maximally balanced point within the bidirectional

cluster.

Location and expression of TSSs and enhancers

In addition to looking at single examples of TSSs and enhancers, we also want to get an overview of the
number and expression of clusters in relation to transcript annotation. First we extract all of the necessary

data from the RangedSummarizedExperiment into an ordinary data.frame:

cluster_info <- RSE %>
rowData() %>%
as.data.frame()

Then we use ggplot2 to plot the number and expression levels of clusters in each annotation category:

# Number of clusters

ggplot (cluster_info, aes(x=txType, fill=clusterType)) +
geom_bar (alpha=0.75, position="dodge", color="black") +
scale_fill_colorblind("Cluster type") +
labs(x="Cluster annotation", y="Frequency") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
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Figure 2. Genome browser example of enhancer candidate
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Figure 3. Number of clusters within each annotation category
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Figure 4. Expression of clusters within each annotation category

# Expression of clusters
ggplot(cluster_info, aes(x=txType,
y=log2(score/ncol(RSE)),
fill=clusterType)) +
geom_violin(alpha=0.75, draw_quantiles = c(0.25, 0.50, 0.75)) +
scale_fill_colorblind("Cluster type") +
labs(x="Cluster annotation", y="log2(TPM)") +
theme (axis.text.x = element_text(angle = 90, hjust = 1))

## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to
## unique ’x’ values

We find that TSSs at annotated promoters are generally highly expressed. Most novel TSSs are expressed at
lower levels, except for some TSSs in 5’-UTRs. Enhancers are expressed at much lower levels than TSSs.

Analysing TSS shapes and sequences

A classic analysis of CAGE data is to divide TSSs into Sharp and Broad classes, which show different core
promoter regions and different expression patterns across tissues[7].

CAGEfightR can calculate several shape statistics that summarizes the shape of a TSS. The Interquartile Range
(IQR) can be used to find sharp and broad TSSs. As lowly expressed TSSs cannot show much variation in shape
due to their low width and number of tags, we here focused on highly expressed TSSs (average TPM >= 10):

# Select highly expressed TSSs
highTSSs <- subset(RSE, clusterType == ’TSS’ & score / ncol(RSE) >= 10)

# Calculate IQR as 10%-90% interval

highTSSs <- calcShape(highTSSs,
pooled=CTSSs,
shapeFunction=shapel(R,
lower = 0.10,
upper = 0.90)

## Splitting by strand...
## Applying function to each cluster...

## Preparing output output...
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Figure 5. Bimodal distribution of Interquartile Ranges (IQRs) of highly expressed TSSs

We can then plot the bimodal distribution of IQRs. We use a zoom-in panel to highlight the distinction between
the two classes:

highTSSs %>/
rowData 7>/
as.data.frame 7>
ggplot(aes(x=IQR)) +
geom_histogram(binwidth=1, fill="hotpink", alpha=0.75) +
geom_vline(xintercept = 10, linetype='"dashed", alpha=0.75, color="black") +
facet_zoom(xlim = c(0,100)) +
labs(x="10-90% IQR", y="Frequency")

We see most TSSs are either below or above 10 bp IQR (dashed line), so we use this cutoff to classify TSSs
into Sharp and Broad:

# Divide into groups
rowData(highTSSs) $shape <- ifelse(rowData(highTSSs)$IQR < 10, "Sharp", "Broad")

# Count group sizes
table(rowData(highTSSs) $shape)

##
## Broad Sharp
## 0565 812

We can now investigate the core promoters sequences of the two classes of TSSs. We first need to extract
the sequences for each TSS: We define this as the TSS peak -40/4+10 bp and extract them from using the
BSgenome.Mmusculus.UCSC.mm10 genome package:

promoter_seqs <- highTSSs />
rowRanges () 7>
swapRanges () %>%
promoters (upstream=40, downstream=10) %>%
getSeq(bsg, .)

This returns a DNAStringSet-object which we can plot as a sequence logo [30] via the ggseqlogo package[31]:

promoter_seqs %>
as.character %>/,
split(rowData(highTSSs) $shape) 7%>%
ggseqlogo(data=., ncol=2, nrow=1) +
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Figure 6. Sequence logos of core promoter regions of Sharp and Broad classes of TSSs

theme_logo() +

theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank())

As expected, we observe that Sharp TSSs tend to have a stronger TATA-box upstream of the TSS compared to
Broad TSSs.

Finding candidates for interacting TSSs and enhancers

In addition to simply identifying enhancers, it is also interesting to try infer what genes they might be regulat-
ing. CAGE data can itself not provide direct evidence that an enhancer is physically interacting with a TSSs,
which would requires specialized chromatin confirmation capture assays such as HiC, 4C, 5C, etc. However,
previous studies have shown that TSSs and enhancers that are close to each other and have highly correlated
expression are more likely to be interacting. We can therefore use distance and correlation of expression
between TSSs and enhancers to identify TSSs-enhancer links as candidates for physical interactions[13].

To do this with CAGEfightR, we first need to indicate the two types of clusters as a factor with two levels:

rowData(RSE) $clusterType <- RSE 7>
rowData() %>Y%
use_series("clusterType") %>%
as_factor() %>%
fct_relevel ("TSS")

We can then calculate all pairwise correlations between TSSs and enhancer within a distance of 50 bp. Here we
use the non-parametric Kendall’s tau as a measure of correlation, but other functions for calculating correlation
can be supplied (e.g. one could calculate Pearson’s r on log-transformed TPM values to only capture linear

relationships):
all_links <- RSE >
swapRanges 7>
findLinks(maxDist = 5e4L,
directional="clusterType",

inputAssay="TPM",
method="kendall")

## Finding directional links from TSS to Enhancer...
## Calculating 41311 pairwise correlations...
## Preparing output...

