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1 Introduction

compcodeR is an R package that provides an interface to several popular methods for dif-
ferential expression analysis of RNAseq data and contains functionality for comparing the
outcomes and performances of several differential expression methods applied to the same
data set. The package also contains a function for generating synthetic RNAseq counts,
using the simulation framework described in more detail in

C Soneson and M Delorenzi: A comparison of methods for differential expression
analysis of RNA-seq data. BMC Bioinformatics 2013, 14:91.

This vignette provides a tutorial on how to use the different functionalities of the compcodeR
package.
Currently, the differential expression interfaces provided in the package are restricted to
comparisons between two conditions. However, many of the comparison functions are more
general and can also be applied to test results from other contrast types, as well as to test
results from other data types than RNAseq.

Important! Since compcodeR provides interfaces to differential expression
analysis methods implemented in other R packages, take care to cite the
appropriate references if you use any of the interface functions (see the
reference manual for more information). Also be sure to check the code
that was used to run the differential expression analysis, using e.g. the gen

erateCodeHTMLs function (see Section 3.3 for more information) to make
sure that parameters etc. agree with your intentions and that there were
no errors or serious warnings.

2 The compData class

Within the compcodeR package (version ≥ 0.2.0), data sets and results are represented as
objects of the compData class. The functions in the package are still compatible with the
list-based representation used in version 0.1.0, but we strongly encourage users to use the
compData class, and all results generated by the package will be given in this format. If you
have a data or result object generated with compcodeR version 0.1.0, you can convert it to
a compData object using the convertListTocompData function.
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A compData object has at least three slots, containing the count matrix, sample annotations
and a list containing at least an identifying name and a unique ID for the data set. It
can also contain variable annotations, such as information regarding genes that are known
to be differentially expressed. After performing a differential expression analysis, the comp

Data object contains additional information, such as which method was used to perform the
analysis, which settings were used and the gene-wise results from the analysis. More detailed
information about the compData class are available in Sections 6.1 and 6.2.

3 A sample workflow

This section contains a sample workflow showing the main functionalities of the compcodeR
package. We start by generating a synthetic count data set (Section 3.1), to which we then
apply three different differential expression methods (Section 3.2). Finally, we compare the
outcome of the three methods and generate a report summarizing the results (Section 3.3).

3.1 Simulating data

The simulations are performed following the description by (Soneson and Delorenzi, 2013). As
an example, we use the generateSyntheticData function to generate a synthetic count data
set containing 12,500 genes and two groups of 5 samples each, where 10% of the genes are
simulated to be differentially expressed between the two groups (equally distributed between
up- and downregulated in group 2 compared to group 1). Furthermore, the counts for all
genes are simulated from a Negative Binomial distribution with the same dispersion in the
two sample groups, and no outlier counts are introduced. We filter the data set by excluding
only the genes with zero counts in all samples (i.e., those for which the total count is 0). This
simulation setting corresponds to the one denoted B625

625 in (Soneson and Delorenzi, 2013).
The following code creates a compData object containing the simulated data set and saves it
to a file named "B_625_625_5spc_repl1.rds".
library(compcodeR)

B_625_625 <- generateSyntheticData(dataset = "B_625_625", n.vars = 12500,

samples.per.cond = 5, n.diffexp = 1250,

repl.id = 1, seqdepth = 1e7,

fraction.upregulated = 0.5,

between.group.diffdisp = FALSE,

filter.threshold.total = 1,

filter.threshold.mediancpm = 0,

fraction.non.overdispersed = 0,

output.file = "B_625_625_5spc_repl1.rds")

The summarizeSyntheticDataSet function provides functionality to check some aspects of
the simulated data by generating a report summarizing the parameters that were used for the
simulation, as well as including some diagnostic plots. The report contains two MA-plots,
showing the estimated average expression level and the log-fold change for all genes, indicating
either the truly differentially expressed genes or the total number of outliers introduced for
each gene. It also shows the log-fold changes estimated from the simulated data versus those
underlying the simulation. The input to the summarizeSyntheticDataSet function can be
either a compData object or the path to a file containing such an object.
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summarizeSyntheticDataSet(data.set = "B_625_625_5spc_repl1.rds",

output.filename = "B_625_625_5spc_repl1_datacheck.html")

Figure 1 shows two of the figures generated by this function. The left panel shows an MA
plot with the genes colored by the true differential expression status. The right panel shows
the relationship between the true log-fold changes between the two sample groups underlying
the simulation, and the estimated log-fold changes based on the simulated counts.

Figure 1: Example figures from the summarization report generated for a simulated data set
The left panel shows an MA plot, with the genes colored by the true differential expression status. The
right panel shows the relationship between the true log-fold changes between the two sample groups un-
derlying the simulation, and the estimated log-fold changes based on the simulated counts. Also here, the
genes are colored by the true differential expression status.
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3.2 Performing differential expression analysis

We will now apply some of the interfaced differential expression methods to find genes that
are differentially expressed between the two conditions in the simulated data set. This is
done through the runDiffExp function, which is the main interface for performing differen-
tial expression analyses in compcodeR. The code below applies three differential expression
methods to the data set generated above: the voom transformation from the limma package
(combined with limma for differential expression), the exact test from the edgeR package,
and a regular t-test applied directly on the count level data.
runDiffExp(data.file = "B_625_625_5spc_repl1.rds",

result.extent = "voom.limma", Rmdfunction = "voom.limma.createRmd",

output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "B_625_625_5spc_repl1.rds",

result.extent = "edgeR.exact", Rmdfunction = "edgeR.exact.createRmd",

output.directory = ".", norm.method = "TMM",

trend.method = "movingave", disp.type = "tagwise")

runDiffExp(data.file = "B_625_625_5spc_repl1.rds", result.extent = "ttest",

Rmdfunction = "ttest.createRmd",

output.directory = ".", norm.method = "TMM")

