
Quick analysis of nucleosome positioning
experiments using the nucleR package

Oscar Flores Guri 1,2

1Institute for Research in Biomedicine
2Barcelona Supercomputing Center

2019-05-02

Contents

1 Introduction . 2

2 Reading data . 2

2.1 Reading Tiling Arrays . 2

2.2 Importing BAM files . 3

2.3 Next Generation Sequencing 4

2.4 MNase bias correction . 5

3 Signal Smoothing and Nucleosome Calling 6

3.1 Noise removal . 7

3.2 Peak detection and Nucleosome Calling 9

4 Exporting data . 13

5 Generating synthetic maps . 13

References . 14

Quick analysis of nucleosome positioning experiments using the nucleR package

1 Introduction

The nucleR2 package provides a high-level processing of genomic datasets focused in nucleo-
some positioning experiments, despite they should be also applicable to chromatin inmunopre-
cipitation (ChIP) experiments in general.
The aim of this package is not providing an all-in-one data analysis pipeline but complement
those existing specialized libraries for low-level data importation and pre-processment into
R/Bioconductor framework.
nucleR works with data from the two main high-troughput technologies available nowadays for
ChIP: Next Generation Sequencing/NGS (ChIP-seq) and Tiling Microarrays (ChIP-on-Chip).
This is a brief summary of the main functions:

• Data import: readBAM, processReads, processTilingArray
• Data transformation: coverage.rpm, filterFFT, controlCorrection
• Nucleosome calling: peakDetection, peakScoring
• Visualization: plotPeaks
• Data generation: syntheticNucMap

For more details about the functions and how to use them refer to the nucleR manual.
This software was published in Bioinformatics Journal. See the paper for additional information
(Flores and Orozco 2011).

2 Reading data

As mentioned previously, nucleR uses the pre-processed data of other lower level packages for
data importation, supporting a few but common formats that should fulfill the requirements
of most users.
ExpressionSet from package Biobase is used for Tiling Array experiments as described in
Starr and other packages for the Tiling Array manipulation. This kind of experiments can be
readed with the processTilingArray function.
AlignedRead from package ShortRead is recommended for NGS, covering most of the state
of the art sequencing technologies. Additionally, support for reads in RangedData format is
also provided (a range per read with a strand column).

2.1 Reading Tiling Arrays

Tiling Arrays are a cheap and fast way to have low-resolution nucleosome coverage maps.
They have been widely used in literature (Yuan et al. 2005, Lee et al. (2007), Mavrich et al.
(2008)), but complex statistical methods were needed for their processing (Liu 2007).
This kind of microarrays cover a part of the genome with certain spacing between probes which
causes a drop in the resolution and originates some problems. The nucleosome calling from
Tiling Array data required hard work on bioinformatics side and use of heavy and artificious
statistical machinery such as Hidden Markov Models (Yuan et al. 2005, Lee et al. (2007)) or
higher order Bayesian Networks (Kuan et al. 2009).

2

http://bioconductor.org/packages/nucleR2
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/Starr
http://bioconductor.org/packages/ShortRead

Quick analysis of nucleosome positioning experiments using the nucleR package

nucleR presents a new method based on a simple but effective peak calling method which
achieves a great performance at low computing cost that will be presented in subsequent
sections.
In order to standardize the data coming both from Tiling Arrays and NGS, the array fluorescence
intensities (usually the ratio of the hybridization of nucleosomal and control sample) are
converted to 1bp resolution by inferring the missed values from the neighboring probes. This
is done by the function processTilingArray:
processTilingArray(data, exprName, chrPattern, inferLen=50)

An example of a processed dataset is provided in this package. See the help page of tilingAr
ray_preproc for details on how it has been created. This object is a numeric vector covering
the 8000 first positions of chromosome 1 in yeast (Saccharomices cerevisiae genome SacCer1).
library(nucleR)

library(ggplot2)

library(IRanges)

library(GenomicRanges)

data(nucleosome_tiling)

head(nucleosome_tiling, n=25)

#> [1] 1.273222 1.281978 1.290734 1.299490 1.308246 1.352696 1.397145 1.441595

#> [9] 1.486044 1.501795 1.517547 1.533298 1.549049 1.547577 1.546105 1.544633

#> [17] 1.543161 1.539886 1.536612 1.533337 1.530063 1.488922 1.447782 1.406642

#> [25] 1.365502

This values represent the normalized fluorescence intensity from hybridized sample of nu-
cleosomal DNA versus naked DNA obtained from Starr . The values can be either direct
observations (if a probe was starting at that position) or a inferred value from neighboring
probes. This data can be passed directly to the filtering functions, as described later in the
section 3.