## # Link summary:
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## Number of links: 41311

## Summary of pairwise distance:

#i Min. 1st Qu. Median
#it 205 8832 21307 22341
all_links

## GInteractions object with 41311 interactions and 4 metadata

##
#i#t
##
#it
##
#i#t
##
#it
##
##
#i#
##
#i#t
##
#it
##
#i#t
##
#it
##
##
#i#
##
#i#t
##
#it
##
#i#t
##

The output is a GInteractions-object from the InteractionSet package[23]: For each TSS-enhancer both the
distance and orientation (upstream/downstream relative to TSS) is calculated in addition to the correlation
estimate and p-value. For now, we are only interested in positive correlations, so we subset and sort the links:

# Subset to only positive correlation

Mean 3rd Qu.

35060

Max.

50000

seqnamesl  rangesi seqnames?2
<Rle> <IRanges> <Rle>
[1] chril 6204746 chri
[2] chri 7079251 chril
(3] chrli 9535519 chri
[4] chril 9538162 chril
(5] chrl 20941781 chri
[41307] chr9_random 193165 chr9_random
[41308] chr9_random 193165 chr9_random
[41309] chr9_random 223641 chr9_random
[41310] chr9_random 223641 chr9_random
[41311] chrUn_random 3714359 --- chrUn_random
distance estimate
<integer> <numeric>
[1] 22090 -0.0603022689155527
[2] 4275 0.365994211051474
[3] 19215 -0.21320071635561
[4] 16572 0.341121146168977
[5] 48819 0.14070529413629
[41307] 24760 0.477084298221423
[41308] 49785 0.180906806746658
[41309] 5714 -0.0366987921708787
[41310] 19309 -0.261309831967395
[41311] 3898 -0.170560573084488

regions: 38454 ranges and 8 metadata columns
seqinfo: 35 sequences (1 circular) from mm9 genome

cor_links <- subset(all_links, estimate > 0)

# Sort based on correlation
cor_links <- cor_links[order(cor_links$estimate, decreasing = TRUE)]

We can then visualize the correlation patterns across a genomic region, here using the most correlated TSS-

enhancer link:

# Make plotting region
plot_region <- cor_links[1] %>

anchors 7>

GRangesList () %>

unlist() %>%

reduce(ignore.strand:TRUE,
min.gapwidth=1e5) >

add(1000)
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ranges2
<IRanges>
6226837
7083527
9554735
9554735
20990601
217926
242951
217926
242951
3718258
p.value

<numeric>
0.805433562909099
0.128612838399956
0.392330339776564
0.17111237306132
0.565460671338501

0.0423302291213607
0.459929012970529
0.875896057922941

0.28579482541369
0.493773664508106

columns:

orientation
<character>
downstream
downstream
downstream
downstream
downstream

upstream
upstream
downstream
upstream
upstream

Page 18 of 42


https://bioconductor.org/packages/3.9/InteractionSet

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

# Cluster track
cluster_track <- RSE %>’
subsetByOverlaps(plot_region) 7>/,
trackClusters(name = "Clusters",
col = NA,
showId=TRUE)

## Setting thick and thin features...
## Merging and sorting...

## Preparing track...

# Cluster track
link_track <- cor_links %>Y%
subsetByOverlaps(plot_region) 7>/
trackLinks (name="Links",
interaction.measure = "p.value",
interaction.dimension.transform = "log",
col.outside="grey",
plot.anchors=FALSE,
col.interactions="black")

# Plot at tracks together
plotTracks(list(axis_track,
link_track,
cluster_track,
tx_track),
from = start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

The top track shows the strength of correlations between 3 TSSs around the Atp1b1 gene. The highest corre-
lation is seen between the upstream TSS and the most distal enhancer.

Finding stretches of enhancers

Several studies have found that groups or stretches of closely spaced enhancers tend to show different chro-
matin characteristics and functions compared to singleton enhancers. Such groups of are often referred to as
“super enhancers” or “stretch enhancers”’[32].

CAGEfightR can detect such enhancer stretches based on CAGE data. CAGEfightR groups nearby enhancers
into groups and calculates the average pairwise correlation between them, shown below (again using Kendall’s
tau):

# Subset to only enhancers
Enhancers <- subset(RSE, clusterType == "Enhancer")

# Find stretches

stretches <- findStretches(Enhancers,
inputAssay = "TPM",
mergeDist = 12500L,
minSize = 5,
method = "kendall")

## Finding stretches...
## Calculating correlatioms...
## # Stretch summary:

## Number of stretches: 95
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Figure 7. Genome browser example of TSS-enhancer link candidates
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##

##

##

##

##

##

Similarly to TSSs and enhancers, we can also annotate stretches based on their relation with known transcripts:
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Total number of clusters inside stretches: 587 / 9943
Minimum clusters: 5
Maximum clusters: 15
Minimum width: 7147
Maximum width: 92531
Summary of average pairwise correlations:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.10038 0.01351 0.08107 0.09097 0.16171 0.37105

# Annotate
stretches <- assignTxType(stretches, txModels=txdb)

#

#

#it
##
##
##
##
#i#t
##
#i#t
##
#it

Finding hierachical overlaps...
### Overlap summary: ###

txType count percentage
1  promoter 50 52.
2  proximal 0 0.
3 fiveUTR
4  threeUTR
5 CDS
6 exon
7 intron
8 antisense
9 intergenic

