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1 Overview

This document provides brief tutorial of the ¢PLEXanalyzer package, a toolkit with multiple functionali-
ties, for statistical analysis of qPLEX-RIME proteomics data (see 7qPLEXanalyzer at the R prompt for a
brief overview). The qPLEX-RIME approach combines the RIME method with multiplex TMT chemical
isobaric labelling to study the dynamics of chromatin-associated protein complexes. The package can also
be used for isobaric labelling (TMT or iTRAQ) based total proteome analysis.

e Import quantitative dataset: A pre-processed quantitative dataset generated from MaxQuant, Pro-
teome Discoverer or any other proteomic software consisting of peptide intensities with associated
features along with sample meta-data information can be imported by ¢PLEXanalyzer.

Quality control: Computes and displays quality control statistics plots of the quantitative dataset.

Data normalization: Quantile normalization, central tendencies scaling and linear regression based
normalization.

Aggregation of peptide intensities into protein intensities

Differential statistical analysis: limma based analysis to identify differentially abundant proteins.



library(qPLEXanalyzer)
library(gridExtra)
data(human_anno)
data(exp2_Xlink)

2 Import quantitative dataset

MSnbase package by Laurent Gatto provides methods to facilitate reproducible analysis of MS-based
proteomics data. MSnSet class of MSnbase provides architecture for storing quantitative MS proteomics
data and the experimental meta-data. In ¢PLEXanalyzer, we store pre-processed quantitative proteomics
data within this standardized object. The convertToMSnset function creates an MSnSet object from the
quantitative dataset of peptides/protein intensities. This dataset must consist of peptides identified with
high confidence in all the samples.

The default input dataset is the pre-processed peptide intensities from MaxQuant, Proteome Discov-
erer or any other proteomic software (see 7convertToMSnset at the R prompt for more details). Only
peptides uniquely matching to a protein should be used as an input. Alternatively, the protein level quan-
tification by the aggregation of the peptide TMT intensities can also be used as input. Peptides/Protein
intensities with missing values in one or more samples can either be excluded or included in the MSnSet
object. If the missing values are kept in the MSnSet object, these must be imputed either by user defined
methods or by those provided in MSnbase package. The downstream functions of ¢PLFEXanalyzer expects
no missing values in the MSnSet object.

The example dataset shown below is from an ER qPLEX-RIME experiment in MCFE7 cells that was
performed to compare two different ways of cell crosslinking: DSG /formaldehyde (double) or formaldehyde
alone (single). It consists of four biological replicates for each condition along with two IgG samples pooled
from replicates of each group.

MSnset_data <- convertToMSnset(exp2_Xlink$intensities,
metadata = exp2_Xlink$metadata,
indExpData = c(7:16), Sequences = 2, Accessions = 6

)

3 Quality control

Once an MSnSet object has been created, various descriptive statistics methods can be used to check
the quality of the dataset. The intensityPlot function generates a peptide intensity distribution plot
that helps in identifying samples with outlier distributions. Figure 1 shows the distribution of the log-
intensity of peptides/proteins for each sample. An outlier sample DSG.FA.rep01 can be identified from
this plot. IgG control samples representing low background intensities will have shifted /distinct intensity
distribution curve as compared to other samples and should not be considered as outliers.

intensityPlot(MSnset_data, title = "Peptide intensity distribution")

The intensities can also be viewed in the form of boxplots by intensityPlot. Figure 2 shows the
distribution of peptides intensities for each sample. r1iPlot can be used to visualise unwanted variation
in a data set. It is similar to the relative log expression plot developed for microarray analysis - see
Gandolfo and Speed (2018). Rather than examining gene expression, the RLI plot (Figure 3) uses the
MS intensities for each peptide or the summarised protein intensities.
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Figure 1: Density plots of raw intensities for TMT-10plex experiment.

intensityBoxplot(MSnset_data, title = "Peptide intensity distribution")

rliPlot(MSnset_data, title = "Relative Peptide intensity")
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Figure 2: Boxplot of raw intensities for TMT-10plex experiment.
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Figure 3: RLI of raw intensities for TMT-10plex experiment.
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Figure 4: Correlation plot of peptide intensitites

A Correlation plot can be generated by corrPlot to visualize the level of linear association of samples
within and between groups. The plot in Figure 4 displays high correlation among samples within each
group, however an outlier sample is also identified in one of the groups (DSG.FA).

corrPlot (MSnset_data)
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Figure 5: Clustering plot of peptide intensitites

Hierarchical clustering can be performed by hierarchicalPlot to produce a dendrogram displaying
the hierarchical relationship among samples (Figure 5). The horizontal axis shows the dissimilarity
(measured by means of the Euclidean distance) between samples: similar samples appear on the same
branches. Colors correspond to groups. If the data set contains zeros, it will be necessary to add a small
value (e.g. 0.01) to the intentsities in order to avoid errors while generating dendrogram.