2.2 Importing BAM files

Additionally, the function importBAM, allows to directly import into R the mapped reads of a
NGS experiment contained in a BAM file. The user has to specify whether the file contains
paired-end or single-end read fragments.
sample.file <- system.file("extdata", "cellCycleM_chrII_5000-25000.bam",

package="nucleR")

reads <- readBAM(sample.file, type="paired")

head(reads)

#> GRanges object with 6 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] chrII 5790-5912 *
#> [2] chrII 5791-5920 *
#> [3] chrII 5809-5914 *
#> [4] chrII 5811-5983 *
#> [5] chrII 5815-5934 *
#> [6] chrII 5822-6096 *

3

http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/Starr

Quick analysis of nucleosome positioning experiments using the nucleR package

#> -------

#> seqinfo: 17 sequences from an unspecified genome; no seqlengths

2.3 Next Generation Sequencing

NGS has become one of the most popular technique to map nucleosome in the genome in
the last years (Kaplan et al. 2009, Schones et al. (2008), Xi et al. (2010)). The drop of the
costs of a genome wide sequencing together with the high resolution coverage maps obtained,
made it the election of many scientists.
The package ShortRead allows reading of the data coming from many sources (Bowtie, MAQ,
Illumina pipeline. . .) and has become one of the most popular packages in R/Bioconductor
for NGS data manipulation.
A new R package, called htSeqTools, has been recently created to perform preprocessing and
quality assesment on NGS experiments. nucleR supports most of the output generated by
the functions on that package and recommends its use for quality control and correction of
common biases that affect NGS.
nucleR handles ShortRead and RangedData data formats. The dataset nucleosome_htseq

includes some NGS reads obtained from a nucleosome positioning experiment also from yeast
genome, following a protocol similar to the one described in (Lee et al. 2007).
The paired-end reads coming from Illumina Genome Analyzer II sequencer were mapped using
Bowtie and imported into R using ShortRead . Paired ends where merged and sorted according
the start position. Those in the first 8000bp of chromosome 1 where saved for this example.
Further details are in the reference (Deniz et al. 2011):
data(nucleosome_htseq)

class(nucleosome_htseq)

#> [1] "GRanges"

#> attr(,"package")

#> [1] "GenomicRanges"

nucleosome_htseq

#> GRanges object with 18001 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] chr1 1-284 +

#> [2] chr1 5-205 +

#> [3] chr1 5-205 +

#> [4] chr1 5-209 +

#> [5] chr1 5-283 +

#>

#> [17997] chr1 7994-8151 +

#> [17998] chr1 7994-8151 +

#> [17999] chr1 7994-8151 +

#> [18000] chr1 7994-8152 +

#> [18001] chr1 7994-8152 +

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

4

http://bioconductor.org/packages/ShortRead
http://bioconductor.org/packages/htSeqTools
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/ShortRead

Quick analysis of nucleosome positioning experiments using the nucleR package

1Note that conver-
sion in the example
dataset gives huge val-
ues. This is because
r.p.m. expects a large
number of reads, and
this dataset is only a
fraction of a whole one.
Also take into account
that reads from single-
ended (or trimmed
reads) and reads from
paired-ended could
have different mean
value of coverage

Now we will transform the reads to a normalized format. Moreover, as the data is paired-ended
and we are only interested in mononucleosomes (which are typically 147bp), we will discard the
reads with a length greater than 200bp, allowing margin for some underdigestion but discarding
extra long reads. Note that the behaviour of fragmentLen is different for single-ended data,
see the manual page of this function for detailed information.
As our final objective is identifying the nucleosome positions, and BioconductornucleR does it
from the dyad, we will increase the sharpness of the dyads by removing some bases from the
ends of each read. In the next example, we will create two new objects, one with the original
paired-end reads and another one with the reads trimmed to the middle 40bp around the dyad
(using the trim argument).
Process the paired end reads, but discard those with length > 200

reads_pair <- processReads(nucleosome_htseq, type="paired", fragmentLen=200)