-
O OTNWOO

=
O OTNWOO
~NO O, NWWOO

[y
[y

# Sort by correlation
stretches <- stretches[order(stretches$aveCor, decreasing=TRUE)]

# Inspect

stretches

## GRanges object with 95 ranges and 4 metadata columns:

#it seqnames ranges strand
## <Rle> <IRanges> <Rle>
## chr11:98628005-98647506 chril  98628005-98647506 *
## chr7:139979437-140003112 chr7 139979437-140003112 *
## chr15:31261340-31279984 chri5  31261340-31279984 *
##  chr11:117733009-117752208 chrill 117733009-117752208 *
## chr7:97167988-97188451 chr7  97167988-97188451 *
## . . . ..
##  chr15:101076561-101093429 chr1b5 101076561-101093429 *
## chr16:91373912-91399202 chri6  91373912-91399202 *
## chr7:132619265-132644381 chr7 132619265-132644381 *
#H# chr15:79181690-79208915 chrld  79181690-79208915 *
## chr10:94708643-94729408 chr10  94708643-94729408 *
it revmap nClusters

#i# <IntegerList> <integer>

## chr11:98628005-98647506 6600,6601,6602,... 6

## chr7:139979437-140003112 4220,4221,4222, ... 5

## chr15:31261340-31279984 7962,7963,7964, ... 5

##  chr11:117733009-117752208 6785,6786,6787, ... 6
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##
##
#i#t
##
#i#t
##
#it
##
#it
##
##
##
##
#i#t
##
#i#t
##
#i#t
##
#it
##
##

chr7:97167988-97188451

chr15:101076561-101093429
chr16:91373912-91399202
chr7:132619265-132644381
chr15:79181690-79208915
chr10:94708643-94729408

chr11:98628005-98647506
chr7:139979437-140003112
chr15:31261340-31279984
chr11:117733009-117752208
chr7:97167988-97188451

chr15:101076561-101093429
chr16:91373912-91399202
chr7:132619265-132644381
chr15:79181690-79208915
chr10:94708643-94729408

4022,4023,4024, ...

8320,8321,8322, ...
8643,8644,8645, ...
4160,4161,4162, ...
8144,8145,8146, ...
5823,5824,5825, ...
aveCor
<numeric>
0.371052840516797
0.328630841442886
0.301603791540209
0.284399425439616
0.262199740521045

-0.0549688493223916
-0.0598361076236999
-0.0626248504104628
-0.0981772309926707

-0.100380656957041
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seqinfo: 35 sequences (1 circular) from mm9 genome

The returned GRanges contains the the location, number of enhancers and average correlation for each
stretch. Stretches are found in a variety of context, some being intergenic and other spanning various parts of
genes. Let us plot one of the top intergenic stretches:

# Make plotting region
plot_region <- stretches['"chrl7:26666593-26675486"] + 1000

# Cluster track
cluster_track <- RSE %>Y%

col = NA,
showId=TRUE)

subsetByOverlaps(plot_region) 7>/,
trackClusters(name = "Clusters",

## Setting thick and thin features...

## Merging and sorting...

## Preparing track...

# CTSS track
ctss_track <- CTSSs %>

subsetByOverlaps(plot_region) 7>/
trackCTSS (name="CTSSs")

## Splitting pooled signal by strand...
## Preparing track...

# SE track

stretch_track <- stretches %>/

subsetByOverlaps(plot_region) 7>/
AnnotationTrack(name="Stretches", fill="hotpink", col=NULL)

# Plot at tracks together

plotTracks(list(axis_track,

stretch_track,
cluster_track,
ctss_track),

from = start(plot_region),

to=end(plot_region),

chromosome = as.character(seqnames(plot_region)))

This stretch is composed of at least 5 enhancers, each of which shows bidirectional transcription.
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Figure 8. Genome browser example of enhancer stretch
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Figure 9. PCA-plot of variance stabilized expression.

Part 3: Differential Expression analysis of TSSs, enhancers and genes
Normalization of expression and EDA

Before performing statistical tests for various measures of Differential Expression (DE), it is important to first
conduct a thorough Exploratory Data Analysis (EDA) to identify what factor we need to include in the final
model.

Here we will use DESeq2 [20] for normalization and EDA since it offers easy to use functions for performing
basic analyses. Other popular tools such as edgeR [21] and limma [25] offer similar functionality, as well as
more specialized packages for EDA such as EDASeq.

DESeq?2 offers sophisticated normalization and transformation of count data in the form of the variance sta-
bilized transformation: this adds a dynamic pseudo-count to normalized expression values before log trans-
forming to dampen the inherent mean-variance relationship of count data. This is particularly useful for CAGE
data, as CAGE can detect even very lowly expressed TSSs and enhancers.

First, we fit a “blind” version of the variance-stabilizing transformation, since we do not yet know what design
is appropriate for this particular study:

# Create DESeq2 object with blank design
dds_blind <- DESeqDataSet(RSE, design = ~ 1)

# Normalize and log transform
vst_blind <- vst(dds_blind, blind = TRUE)

A very useful first representation is a Principal Components Analysis (PCA) plot summarizing variance across
the entire experiment:

plotPCA(vst_blind, "Class")

We observe that PC2 separates the samples according to the experimental group (control vs nano). However,
PC1 also separates samples into two groups. This is suggestive of an unwanted yet systematic effect on ex-
pression, often referred as a batch effect. We do not want to mistake this unwanted variation for biological
variation when we test for differential expression. To prevent this, we can include the batch information as a
factor in the final model. Let first define the batch variable:

# Extract pca results
pca_res <- plotPCA(vst_blind, "Class", returnData=TRUE)

# Define a new variable using PC1
batch_var <- ifelse(pca_res$PC1 > 0, "A", "B")

# Attach the batch variable as a factor to the experiment
RSE$Batch <- factor(batch_var)

# Show the new design

RSE %>
colData() %>%
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Table 4. Design matrix after adding new batch covariate.