exprs(MSnset_data) <- exprs(MSnset_data) + 0.01
hierarchicalPlot(MSnset_data)
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Figure 6: PCA plot of peptide intensitites

A visual representation of the scaled loading of the first two dimensions of a PCA analysis can be
obtained by pcaPlot (Figure 6). Co-variances between samples are approximated by the inner product
between samples. Highly correlated samples will appear close to each other. The samples could be labeled
by name, replicate, group or experiment run allowing for identification of potential batch effects.

pcaPlot (MSnset_data, labelColumn = "BioRep", pointsize = 2)
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Figure 7: Peptide sequence coverage plot

A plot showing regions of the bait protein covered by captured peptides can be produced using
coveragePlot (Figure 7). The plot shows the location of peptides that have been identified with high
confidence across the protein sequence and the corresponding percentage of coverage. This provides a
means of assessing the efficiency of the immunoprecipitation approach in the gPLEX-RIME method. For
a better evaluation of the pull down assay we could compare the observed bait protein coverage with the
theoretical coverage from peptides predicted by known cleavage sites.

mySequenceFile <- system.file("extdata", "P03372.fasta", package = "qPLEXanalyzer")
coveragePlot (MSnset_data,

ProteinID = "P03372", ProteinName = "ESR1",

fastaFile = mySequenceFile

4 Data normalization

The data can be normalized to remove experimental artifacts (e.g. differences in sample loading vari-
ability, systemic variation) in order to separate biological variations from those introduced during the
experimental process. This would improve downstream statistical analysis to obtain more accurate com-
parisons. Different normalization methods can be used depending on the data:

e Quantiles: The peptide intensities are roughly replaced by the order statistics on their abundance.
The key assumption underneath is that there are only few changes between different groups. This
normalization technique has the effect of making the distributions of intensities from the different
samples identical in terms of their statistical properties. It is the strongest normalization method
and should be used carefully as it erases most of the difference between the samples. We would
recommend using it only for total proteome but not for gPLEX-RIME data.

e Mean/median scaling: In this normalization method the central tendencies (mean or median) of
the samples are aligned. The central tendency for each sample is computed and log transformed. A
scaling factor is determined by subtracting from each central tendency the mean of all the central
tendencies. The raw intensities are then divided by the scaling factor to get normalized ones.

e Row scaling: In this normalization method each peptide/protein intensity is divided by the mean /median

of its intensity across all samples and log2 transformed.

It is imperative to check the intensity distribution plot and PCA plot before and after normalization to
verify its effect on the dataset. In qPLEX-RIME data, the IgG (or control samples) should be normalized



separately from the bait protein pull-down samples. As IgG samples represent the low background
intensity, their intensity distribution profile is different from bait pull-downs. Hence, normalizing the
two together would result in over-correction of the IgG intensity resulting in inaccurate computation of
differences among groups.

If no normalization is necessary, skip this step and move to aggregation of peptides.

For this dataset, an outlier sample was identified by quality control plots and removed from fur-
ther analysis. Figure 8 displays the effect of various normalization methods on the peptide intensities
distribution.

MSnset_data <- MSnset_datal, -5]
pl <- intensityPlot(MSnset_data, title = "No normalization")

MSnset_norm_q <- normalizeQuantiles(MSnset_data)
p2 <- intensityPlot(MSnset_norm_q, title = "Quantile")

MSnset_norm_ns <- normalizeScaling(MSnset_data, scalingFunction = median)
p3 <- intensityPlot(MSnset_norm_ns, title = "Scaling")

MSnset_norm_gs <- groupScaling(MSnset_data,
scalingFunction = median,

groupingColumn = "SampleGroup")
p4 <- intensityPlot(MSnset_norm_gs, title = "WithinGrp Scaling")

grid.arrange(pl, p2, p3, p4, ncol = 2, nrow = 2)
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Figure 8: Peptide intensity distribution with various normalization methods
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5 Aggregation of peptide intensities into protein intensities

The quantitative dataset could consist of peptide or protein intensities. If the dataset consists of peptide
information, they can be aggregated to protein intensities for further analysis. For this, an annotation file
consisting of proteins with unique ID must be provided. An example file can be found with the package
corresponding to uniprot annotation of human proteins. It consists of four columns: "Accessions’, ’Gene’,
"Description’ and ’GeneSymbol’. The columns "Accessions’and ’GeneSymbol’ are mandatory for successful
downstream analysis while the other two columns are optional. The UniProt.ws package provides a
convenient means of obtaining these annotations using Uniprot protein accessions, as shown in the section
below. The summarizeIntensities function expects an annotation file in this format.