Process the reads, but now trim each read to 40bp around the dyad

reads_trim <- processReads(nucleosome_htseq, type="paired", fragmentLen=200,

trim=40)

The next step is obtain the coverage (the count of how many reads are in each position). The
standard IRanges package function coverage will work well here, but it is a common practice
to normalize the coverage values according to the total number of short reads obtained in the
NGS experiment. The common used unit is reads per milon (r.p.m.) which is the coverage
value divided by the total number of reads and multiplied per one milion. A quick and efficient
way to do this with nucleR is the coverage.rpm function.1

Calculate the coverage, directly in reads per million (r.p.m)

cover_pair <- coverage.rpm(reads_pair)

cover_trim <- coverage.rpm(reads_trim)

In Figure 1 we can observe the effect of trim attribute plotting both coverages. Note that
the coverages are normalized in the range 0–1:

2.4 MNase bias correction

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000

position

no
rm

 c
ov

er
ag

e

coverage

original

trimmed

Figure 1: Variation in the sharpness of the peaks using trim attribute

5

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/nucleR

Quick analysis of nucleosome positioning experiments using the nucleR package

The Microccocal Nuclease is a widely used enzyme that has been proved to have a biase for
certain dinucleotide steps (Deniz et al. 2011). In this package we offer a quick way to inspect
the effect of such artifact by correcting the profiles of nucleosomal DNA reads with a mock
sample of naked DNA digested with MNase.
The use of this function requires a paired-end control sample and a paired end or extended
single-read nucleosomal DNA sample. A toy example generated using synthetic data can be
found in Figure 2.
Toy example

map <- syntheticNucMap(as.ratio=TRUE, wp.num=50, fuz.num=25)

exp <- coverage(map$syn.reads)

ctr <- coverage(map$ctr.reads)

corrected <- controlCorrection(exp, ctr)

0

10

20

30

40

50

0 2000 4000 6000 8000

position

co
ve

ra
ge coverage

normal

corrected

Figure 2: Toy example of MNase biase correction
Random nucleosomal and control reads have been generated using synteticNucMap function and corrected
using controlCorrect.

3 Signal Smoothing and Nucleosome Calling

In the previous sections we converted the experimental data from NGS or Tiling Arrays to a
continous, 1bp resolution signal. In this section we will remove the noise present in the data
and score the peaks identified, giving place to the nucleosome calls.
Previously, in the literature, Hidden Markov Models, Support Vector Machines or other
complex intelligent agents where used for this task (Yuan et al. 2005, Lee et al. (2007), Kuan
et al. (2009), Chen et al. (2010), Xi et al. (2010)). This was needed for dealing with the
noise and uncertain characterization of the fuzzy positioning of the nucleosomes.
Despite this approach is a valid way to face the problem, the use of such artificious constructs
is difficult to implement and sometimes requires a subjective modeling of the solution,
constraining or at least conditioning the results observed.
The method presented here proposes to keep it simple, allowing the researcher to study the
results he or she is interested a posteriori.

6

Quick analysis of nucleosome positioning experiments using the nucleR package

nucleR aim is to evaluate where the nucleosomes are located and how accurate that position
is. We can find a nucleosome read in virtually any place in the genome, but some positions
will show a high concentration and will allow us to mark this nucleosome as well-positioned
whereas other will be less phased giving place to fuzzy or de-localized nucleosomes (Jiang
and Pugh 2009).
We think it’s better to provide a detailed but convenient identification of the relevant
nucleosome regions and score them according to its grade of fuzziness. From our point of
view, every researcher should make the final decision regarding filtering, merging or classifying
the nucleosomes according its necessities, and nucleR is only a tool to help in this dirty part
of the research.

3.1 Noise removal

NGS and specially Tiling Array data show a very noisy profile which complicates the process of
the nucleosome detection from peaks in the signal. A common approach used in the literature
is smooth the signal with a sliding window average and then use a Hidden Markov Model to
calculate the probabilities of having one or another state.

original slinding w. 20 bp slinding w. 50 bp slinding w. 100 bp

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
−3
−2
−1

0
1
2

position

in
te

ns
ity

Figure 3: Original intensities from tiling array experiment
Smoothing using a sliding window of variable length (0, 20, 50 and 100 bp) is presented.