Class | Batch
C547 | Ctrl B
C548 | Ctrl B
C549 | Ctrl B
C559 | Ctrl A
C560 | Ctrl A
N13 Nano | B
N14 Nano | A
N15 Nano | B
N16 Nano | A
N17 Nano | A
N18 Nano | A
subset (select=c(Class, Batch)) %>%
kable(caption = "Design matrix after adding new batch covariate.")

An alternative to manually defining the batch variable, tools such as sva and RUVSeq can be used to estimate

unknown batch effects from the data.

Cluster-level differential expression

Following our short EDA above, we are ready to specify the final design for the experiment: We want to take

into account both the Class and Batch of samples:

# Specify design
dds <- DESeqDataSet(RSE, design

# Fit DESeq2 model
dds <- DESeq(dds)

## estimating size factors

## estimating dispersions

= 7 Batch + Class)

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

## fitting model and testing

We can now extract estimated effects (log fold changes) and statistical significance (p-values) for the Nano-
vs-Ctrl comparison, implicitly correcting for the batch effect:

# Extract results
res <- results(dds,

contrast=c("Class",

alpha=0.05,

independentFiltering=TRUE,

tidy = TRUE) %>%

"Nano", ”Ctrl”),

bind_cols(as.data.frame(rowData(RSE))) %>%

as_tibble

# Show the top hits

res 4>
top_n(-10, padj) %>%
dplyr: :select(cluster=row,
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Table 5. Top differentially expressed TSS and enhancer candidates

cluster clusterType | txType baseMean | log2FoldChange | padj
chr1:73977049-73977548;- TSS intron 1183.3740 2.838367 0
chr2:32243097-32243468;- TSS promoter | 30799.5953 3.741789 0
chr3:144423689-144423778;- TSS promoter 191.0431 3.709530 0
chr4:125840648-125840820;- TSS proximal 1063.4328 3.867574 0
chr4:137325466-137325712;- TSS intron 176.7636 3.912592 0
chr7:53971039-53971170;- TSS promoter 8720.5204 6.696838 0
chr9:120212846-120213294;+ TSS promoter 316.0582 2.404706 0
chr11:83222553-83222887;+ TSS proximal 228.5560 6.098838 0
chr12:105649334-105649472;+ | TSS CDS 175.1364 3.345411 0
chr19:56668148-56668332;+ TSS CDS 103.8795 -2.254371 0

clusterType,

txType,

baseMean,

log2FoldChange,

padj) %>%

kable(caption = "Top differentially expressed TSS and enhancer candidates")

It always a good idea to inspect a few diagnostics plot to make sure the DESeq2 analysis was successful. One
such example is an MA-plot (another useful plot is p-value histogram):

ggplot(res, aes(x=log2(baseMean), y=log2FoldChange, color=padj < 0.05)) +
geom_point (alpha=0.25) +

geom_hline(yintercept = 0, linetype="dashed", alpha=0.75) +
facet_grid(clusterType™.)

We can see that we overall find more differentially expressed TSSs compared to enhancers, which is expected

since they are also more highly expressed. Many enhancers are filtered away for the final DESeq2 analysis

(The “Independent Filtering” Step), as their expression level is too low to detect any DE: This increases power

for detecting DE at higher expression levels.

We can tabulate the total number of DE TSSs and enhancers:

table(clusterType=rowRanges (RSE) $clusterType, DE=res$padj<0.05)

## DE
## clusterType FALSE TRUE
## TSS 22071 6385

it Enhancer 3034 199

Correcting expression estimates for batch effects

In addition to looking at estimates and significance for each cluster, we might also want to look at individual
expression values for some top hits. However, we then need to also correct the expression estimates themselves
for batch effects, just like we did for log fold changes and p-values (using the same model of course).

Here we use ComBat[33] from the sva package which is suitable for removing simple batch effects from small
experiments. For more advanced setups, removeBatchEffect from limma can remove arbitrarily complex
batch effects. The RUVSeq package and fsva from sva can be used to remove unknown batch effects.

We again use the variance-stabilizing transformation to prepare the data for ComBat (this makes count data
resemble expression estimates obtained from microarrays, as ComBat was originally developed for microar-
rays).

# Guided variance stabilizing transformation
vst_guided <- VarianceStabilizingTransformation(dds, blind=FALSE)

To run ComBat we need two additional pieces of information: i) A design matrix describing the biological or
wanted effects and ii) the known but unwanted batch effect. We first specify the design matrix, and then run
ComBat:
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Figure 10. Diagnostic MA plot of the differential expression analysis
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Figure 11. PCA-plot of batch corrected expression.

# Design matrix of wanted effects
bio_effects <- model.matrix(~Class, data=colData(RSE))

# Run ComBat =

assay(RSE, "ComBat'") <- ComBat(dat=assay(vst_guided),
batch=RSE$Batch, # Unwanted batch
mod=bio_effects)

## Found2batches

## Adjusting forlcovariate(s) or covariate level(s)
## Standardizing Data across genes

## Fitting L/S model and finding priors

## Finding parametric adjustments

## Adjusting the Data

Let us redo the PCA-plot, to see the global effect of the batch effect correction:

# Overwrite assay
assay(vst_guided) <- assay(RSE, "ComBat'")

# Plot as before
plotPCA(vst_guided, "Class")

Now Nano and Ctrl are separated along the first principal component (compared to the second principle
component before correction).