library(UniProt.ws)
library(dplyr)
proteins <- unique(fData(MSnset_data)$Accessions) [1:10]
columns <- c("ENTRY-NAME", "PROTEIN-NAMES", "GENES")
hs <- UniProt.ws::UniProt.ws(taxId = 9606)
first_ten_anno <- UniProt.ws::select(hs, proteins, columns, "UNIPROTKB") %>%
as_tibble() %>%
mutate(GeneSymbol = gsub(" .*", "" 6 GENES)) %>%
select(
Accessions = "UNIPROTKB", Gene = "ENTRY-NAME",
Description = "PROTEIN-NAMES", GeneSymbol
)

head(arrange(first_ten_anno, Accessions))

## # A tibble: 6 x 4

##  Accessions Gene Description GeneSymbol
## <chr> <chr> <chr> <chr>

## 1 P04264 K2C1_HU™ Keratin, type II cytoskeletal 1 0S=Hom™ KRT1

## 2 P05783 K1C18_H™ Keratin, type I cytoskeletal 18 0S=Hom™ KRT18

## 3 P14866 HNRPL_H™ Heterogeneous nuclear ribonucleoprotei” HNRNPL

## 4 P35527 K1C9_HU” Keratin, type I cytoskeletal 9 0S=Homo~™ KRT9

## 5 P35908 K22E_HU™ Keratin, type II cytoskeletal 2 epider™ KRT2

## 6 P39748 FEN1_HU™ Flap endonuclease 1 0S=Homo sapiens 0X~ FEN1

The aggregation can be performed by calculating the sum, mean or median of the raw or normal-
ized peptide intensities. The summarized intensity for a selected protein could be visualized using
peptideIntensityPlot. It plots all peptides intensities for a selected protein along with summarized
intensity across all the samples (Figure 9).

MSnset_Pnorm <- summarizeIntensities(MSnset_norm_gs, sum, human_anno)

peptideIntensityPlot (MSnset_data,
combinedIntensities = MSnset_Pnorm,
ProteinID = "P03372",
ProteinName = "ESR1"
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Figure 9: Summarized protein intensity
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6 Regression Analysis

To correct for the potential dependency of immunoprecipitated proteins (in qPLEX-RIME) on the bait
protein, a linear regression method is available in gPLFEXanalyzer. The regressIntensity function
performs a regression analysis in which bait protein levels is the independent variable (x) and the profile
of each of the other protein is the dependent variable (y). The residuals of the y=ax+b linear model
represent the protein quantification profiles that are not driven by the amount of the bait protein.

The advantage of this approach is that proteins with strong dependency on the target protein are
subjected to significant correction, whereas proteins with small dependency on the target protein are
slightly corrected. In contrast, if a standard correction factor were used, it would have the same magnitude
of effect on all proteins. The control samples (such as IgG) should be excluded from the regression analysis.
The regressIntensity function also generates the plot displaying the correlation between bait and other
protein before and after applying this method (Figure 10).

The example dataset shown below is from an ER qPLEX-RIME experiment carried out in MCF7 cells
to investigate the dynamics of the ER complex assembly upon 4-hydroxytamoxifen (OHT) treatment at
2h, 6h and 24h or at 24h post-treatment with the vehicle alone (ethanol). It consists of six biological
replicates for each condition spanned across three TMT experiments along with two IgG mock pull down
samples in each experiment.

data(exp3_0HT_ESR1)
MSnset_reg <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX2,
metadata = exp3_0HT_ESR1$metadata_qPLEX2,
indExpData = c(7:16), Sequences = 2, Accessions = 6
)
MSnset_P <- summarizeIntensities(MSnset_reg, sum, human_anno)
MSnset_P <- rowScaling(MSnset_P, mean)
IgG_ind <- which(pData(MSnset_P)$SampleGroup == "IgG")
Reg_data <- regressIntensity(MSnset_P,
controlInd = IgG_ind,
ProteinId = "P03372")

13
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Figure 10: Correlation between bait protein and enriched proteins before and after regression

7 Differential statistical analysis

A statistical analysis for the identification of differentially regulated or bound proteins is carried out
using limma based analysis. It uses linear models to assess differential expression in the context of
multifactor designed experiments. Firstly, a linear model is fitted for each protein where the model includes
variables for each group and MS run. Then, log2 fold changes between comparisons are estimated using
computeDiffStats. Multiple testing correction of p-values are applied using the Benjamini-Hochberg
method to control the false discovery rate (FDR). Finally, getContrastResults is used to get contrast
specific results.

The qPLEX-RIME experiment can consist of IgG mock samples to discriminate non-specific binding.
The controlGroup argument within getContrastResults function allows you to specify this group (such
as IgG). It then uses the mean intensities from the fitted linear model to compute log2 fold change
between IgG and each of the groups. The maximum log2 fold change over IgG control from the two
groups being compared is reported in the controlLogFoldChange column. This information can be used
to filter non-specific binding. A controlLogFoldChange more than 1 can be used as a filter to discover
specific interactors.