As can be seen in Figure 3, data needs some smoothing to be interpretable, but a simple
sliding window average is not sufficient. Short windows allow too much noise but larger ones
change the position and the shape of the peaks.
nucleR proposes a method of filtering based on the Fourier Analysis of the signal and the
selection of its principal components.
Any signal can be described as a function of individual periodic waves with different frequencies
and the combination of them creates more complex signals. The noise in a signal can be
described as a small, non periodic fluctuations, and can be easily identified and removed
(Smith 1999).
nucleR uses this theory to transform the input data into the Fourier space using the Fast
Fourier Transform (FFT). A FFT has a real and a imaginary component. The representation
of the real component it’s called the power spectrum of the signals and shows which are the
frequencies that have more weight (power) in the signal. The low frequency components (so,
very periodic) usually have a huge influence in the composite signal, but its rellevance drops
as the frequency increases.
We can look at the power spectrum of the example dataset with the following command:
fft_ta <- filterFFT(nucleosome_tiling, pcKeepComp=0.01, showPowerSpec=TRUE)

7

http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR

Quick analysis of nucleosome positioning experiments using the nucleR package

−300

0

300

600

0 1000 2000 3000 4000

components

po
w

er
Selected components threshold marked as red line

Figure 4: Power spectrum of the example Tiling Array data, percentile 1 marked with a dashed line

In the Figure 4 only the half of the components are plotted, as the spectrum is repeated
symmetrically respect to its middle point. The first component (not shown in the plot), has
period 1, and, in practice, is a count of the lenght of the signal, so it has a large value.
High frequency signals are usually echoes (repeating waves) of lower frequencies, i.e. a peak
at 10 will be the sum of the pure frequence 10 plus the echo of the frequency 5 in its 2nd
repetition. Echoes can be ignored without losing relevant information.
The approach nucleR follows is supposing that with just a small percentage of the components
of the signal, the input signal can be recreated with a high precision, but without a significant
amount of noise. We check empirically that with 1% or 2% of the components (this means
account 1 or 2 components for each 100 positions of the genomic data) it’s enough to recreate
the signal with a very high correlation (>0.99). Tiling Array could require more smoothing
(about 1% should be fine) and NGS has less noise and more components can be selected for
fitting better the data (about 2%), See Figure 4 for the selected components in the example.
In order to easy the choice of the pcKeepComp parameter, nucleR includes a function for
automatic detection of a fitted value that provides a correlation between the original and
the filtered profiles close to the one specified. See the manual page of pcKeepCompDetect for
detailed information.
In short, the cleaning process consists on converting the coverage/intensity values to the
Fourier space, and knock-out (set to 0) the components greater than the given percentile
in order to remove the noise from the profile. Then the inverse Fast Fourier Transform is
applyied to recreate the filtered signal. In Figure 5 the filtered signal is overlapped to the raw
signal.
The cleaning of the input has almost no effect on the position and shape of the peaks,
mantaining a high correlation with the original signal but allowing achieve a great performance
with a simple peak detection algorithm:
tiling_raw <- nucleosome_tiling

tiling_fft <- filterFFT(tiling_raw, pcKeepComp=0.01)

htseq_raw <- as.vector(cover_trim[[1]])

htseq_fft <- filterFFT(htseq_raw, pcKeepComp=0.02)

cor(tiling_raw, tiling_fft, use="complete.obs")

#> [1] 0.7153782

cor(htseq_raw, htseq_fft, use="complete.obs")

#> [1] 0.9937643

8

http://bioconductor.org/packages/nucleR
http://bioconductor.org/packages/nucleR

Quick analysis of nucleosome positioning experiments using the nucleR package

intensity
coverage

0 1000 2000 3000

−3

−2

−1

0

1

2

0

5000

10000

15000

position

treatment

raw

filtered

Figure 5: Filtering in Tiling Array (up, blue) (1% comp.) and NGS (down red) (2% comp.)