Then we extract the top 10 DE enhancers using the following tidyverse code:

# Find top 10 DE enhancers
topl0 <- res %>%
filter(clusterType == "Enhancer", padj < 0.05) %>7
group_by (log2FoldChange >= 0) 7>%
top_n(5, wt=abs(log2FoldChange)) 7>%
pull(row)

# Extract expression values in tidy format
tidyEnhancers <- assay(RSE, "ComBat") [topl10,] %>%
t %>%
as.data.frame %>’
rownames_to_column("Sample") %>
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Figure 12. Expression profile of top 10 differentially expressed enhancer candidates.

mutate(Class=RSE$Class) >/

gather (key="Enhancer",
value="Expression",
-Sample, -Class,
factor_key=TRUE)

Finally, we can plot the batch-corrected expression profiles of each individual enhancer:

ggplot (tidyEnhancers, aes(x=Class, y=Expression, fill=Class)) +
geom_dotplot(stackdir="center", binaxis="y", dotsize=3) +
facet_wrap(“Enhancer, ncol=2, scales="free_y")

## ‘stat_bindot() ¢ using ‘bins = 30¢. Pick better value with ‘binwidth‘.

Enrichment of DNA-binding motifs

A typical question following identification of differentially expressed TSSs and enhancers, is what TFs might
be involved in their regulation. To shed light on this question we can annotate TSSs and enhancers with

DNA-binding motifs from the JASPAR database[27].

First we extract the sequences around TSSs and enhancers. Here we simply define it as +/- 500 bp around

TSS peak or enhancer midpoint:

cluster_seqs <- RSE />
rowRanges >/
swapRanges () %>
unstrand() %>%
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add(500) %>%
getSeq(bsg, .)

Secondly, we use the TFBSTools[34] package to obtain motifs as Position Frequency Matrices (PFMs) from the
JASPAR2016 database:

# Extract motifs as Position
motif_pfms <- getMatrixSet(JASPAR2016, opts = list(species="10090"))

# Look at the IDs and names of the first few motifs:
head(name (motif_pfms))

#Ht MAO004.1 MA0006. 1 MA0029.1 MA0063.1 MAO067.1 MA0O78.1
#i# "Arnt" "Ahr::Arnt" ""Mecom" "Nkx2-5" "Pax2" "Sox17"

Thirdly, we use the motifmatchr package [35] to find hits in the sequences:

# Find matches
motif_hits <- matchMotifs(motif_pfms, subject=c1uster_seqs)

# Matches are returned as a sparse matrix:
motifMatches(motif_hits)[1:5, 1:5]

## 5 x 5 sparse Matrix of class "lgCMatrix"

## MAOOO4.1 MA0006.1 MA0029.1 MA0063.1 MAO067.1
## [1,] . . . . |
# [2,]

## [3,]

## [4,] . . . .

## [5,] . | . I

Finally we can do a simple Fisher’s Exact test to see if a motif co-occurs more with DE TSSs and enhancer than
we would expect be chance. Here we will look at the FOS::JUN motif (MA0099.2):

# 2x2 table for fishers
table(FOSJUN = motifMatches(motif_hits)[,''MA0099.2"],
DE = res$padj < 0.05) %>%
print () %>%
fisher.test()

## DE

## FOSJUN FALSE TRUE
##  FALSE 22144 5596
## TRUE 2961 988

it

## Fisher’s Exact Test for Count Data
it

## data:

## p-value = 5.839e-12

## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:

## 1.220330 1.427821

## sample estimates:

## odds ratio

##  1.320361

A significant odds ratio above 1 indicate that FOS::JUN is a candidate transcription factor (o, more technically
correct, a candidate transcription factor dimer) in regulation of the nanotube response. This is not surprising
given that FOS::JUN is part of the TNF-alpha inflammatory pathway (see more below).

Of course, this is a just a very quick and simple analysis of motif enrichment. One could easily have used dif-
ferent regions around TSSs and enhancers and/or split the enrichment analysis between TSSs and enhancers.
Other Bioconductor packages like PWMEnrich, rGADEM and motifcounter implements more advanced statisti-
cal methods for calculating enrichment of known motifs. rGADEM, BCRANK and motifRG can also be used to
calculate enrichment of novel motifs, sometimes referred to as motif discovery.
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Gene-level differential expression

While CAGE data is naturally analyzed at the level of clusters (TSSs and enhancers) it is in many cases interest-
ing to also look at gene-level expression estimates. A prime example of this is looking at enrichment of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms [Hancock2014; Gene2019;
28] which are only defined at gene-level. CAGEfightR includes functions for annotating clusters with gene
models and summarizing expression to gene-level.

We can annotate clusters with gene IDs in the same manner as Transcript IDs:

RSE <- assignGeneID(RSE, geneModels=txdb)

## Extracting genes...

## Overlapping while taking distance to nearest TSS into account...
## Finding hierachical overlaps...

## ### Overlap Summary: ###

## Features overlapping genes: 81.34

## Number of unique genes: 13761

And then use CAGEfightR to sum counts of TSSs within genes:

GSE <- RSE 7>%
subset (clusterType == "TSS") %>%
quantifyGenes(genes="geneID", inputAssay='"counts")

The result is RangedSummarizedExperiment where the ranges are a GRangesList holding the TSSs that
were summed within each gene:

rowRanges(GSE["100038347",])
## GRangesList object of length 1:

## $100038347
## GRanges object with 2 ranges and 9 metadata columns:

#it seqnames ranges strand |

## <Rle> <IRanges> <Rle> |

##  chr7:80884953-80885056;+ chr7 80884953-80885056 + |

##  chr7:80885120-80885677 ;+ chr7 80885120-80885677 + |

## score thick support txID
it <numeric> <IRanges> <integer> <character>
##  chr7:80884953-80885056;+  11.058474477 80885000 5 ucO009hrf.2
##  chr7:80885120-80885677;+ 1162.344739622 80885256 11 ucO009hrf.2
#i# txType balance bidirectionality clusterType
## <factor> <numeric> <numeric> <factor>
##  chr7:80884953-80885056;+ proximal <NA> <NA> TSS
##  chr7:80885120-80885677;+ promoter <NA> <NA> TSS
#it genelD

#Hit <character>

## chr7:80884953-80885056 ; + 100038347

#i chr7:80885120-80885677 ;+ 100038347

##t

##t ——————-

## seqinfo: 35 sequences (1 circular) from mm9 genome

The gene IDs in this case is Entrez ID (which is widely used by Bioconductor packages). We can translate these
systematic IDs into more human-readable symbols using the org.Mm.eg.db annotation package:
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Table 6. Global summary of differentially expressed genes.

