systemPipeR 1.18.2
This workflow demonstrates how to use various utilities for building and running automated end-to-end analysis workflows for VAR-Seq data. The full workflow can be found here: HTML, .Rmd, and .R.
Load the VAR-Seq sample workflow into your current working directory.
library(systemPipeRdata)
genWorkenvir(workflow = "varseq")
setwd("varseq")
The working environment of the sample data loaded in the previous step contains the following preconfigured directory structure. Directory names are indicated in grey. Users can change this structure as needed, but need to adjust the code in their workflows accordingly.
The following parameter files are included in each workflow template:
targets.txt: initial one provided by user; downstream targets_*.txt files are generated automatically*.param: defines parameter for input/output file operations, e.g. trim.param, bwa.param, hisat2.param, …*_run.sh: optional bash script, e.g.: gatk_run.sh.batchtools.conf.R: defines type of scheduler for batchtools. Note, it is necessary to point the right template accordingly to the cluster in use.*.tmpl: specifies parameters of scheduler used by a system, e.g. Torque, SGE, Slurm, etc.Next, run the chosen sample workflow systemPipeVARseq (.Rmd) by executing from the command-line make -B within the varseq directory. Alternatively, one can run the code from the provided *.Rmd template file from within R interactively.
Workflow includes following steps:
gsnap, bwaVariantTools, GATK, BCFtoolsVariantTools and VariantAnnotationVariantAnnotationsessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices
## [6] utils datasets methods base
##
## other attached packages:
## [1] DESeq2_1.24.0 batchtools_0.9.11
## [3] data.table_1.12.2 ape_5.3
## [5] ggplot2_3.2.0 systemPipeR_1.18.2
## [7] ShortRead_1.42.0 GenomicAlignments_1.20.1
## [9] SummarizedExperiment_1.14.0 DelayedArray_0.10.0
## [11] matrixStats_0.54.0 Biobase_2.44.0
## [13] BiocParallel_1.18.0 Rsamtools_2.0.0
## [15] Biostrings_2.52.0 XVector_0.24.0
## [17] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0
## [19] IRanges_2.18.1 S4Vectors_0.22.0
## [21] BiocGenerics_0.30.0 BiocStyle_2.12.0
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.4-1 rjson_0.2.20
## [3] hwriter_1.3.2 htmlTable_1.13.1
## [5] base64enc_0.1-3 rstudioapi_0.10
## [7] bit64_0.9-7 AnnotationDbi_1.46.0
## [9] codetools_0.2-16 splines_3.6.0
## [11] geneplotter_1.62.0 knitr_1.23
## [13] Formula_1.2-3 annotate_1.62.0
## [15] cluster_2.1.0 GO.db_3.8.2
## [17] pheatmap_1.0.12 graph_1.62.0
## [19] BiocManager_1.30.4 compiler_3.6.0
## [21] httr_1.4.0 GOstats_2.50.0
## [23] backports_1.1.4 assertthat_0.2.1
## [25] Matrix_1.2-17 lazyeval_0.2.2
## [27] limma_3.40.2 formatR_1.7
## [29] acepack_1.4.1 htmltools_0.3.6
## [31] prettyunits_1.0.2 tools_3.6.0
## [33] gtable_0.3.0 glue_1.3.1
## [35] GenomeInfoDbData_1.2.1 Category_2.50.0
## [37] dplyr_0.8.1 rappdirs_0.3.1
## [39] Rcpp_1.0.1 nlme_3.1-140
## [41] rtracklayer_1.44.0 xfun_0.7
## [43] stringr_1.4.0 XML_3.98-1.20
## [45] edgeR_3.26.5 zlibbioc_1.30.0
## [47] scales_1.0.0 BSgenome_1.52.0
## [49] VariantAnnotation_1.30.1 hms_0.4.2
## [51] RBGL_1.60.0 RColorBrewer_1.1-2
## [53] yaml_2.2.0 memoise_1.1.0
## [55] gridExtra_2.3 biomaRt_2.40.0
## [57] rpart_4.1-15 latticeExtra_0.6-28
## [59] stringi_1.4.3 RSQLite_2.1.1
## [61] genefilter_1.66.0 checkmate_1.9.3
## [63] GenomicFeatures_1.36.2 rlang_0.3.4
## [65] pkgconfig_2.0.2 bitops_1.0-6
## [67] evaluate_0.14 lattice_0.20-38
## [69] purrr_0.3.2 labeling_0.3
## [71] htmlwidgets_1.3 bit_1.1-14
## [73] tidyselect_0.2.5 GSEABase_1.46.0
## [75] AnnotationForge_1.26.0 magrittr_1.5
## [77] bookdown_0.11 R6_2.4.0
## [79] Hmisc_4.2-0 base64url_1.4
## [81] DBI_1.0.0 pillar_1.4.1
## [83] foreign_0.8-71 withr_2.1.2
## [85] survival_2.44-1.1 RCurl_1.95-4.12
## [87] nnet_7.3-12 tibble_2.1.3
## [89] crayon_1.3.4 rmarkdown_1.13
## [91] progress_1.2.2 locfit_1.5-9.1
## [93] grid_3.6.0 blob_1.1.1
## [95] Rgraphviz_2.28.0 digest_0.6.19
## [97] xtable_1.8-4 brew_1.0-6
## [99] munsell_0.5.0
This project was supported by funds from the National Institutes of Health (NIH) and the National Science Foundation (NSF).