3.2 Peak detection and Nucleosome Calling

After noise removal, the calling for nucleosomes is easy to perform. In nucleosome positioning,
in contrast with other similar experiments like ChIP, the problem for the peaks detection
algorithms is deal with the presence of an irregular signal which causes lots of local maxima
(i.e., peaks due to noise inside a real peak). Here, we avoid this problem applying the FFT
filter, allowing the detection of peaks in a simple but efficient way just looking for changes in
the trend of the profile. This is implemented in the peakDetection function and results can
be represented with the function plotPeaks:
peaks <- peakDetection(htseq_fft, threshold="25%", score=FALSE)

peaks

#> [1] 218 368 452 518 623 715 776 836 983 1213 1331 1437 1549 1603

#> [15] 1672 1785 1945 2005 2053 2241 2330 2546 2605 2702 2764 2899 3124 3285

#> [29] 3354 3518 3710 3869 4009 4137 4233 4305 4383 4524 4596 4832 4912 4981

#> [43] 5171 5241 5291 5366 5458 5529 5598 5688 5752 5906 5978 6065 6123 6238

#> [57] 6312 6410 6472 6669 6834 6892 7002 7048 7100 7152 7314 7405 7457 7545

#> [71] 7615 7684 7775 7932 8042

plotPeaks(peaks, htseq_fft, threshold="25%", ylab="coverage")

All the peaks above a threshold value are identified. Threshold can be set to 0 for detecting all
the peaks, but this is not recommended as usually small fluctuations can apear in bottom part
of the profile. This package also provides an automatic scoring of the peaks, which accounts
for the two main features we are interested in: the height and the sharpness of the peak.

9

Quick analysis of nucleosome positioning experiments using the nucleR package

0

10000

20000

30000

0 2000 4000 6000 8000

position

co
ve

ra
ge

Figure 6: Output of plotPeaks function
Peaks are spotted in red and detection threshold marked with an horitzontal line.

The height of a peak is a direct measure of the reads coverage in the peak position, but
represented as a probability inside a Normal distribution.
The sharpness is a measure of how fuzzy is a nucleosome. If a peak is very narrow and the
surrounding regions are depleted, this is an indicator of a good positioned nucleosome, while
wide peaks or peaks very close to each other are probably fuzzy nucleosomes (despite the
coverage can be very high in this region).
Scores can be calculated with the peakScoring function or directly with the argument
score=TRUE in peakDetection.
peaks <- peakDetection(htseq_fft, threshold="25%", score=TRUE)

head(peaks)

#> peak score

#> 1 218 0.9749612

#> 2 368 0.6824909

#> 3 452 0.2675856

#> 4 518 0.3829457

#> 5 623 0.4858367

#> 6 715 0.8408881

plotPeaks(peaks, htseq_fft, threshold="25%")

0.97

0.68

0.270.380.49

0.84

0.27
0.58

0.99

0.51

0.16

0.74

0.290.19

0.60

0.21

0.55
0.800.780.86

0.380.41
0.150.20

0.43
0.70

0.99

0.650.660.69

1.00

0.500.45
0.62

0.270.35
0.62

0.160.22

0.56

0.160.22

0.99

0.550.63

0.89

0.17

0.99

0.640.53
0.77

0.24
0.37

0.810.85
0.66
0.53

0.38

1.00

0.940.91

0.38
0.260.36

0.220.18

1.00

0.990.990.97

0.25

0.92

0.49

1.00

0.81

0

10000

20000

30000

0 2000 4000 6000 8000

position

co
ve

ra
ge

Figure 7: plotPeaks function with score=TRUE

10

Quick analysis of nucleosome positioning experiments using the nucleR package

The scores in Figure 7 only account for the punctual height of the peak. As said previously,
this measure can be improved by accounting the fuzzyness of a nucleosome call (the sharpness
of the peak). This requires a way to account for longer range peaks, which can be obtained
with the width argument. In this way one can convert the identified nucleosome dyads to
whole nucleosome length ranges and account for its degree of fuzzyness:
peaks <- peakDetection(htseq_fft, threshold="25%", score=TRUE, width=140)

peaks

#> GRanges object with 74 ranges and 3 metadata columns:

#> seqnames ranges strand | score score_w

#> <Rle> <IRanges> <Rle> | <numeric> <numeric>

#> [1] * 148-287 * | 0.821329600073532 0.66769801554711

#> [2] * 298-437 * | 0.63851684558774 0.59454274280948

#> [3] * 382-521 * | 0.315750617962797 0.363915608187116

#> [4] * 448-587 * | 0.518273290379434 0.653600845587843

#> [5] * 553-692 * | 0.518243691602914 0.550650655898527

#>

#> [70] * 7475-7614 * | 0.864564673381752 0.755883863803246

#> [71] * 7545-7684 * | 0.21205553046579 0.176273435846357

#> [72] * 7614-7753 * | 0.787492153090483 0.654097601194428

#> [73] * 7705-7844 * | 0.471687940296344 0.455279255076558

#> [74] * 7862-8001 * | 0.913529783057904 0.827059566759111

#> score_h

#> <numeric>

#> [1] 0.974961184599953

#> [2] 0.682490948365999

#> [3] 0.267585627738477

#> [4] 0.382945735171026

#> [5] 0.485836727307301

#>

#> [70] 0.973245482960258

#> [71] 0.247837625085224

#> [72] 0.920886704986538

#> [73] 0.48809662551613

#> [74] 0.999999999356697

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

plotPeaks(peaks, htseq_fft, threshold="25%")