(Intercept) | BatchB | ClassNano
Down 51 2572 1505
NotSig 463 8278 10373
Up 13053 2717 1689

# Translate symbols

rowData(GSE) $symbol <- mapIds(odb,
keys=rownames (GSE) ,
column="SYMBOL",
keytype="ENTREZID")

## ’select()’ returned 1:1 mapping between keys and columns

Having obtained a gene-level count matrix we can now perform gene-level DE analysis. Here we use limma-
voom, since limma makes it easy to perform a subsequent enrichment analysis. Other tools such as DESeq2
(above) or edgeR (see below) could also have been used.

Note: limma is a powerful tool for DE analysis of count-based data. However, since it depends on log trans-
forming counts, it is not always suitable for analyzing datasets where features have very low counts. This is
usually not a problem for gene-level analysis, but can be a problem for enhancers, which are generally very
lowly expressed.

Similarly to the DESeq2 analysis, we first build the necessary object and then normalize the expression values:

# Create DGElist object
dge <- DGEList(counts=assay(GSE, "counts"),
genes=as.data.frame(rowData(GSE)))

# Calculate normalization factors
dge <- calcNormFactors(dge)

Then we apply the voom-transformation to model the mean-variance trend, for which we also need to specify
the design matrix (in this case the design must contain both wanted and unwanted effects!). The same design
matrix is then used for fitting the gene-wise models:

# Design matrix
mod <- model.matrix(~ Batch + Class, data = colData(GSE))

# Model mean-variance using voom
v <- voom(dge, design=mod)

# Fit and shrink DE model
fit <- 1mFit(v, design=mod)
eb <- eBayes(fit, robust=TRUE)

# Summarize the results
dt <- decideTests(eb)

We can the both report the overall summary of differential gene expression, and look at the first few top hits:

# Global summary
dt %>%
summary 7%>%
kable(caption="Global summary of differentially expressed genes.")

# Inspect top htis

topTable(eb, coef="ClassNano") >/
dplyr::select(symbol, nClusters, AveExpr, logFC, adj.P.Val) 7>/
kable(caption="Top differentially expressed genes.")
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Table 7. Top differentially expressed genes.

symbol nClusters AveExpr logFC | adj.Pval

66938 Sh3d21 3 | 5.871004 | 3.075745 | 0.0e+00

245049 | Myrip 2 | 4371325 | 2.414055 | 7.0e-07

12722 Clca3al 1 | 3.020528 | 3.692198 | 7.0e-07

382864 | Colq 3 | 2.770158 | -3.426911 1.1e-06

20716 Serpina3n 5 | 6.384175 1.872782 3.0e-06

72275 2200002D01Rik 2 | 7.208031 | 1.693257 | 5.5e-06

381813 | Prmt8 4 | 4553612 | 1.409006 | 5.8e-06

170706 | Tmem37 2 | 5.503908 | 1.679690 | 5.8e-06

18654 Pgf 1 | 4.862055 | 2.337045 | 5.8e-06

20361 Sema7a 1| 7.612236 | 1.473680 | 5.9e-06

Table 8. Top enriched or depleted GO-terms.

Term Ont N Up | Down | PUp PDown
G0:0006954 | inflammatory response BP 556 | 142 51 0 | 0.9562685
G0:0006952 | defense response BP 1072 | 224 99 0 | 0.9878373
G0:0097529 | myeloid leukocyte migration BP 170 61 14 0 | 0.9359984
G0:0010033 | response to organic substance BP 2074 | 370 196 0 | 0.9987104
GO:0006950 | response to stress BP 2755 | 464 246 0 | 0.9999946
GO0:0006955 | immune response BP 1034 | 210 96 0 | 0.9833226
G0:0042221 | response to chemical BP 2762 | 467 292 0 | 0.9178712
G0:0050900 | leukocyte migration BP 288 83 23 0 | 0.9792828
G0:0001816 | cytokine production BP 634 | 143 45 0 | 0.9998658
G0:0001817 | regulation of cytokine production | BP 570 | 132 39 0 | 0.9998856

Enrichment of GO- and KEGG-terms

In addition to looking at individual top genes, we can look at how the differentially expressed genes relate
to known databases of gene function to gain insight in what biological processes might be affected in the

experiment.

limma makes it easy to perform such an enrichment analysis following a DE analysis. As we have gene
indexed by Entrez IDs, we can directly use goana to find enriched GO-terms: goana uses a biased urn-model

to estimate enrichment of GO-terms, while taking into account the expression levels of DE genes:

# Find enriched GO-terms

GO <- goana(eb, coef =

# Show top hits

topGO(GO, ontology = "BP",

number =

"ClassNano", species

10) %>h

= "Mm", trend = TRUE)

kable(caption="Top enriched or depleted GO-terms.")

And similarly for KEGG terms:

# Find enriched KEGG-terms
KEGG <- kegga(eb, coef="ClassNano", species

# Show top hits
topKEGG (KEGG, number = 10) %>%
knitr::kable(caption="Top enriched of depleted KEGG-terms.")

Both analyses indicate that genes related to the inflammatory response and defense response are upregu-
lated following nanotube exposure. This supports the hypothesis that nanotube induces a response similar to

asbestos.