The results of the differential protein analysis can be visualized using maVolPlot function. It plots
average log2 protein intensity to log2 fold change between groups compared. This enables quick visual-
ization (Figure 11) of significantly abundant proteins between groups. maVolPlot could also be used to
view differential protein results in a volcano plot (Figure 12) to compare the size of the fold change to
the statistical significance level.

contrasts <- c(DSG.FA_vs_FA = "DSG.FA - FA")
diffstats <- computeDiffStats(MSnset_Pnorm, contrasts = contrasts)

14
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Figure 11: MA plot of the quantified proteins

diffexp <- getContrastResults(
diffstats = diffstats,
contrast = contrasts,
controlGroup = "IgG"

)

maVolPlot(diffstats, contrast = contrasts, plotType = "MA", title = contrasts)

maVolPlot(diffstats,
contrast = contrasts,
plotType = "Volcano",
title = contrasts)
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Figure 12: Volcano plot of the quantified proteins

Session Information

sessionInfo ()

#H#
##
#H#t
##
##
##
##
##
##
##
##
##
##
#H#t
##
##
##
##
##
##
##
##

R version 3.6.0 (2019-04-26)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS

Matrix products: default
BLAS:

/home/biocbuild/bbs-3.9-bioc/R/1ib/1libRblas.so

LAPACK: /home/biocbuild/bbs-3.9-bioc/R/1ib/1ibRlapack.so

Random number generation:

RNG:
Normal:
Sample:

locale:

Mersenne-Twister
Inversion
Rounding

[1]
(3]
(5]
[7]
(9]
[11]

LC_CTYPE=en_US.UTF-8
LC_TIME=en_US.UTF-8
LC_MONETARY=en_US.UTF-8
LC_PAPER=en_US.UTF-8
LC_ADDRESS=C

LC_NUMERIC=C
LC_COLLATE=C
LC_MESSAGES=en_US.UTF-8
LC_NAME=C
LC_TELEPHONE=C

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
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##
##
##
##
##
##
##
##
#H#t
##
#H#t
##
##
##
##
##
##
##
##
#H#t
##
#Ht
##
##
##
##
##
##
##
##
#H#t
##
#H#t
##
##
##
##
##
##
##
##
#Ht

[1] stats4
[7] datasets

other attached packages:

[1]
[4]
(7]
[10]

parallel
methods

dplyr_0.8.0.1
MSnbase_2.10.0
mzR_2.18.0
Biobase_2.44.0

stats

gridExtra_2.3

Rcpp_1.0.1
BiocGenerics_0.30.0

graphics

loaded via a namespace (and not attached):

[1]

(3]

(5]

(7]

(9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[371]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[63]
[55]
[5671]
[569]
[61]
[63]

lattice_0.20-38
Biostrings_2.52.0
assertthat_0.2.1
foreach_1.4.4

GenomeInfoDb_1.20.0

mzID_1.22.0
highr_0.8
pillar_1.3.1
rlang_0.3.4

preprocessCore_1.46.0

labeling 0.3
stringr_1.4.0
munsell_0.5.0
xfun_0.6
pcaMethods_1.76.0
tibble_2.1.1
TRanges_2.18.0
XML_3.98-1.19
crayon_1.3.4
bitops_1.0-6
gtable_0.3.0
magrittr_1.5
ncdf4_1.16.1
stringi_1.4.3
XVector_0.24.0
doParallel_1.0.14
ggdendro_0.1-20
iterators_1.0.10
glue_1.3.1
colorspace_1.4-1
vsn_3.52.0
MALDIquant_1.19.2

tidyr_0.8.3
utf8_1.1.4
digest_0.6.18
R6_2.4.0
plyr_1.8.4
evaluate_0.13
ggplot2_3.1.1
zlibbioc_1.30.0
lazyeval_0.2.2
splines_3.6.0
BiocParallel_1.18.0
RCurl_1.95-4.12
compiler_3.6.0
pkgconfig 2.0.2
tidyselect_0.2.5

GenomeInfoDbData_1.2.1

codetools_0.2-16
fansi_0.4.0
MASS_7.3-51.4
grid_3.6.0
affy_1.62.0
scales_1.0.0
cli_1.1.0
impute_1.58.0
affyio_1.54.0
limma_3.40.0
RColorBrewer_1.1-2
tools_3.6.0
purrr_0.3.2
BiocManager_1.30.4

GenomicRanges_1.36.0

knitr_1.22
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grDevices utils

qPLEXanalyzer_1.2.0
ProtGenerics_1.16.0 S4Vectors_0.22.0
statmod_1.4.30
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