Note than in Figure 8 overlapped peaks in a width and tall region are penalized, meanwhile
the peaks with surrounding depleted regions have a higher relative score. This is the approach
recommended for working with nucleosome calls.
Nucleosome calls filtering, merging or classification can be performed with standard
Biocpkg{IRanges} functions, shuch as reduce, findOverlaps or disjoint.
The next example shows a simple way to merge those nucleosomes which are overlap accounting
them as a fuzzy regions:
nuc_calls <- ranges(peaks[peaks$score > 0.1,])

red_calls <- reduce(nuc_calls)

red_class <- RangedData(red_calls, isFuzzy=width(red_calls) > 140)

11

Quick analysis of nucleosome positioning experiments using the nucleR package

0.82

0.64

0.320.520.52

0.72

0.250.59

0.99

0.61

0.23

0.71

0.400.23

0.66

0.47

0.47
0.620.630.75

0.420.58
0.220.28

0.54
0.68

0.91

0.550.550.60

0.82

0.740.61
0.65

0.330.41
0.73

0.340.48

0.64

0.240.41

0.86

0.430.51
0.75

0.17

0.90

0.530.48
0.70

0.34
0.38

0.630.68
0.580.50

0.31

0.92

0.830.75

0.37
0.380.430.300.32

0.89

0.740.750.86

0.21

0.79

0.47

0.91

0

10000

20000

30000

0 2000 4000 6000 8000

position

co
ve

ra
ge

Figure 8: plotPeaks output with score=TRUE and width=140

red_class

#> RangedData with 20 rows and 1 value column across 1 space

#> space ranges | isFuzzy

#> <factor> <IRanges> | <logical>

#> 1 1 148-287 | FALSE

#> 2 1 298-905 | TRUE

#> 3 1 913-1052 | FALSE

#> 4 1 1143-1854 | TRUE

#> 5 1 1875-2122 | TRUE

#> 6 1 2171-2399 | TRUE

#> 7 1 2476-2968 | TRUE

#> 8 1 3054-3193 | FALSE

#> 9 1 3215-3423 | TRUE

#>

#> 12 1 3799-4452 | TRUE

#> 13 1 4454-4665 | TRUE

#> 14 1 4762-5050 | TRUE

#> 15 1 5101-5821 | TRUE

#> 16 1 5836-6541 | TRUE

#> 17 1 6599-6738 | FALSE

#> 18 1 6764-7221 | TRUE

#> 19 1 7244-7844 | TRUE

#> 20 1 7862-8001 | FALSE

12

Quick analysis of nucleosome positioning experiments using the nucleR package

0

10000

20000

30000

0 2000 4000 6000 8000

position

co
ve

ra
ge

Figure 9: Simple example of ranges manipulation to plot fuzzy nucleosomes

4 Exporting data

export.wig and export.bed allow exportation of coverage/intensity values and nucleosome
calls in a standard format which works on most of the genome browsers available today (like
UCSC Genome Browser or Integrated Genome Browser).
export.wig creates WIG files wich are suitable for coverage/intensities, meanwhile export.bed
creates BED files which contain ranges and scores information, suitable for calls.

5 Generating synthetic maps

nucleR includes a synthetic nucleosome map generator, which can be helpful in benchmarking
or comparing data against a random map. syntheticNucMap function does that, allowing a
full customization of the generated maps.
When generating a map, the user can choose the number of the well-positioned and fuzzy
nucleosome, as their variance or maximum number of reads. It also provides an option to
calculate the ratio between the generated nucleosome map and a mock control of random
reads (like a naked DNA randomly fragmented sample) to simulate hybridation data of Tiling
Arrays.
The perfect information about the nucleosome dyads is returned by this function, together
with the coverage or ratio profiles.
See the man page of this function for detailed information about the different parameters and
options.
syn <- syntheticNucMap(wp.num=100, wp.del=10, wp.var=30, fuz.num=20,

fuz.var=50, max.cover=20, nuc.len=147, lin.len=20, rnd.seed=1,

as.ratio=TRUE, show.plot=TRUE)