KEGG-terms represents well defined pathways. We can use the pathview package[36] to investigate in more
detail the genes in a given enriched pathway. For example, we can look at regulation of gene in the TNF-

signalling pathway:

# Visualize a KEGG
DE_genes <- Filter(function(x) x != 0, dt[, "ClassNano"])

= "Mm", trend = TRUE)

Page 33 of 42


https://bioconductor.org/packages/3.9/pathview

Table 9. Top enriched of depleted KEGG-terms.

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Pathway N | Up | Down PUp PDown
path:mmu04060 | Cytokine-cytokine receptor interaction 173 | 56 13 | 0.0000000 | 0.9579351
path:mmu04668 | TNF signaling pathway 105 | 31 8 | 0.0000037 | 0.9186628
path:mmu00600 | Sphingolipid metabolism 41 | 17 2 | 0.0000051 | 0.9583011
path:mmu00980 | Metabolism of xenobiotics by cytochrome P450 48 4 17 | 0.8857194 | 0.0000137
path:mmu03010 | Ribosome 122 | 32 2 | 0.0000226 | 0.9999900
path:mmu04064 | NF-kappa B signaling pathway 85 | 24 5 | 0.0000704 | 0.9655534
path:mmu04512 | ECM-receptor interaction 66 | 21 11 | 0.0000778 | 0.1524408
path:mmu04657 | IL-17 signaling pathway 74 | 22 2 | 0.0000806 | 0.9985563
path:mmu00982 | Drug metabolism - cytochrome P450 46 5 15 | 0.7266916 | 0.0001238
path:mmu04630 | JAK-STAT signaling pathway 112 | 29 7 | 0.0001453 | 0.9785951
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Figure 13. Detailed view of differentially expressed gene in the KEGG TNF-signalling pathway.

# This will save a png file to a temporary directory
pathview(DE_genes, species="mmu", pathway.id="mmu04668", kegg.dir = tempdir())
# Show the png file

grid.newpage()

grid.raster(png: :readPNG("mmu04668.pathview.png"))

Differential TSS Usage

In the above two analyses we looked at whether an individual TSSs or an individual gene was changing
expression between experimental groups. However, we might also want to look at whether a gene show
differential TSS usage: whether a gene uses different TSSs under different conditions. This problem is similar
to differential splicing in RNA-Seq, but looking at TSSs rather than isoforms[26]. Here we will use the edgeR
diffSpliceDGE method to find differential TSS usage, although many other packages could have been used,
for example diffSplice from 1imma, DEXSeq, DRIMSeq, etc..

Intuitively, diffSpliceDGE tests whether a given TSSs show the same change as other TSSs in the same gene,
indicating that TSSs are differentially regulated across the gene. This does however not take into account the
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Figure 14. Overview of alternative TSS usage within genes.

relative composition of a given TSSs, e.g. whether a TSS increases from 1%-2% of gene output or 25%-50%.
A useful preprocessing step is therefore to filter out TSSs making only a small contribution to total gene
expression before analyses.

We use CAGEfightR to remove TSSs that are not expressed as more than 10% of total gene expression in
more than 5 samples (We first remove TSSs not assigned to genes):

# Filter away lowly expressed
RSE_filtered <- RSE 7>
subset (clusterType == "TSS" & !is.na(geneID)) >’
subsetByComposition(inputAssay="counts",
genes="genelD",
unexpressed=0.1,
minSamples=5)

## Calculating composition...
## Subsetting...
## Removed 8001 out of 24500 regions (32.7%)

We can only do differential TSS usage analysis of genes with multiple TSSs. A useful first visualization is
therefore to see how many genes use more than one TSS:

RSE_filtered >%
rowData %>%
as.data.frame %>
as_tibble %>
dplyr: :count (geneID) 7>/
ggplot(aes(x = n, fill = n >= 2)) +
geom_bar (alpha=0.75) +
scale_fill_colorblind("Multi-TSS") +
labs(x = "Number of TSSs per gene", y = "Frequency")

While most genes utilize only a single TSSs, many genes use two or more TSSs.

Again, we build the necessary R-objects for running edgeR:

# Annotate with symbols like before:

rowData(RSE_filtered) $symbol <- mapIds(odb,
keys=rowData(RSE_filtered) $genelD,
column="SYMBOL",
keytype="ENTREZID")

## ’select()’ returned 1:1 mapping between keys and columns
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Table 10. Top differentially used TSSs

txType genelD | symbol logFC FDR
chr17:13840650-13840851;- intron 21646 Tcte2 1.7889344 | 0e+00
chr10:57857044-57857314;+ promoter | 110829 | Limsl -1.0651946 | 0e+00
chr14:70215678-70215876;- intron 246710 | Rhobtb2 2.4933979 | 0e+00
chr4:141154044-141154185;- intron 74202 Fblim1 1.7018062 | 0e+00
chr17:33966135-33966308;+ intron 66416 Ndufa7 2.1612127 | 0e+00
chr15:76428030-76428201;- intron 94230 Cpsfl 1.4598815 | 0e+00
chr19:57271818-57272125;- promoter | 226251 | Ablim1l 1.1456163 | 0e+00
chr9:77788968-77789200;+ intron 68801 Elovl5 0.9810692 | 1le-07
chr11:116395161-116395462;+ | proximal | 20698 Sphk1 1.7471930 | 1e-07
chr2:91496305-91496449;+ intron 228359 | Arhgapl | 0.9809491 3e-07

# Extract gene info

TSS_info <- RSE_filtered %>%
rowData >/
subset (select=c(score, txType, genelD, symbol)) 7>
as.data.frame

# Build DGEList
dge <- DGEList(counts=assay(RSE_filtered, '"counts"),
genes=TSS_info)

Then we normalize and fit models using the Quasi-likelihood approach, including the diffSpliceDGE step:

# Estimate normalization factors
dge <- calcNormFactors(dge)

# Estimate dispersion and fit GLMs
disp <- estimateDisp(dge, design = mod, tagwise = FALSE)
QLfit <- glmQLFit(disp, design=mod, robust = TRUE)

# Apply diffSpliceDGE
ds <- diffSpliceDGE(QLfit, coef = "ClassNano", geneid = "geneID")

## Total number of exons: 16499

## Total number of genes: 13563

## Number of genes with 1 exon: 11098
## Mean number of exons in a gene: 1
## Max number of exons in a gene: 5

Now we can look at differential TSS usage at two-levels: Whether an individual TSS shows differential TSS
usage (TSS-level) or whether a gene show differential TSS usage in any way (gene-level). First we can look
at individual TSSs (TSS-level differential TSS usage):

dtu_TSSs <- topSpliceDGE(ds, test = "exon")
dplyr::select(dtu_TSSs, txType, genelD, symbol, logFC, FDR) 7>/
kable(caption = "Top differentially used TSSs")

The interpretation of log fold changes here is slightly different from before: These log fold changes are relative
to the overall log fold change for all TSSs in that gene.

Then we can look at results for each gene (Gene-level differential TSS usage):
dtu_genes <- topSpliceDGE(ds, test = "Simes")
dplyr::select(dtu_genes, genelD, symbol, NExons, FDR) %>%

kable(row.names = FALSE,
caption = "Top genes showing any differential TSS usage.")

We see that the two lists agree, which is not surprising given that the gene-level results are obtained by
aggregating TSS-level p-values across genes.
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Table 11. Top genes showing any differential TSS usage.

genelD | symbol NExons FDR
21646 Tcte2 4 | 0e+00
110829 | Limsl 3 | 0e+00
246710 | Rhobtb2 3 | 0e+00
74202 Fblim1 3 | 0e+00
66416 Ndufa7 3 | 0e+00
94230 Cpsfl 2 | 0e+00
226251 | Abliml 3 | 0e+00
68801 Elovl5 2 le-07
20698 Sphk1 3 le-07
228359 | Arhgapl 2 2e-07
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Figure 15. Heatmap showing expression of TSSs within Fblim1

We can look at closer at the TSS usage in on of the top hits: We can visualize the batch-corrected expression
(See above) of each TSS in the Fblim1 gene via a heatmap:

RSE_filtered >,

subset (geneID == "74202") %>
assay("ComBat") %>%
t h>h

pheatmap(color = magma(100),
cluster_cols = FALSE,
main="Fbliml")

Fblim1 has 3 TSSs, with 2 of them being used in the Ctrl samples, while the Nano samples also uses the
chr4:141154044-141154185;- TSS, as also seen in the TSS-level table above. While a heatmap is useful for
seeing expression changes, a genome browser view is better to inspect the genomic context of each TSSs:

# Define plot area
plot_region <- subset(RSE_filtered, geneID == "74202") 7>/
rowRanges >/
reduce(min.gapwidth=1e6) 7>/
unstrand() %>
add (5e3L)
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# Create cluster track
cluster_track <- subsetByOverlaps(RSE_filtered, plot_region) >/
trackClusters(name = "Clusters", col = NA, showId=TRUE)

## Setting thick and thin features...
## Merging and sorting...

## Preparing track...

# CTSS tracks for each group

ctrl_track <- subset(CTSSs, select=Class == "Ctrl") %>%
calcPooled() %>%
subsetByOverlaps(plot_region) 7>
trackCTSS (name="Ctrl")

## Warning in calcPooled(.): object already has a column named score in
## rowData: It will be overwritten!

## Splitting pooled signal by strand...
## Preparing track...

nano_track <- subset(CTSSs, select=Class == "Nano") %>%
calcPooled() %>%
subsetByOverlaps(plot_region) 7>/
trackCTSS (name="Nano")

## Warning in calcPooled(.): object already has a column named score in
## rowData: It will be overwritten!

## Splitting pooled signal by strand...
## Preparing track...

# Plot at tracks together
plotTracks(list(axis_track,
tx_track,
cluster_track,
Ctrl=ctrl_track,
nano_track),
from = start(plot_region),
to=end(plot_region),
chromosome = seqnames(plot_region))

The Fblim1 gene uses two annotated TSSs, but the Nano samples also uses a novel intronic TSS.

Discussion

This workflow is intended as providing an outline of the basic building blocks of CAGE data analysis, going
from clustering, to spatial analyses to differential expression. More advanced analyses can be strung together
from these basic elements: Finding enhancers linked to DE TSSs, enhancer stretches composed of DE enhancer,
comparing DNA binding motif enrichments between DE enhancers and TSSs, etc.

One aspect not covered in this workflow is the utility of CAGE data (and 5-end data in general) in providing
accurate TSSs for studying other types of data. For example, having accurate TSSs is highly beneficial in chro-
matin research, since the location and nucleosome and TSSs are closely related [13, 37, 38]. CAGE can be
combined with chromatin confirmation assays such as HiC to find new enhancers that are both co-expressed
and physically interacting with TSSs. Many genome-wide association studies are finding that disease-related
genetic variants are found in intergenic regions, that are often poorly annotated. The accurate enhancer loca-
tions provided by CAGE can greatly aid interpretation of such variants [39]. The adherence of CAGEfightR
to standard Bioconductor classes facilitates these inter-assay analyses by making it easy to mix-and-match
multiple packages developed for different experimental assays.
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