13

http://bioconductor.org/packages/nucleR

Quick analysis of nucleosome positioning experiments using the nucleR package

nu
m

be
r

of
 r

ea
ds

lo
g2

 r
at

io

0 5000 10000 15000

0

10

20

30

−2.5
0.0
2.5

position

well−pos

fuzzy

coverage

ratio

Figure 10: Example synthetic coverage map of 90 well-positioned (100-10) and 20 fuzzy nucleo-
somes

References

Chen, X., M. M. Hoffman, J. a. Bilmes, J. R. Hesselberth, and W. S. Noble. 2010. “A
dynamic Bayesian network for identifying protein-binding footprints from single molecule-based
sequencing data.” Bioinformatics 26:i334–i342.
Deniz, O., O. Flores, F. Battistini, A. Perez, M. Soler-Lopez, and M. Orozco. 2011. “Physical
properties of naked DNA influence nucleosome positioning and correlate with transcription
start and termination sites in yeast.” BMC Genomics 12 (October):489.
Flores, O., and M. Orozco. 2011. “nucleR: a package for non-parametric nucleosome
positioning.” Bioinformatics 27 (15):2149–50.
Jiang, Cizhong, and B Franklin Pugh. 2009. “Nucleosome positioning and gene regulation:
advances through genomics.” Nature Reviews. Genetics 10 (3):161–72.
Kaplan, Noam, Irene K Moore, Yvonne Fondufe-Mittendorf, Andrea J Gossett, Desiree Tillo,
Yair Field, Emily M LeProust, et al. 2009. “The DNA-encoded nucleosome organization of a
eukaryotic genome.” Nature 458:362–6.
Kuan, Pei Fen, Dana Huebert, Audrey Gasch, and Sunduz Keles. 2009. “A non-homogeneous
hidden-state model on first order differences for automatic detection of nucleosome positions.”
Statistical Applications in Genetics and Molecular Biology 8:Article29.
Lee, William, Desiree Tillo, Nicolas Bray, Randall H Morse, Ronald W Davis, Timothy R
Hughes, and Corey Nislow. 2007. “A high-resolution atlas of nucleosome occupancy in yeast.”
Nature Genetics 39:1235–44.
Liu, X Shirley. 2007. “Getting started in tiling microarray analysis.” PLoS Computational
Biology 3:1842–4.
Mavrich, Travis N, Cizhong Jiang, Ilya P Ioshikhes, Xiaoyong Li, Bryan J Venters, Sara J
Zanton, Lynn P Tomsho, et al. 2008. “Nucleosome organization in the Drosophila genome.”
Nature 453:358–62.

14

Quick analysis of nucleosome positioning experiments using the nucleR package

Schones, Dustin E, Kairong Cui, Suresh Cuddapah, Tae-Young Roh, Artem Barski, Zhibin
Wang, Gang Wei, and Keji Zhao. 2008. “Dynamic regulation of nucleosome positioning in
the human genome.” Cell 132:887–98.
Smith, Steven W. 1999. The Scientist and Engineer’s Guide to Digital Signal Processing
(Second ed.). California Technical Publishing.
Xi, Liqun, Yvonne Fondufe-Mittendorf, Lei Xia, Jared Flatow, Jonathan Widom, and Ji-Ping
Wang. 2010. “Predicting nucleosome positioning using a duration Hidden Markov Model.”
BMC Bioinformatics 11:346.
Yuan, Guo-Cheng, Yuen-Jong Liu, Michael F Dion, Michael D Slack, Lani F Wu, Steven J
Altschuler, and Oliver J Rando. 2005. “Genome-scale identification of nucleosome positions
in S. cerevisiae.” Science (New York, N.Y.) 309:626–30.

15

	1 Introduction
	2 Reading data
	2.1 Reading Tiling Arrays
	2.2 Importing BAM files
	2.3 Next Generation Sequencing
	2.4 MNase bias correction

	3 Signal Smoothing and Nucleosome Calling
	3.1 Noise removal
	3.2 Peak detection and Nucleosome Calling

	4 Exporting data
	5 Generating synthetic maps
	References