The code needed to perform each of the analyses is provided in the *.createRmd functions.
To obtain a list of all available *.createRmd functions (and hence of the available differential
expression methods), we can use the listcreateRmd() function. Example calls are also
provided in the reference manual (see the help pages for the runDiffExp function).
listcreateRmd()

## [1] "DESeq.GLM.createRmd"

## [2] "DESeq.nbinom.createRmd"

## [3] "DESeq2.createRmd"

## [4] "DSS.createRmd"

## [5] "EBSeq.createRmd"

## [6] "NBPSeq.createRmd"

## [7] "NOISeq.prenorm.createRmd"

## [8] "TCC.createRmd"

## [9] "baySeq.createRmd"

## [10] "edgeR.GLM.createRmd"

## [11] "edgeR.exact.createRmd"

## [12] "logcpm.limma.createRmd"

## [13] "sqrtcpm.limma.createRmd"

## [14] "ttest.createRmd"

## [15] "voom.limma.createRmd"

## [16] "voom.ttest.createRmd"

## [17] "vst.limma.createRmd"

## [18] "vst.ttest.createRmd"

You can also apply your own differential expression method to the simulated data (see Sec-
tion 5).
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3.3 Comparing results from several differential expression meth-
ods

Once we have obtained the results of the differential expression analyses (either by the meth-
ods interfaced by compcodeR or in other ways, see Section 5), we can compare the results
and generate an HTML report summarizing the results from the different methods from many
different aspects (see Section 7 for an overview of the comparison metrics). In compcodeR,
there are two ways of invoking the comparison functionality; either directly from the command
line or via a graphical user interface (GUI). The GUI is mainly included to avoid long function
calls and provide a clear overview of the available methods and parameter choices. To use
the GUI the R package rpanel must be installed (which assumes that BWidget is available).
Moreover, the GUI may have rendering problems on certain platforms, particularly on small
screens and if many methods are to be compared. Below, we will show how to perform the
comparison using both approaches.

3.3.1 The graphical user interface

First, we consider the runComparisonGUI function, to which we provide a list of directories
containing our result files, and the directory where the final report will be generated. Since the
three result files above were saved in the current working directory, we can run the following
code to perform the comparison:
runComparisonGUI(input.directories = ".",

output.directory = ".", recursive = FALSE)

This opens a graphical user interface (Figure 2) where we can select which of the data files
available in the input directories that should be included as a basis for the comparison, and
which comparisons to perform (see Section 7 for an overview). Through this interface, we can
also set p-value cutoffs for significance and other parameters that will govern the behaviour
of the comparison.

Important! When you have modified a value in one of the textboxes (p-
value cutoffs etc.), press Return on your keyboard to confirm the assign-
ment of the new value to the parameter. Always check in the resulting
comparison report that the correct values were recognized and used for the
comparisons.

After the selections have been made, the function will perform the comparisons and generate
an HTML report, which is saved in the designated output directory and automatically named
compcodeR_report_<timestamp>.html. Please note that depending on the number of com-
pared methods and the number of included data sets, this step may take several minutes.
compcodeR will notify you when the report is ready (with a message Done! in the console).

Note! Depending on the platform you use to run R, you may see a prompt
(” > ”) in the console before the analysis is done. However, compcodeR
will always notify you when it is finished, by typing Done! in the console.
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Figure 2: Screenshot of the graphical user interface used to select data set (left) and set parameters
(right) for the comparison of differential expression methods
The available choices for the “Data set”, “DE methods”, “Number of samples” and “Replicates” are auto-
matically generated from the compData objects available in the designated input directories. Only one data
set can be used for the comparison. In the lower part of the window we can set (adjusted) p-value thresh-
olds for each comparison method separately. For example, we can evaluate the true FDR at one adjusted
p-value threshold, and estimate the TPR for another adjusted p-value threshold. We can also set the maxi-
mal number of top-ranked variables that will be considered for the false discovery curves.

The comparison function will also generate a subdirectory called compcodeR_code, where the
R code used to perform each of the comparisons is detailed in HTML reports, and another
subdirectory called compcodeR_figure, where the plots generated in the comparison are saved.
The code HTML reports can also be generated manually for a given result file (given that
the code component is present in the compData object (see Section 6.2), using the function
generateCodeHTMLs. For example, to generate a report containing the code that was run to
perform the t-test above, as well as the output from the R console, we can write:
generateCodeHTMLs("B_625_625_5spc_repl1_ttest.rds", ".")

These reports are useful to check that there were no errors or warnings when running the
differential expression analyses.

3.3.2 Direct command-line call

Next, we show how to run the comparison by calling the function runComparison directly.
In this case, we need to supply the function with a list of result files to use as a basis for
the comparison. We can also provide a list of parameters (p-value thresholds, the differential
expression methods to include in the comparison, etc.). The default values of these parameters
are outlined in the reference manual. The following code provides an example, given the data
generated above.
file.table <- data.frame(input.files = c("B_625_625_5spc_repl1_voom.limma.rds",

"B_625_625_5spc_repl1_ttest.rds",
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"B_625_625_5spc_repl1_edgeR.exact.rds"),

stringsAsFactors = FALSE)

parameters <- list(incl.nbr.samples = NULL, incl.replicates = NULL,

incl.dataset = "B_625_625", incl.de.methods = NULL,

fdr.threshold = 0.05, tpr.threshold = 0.05,

typeI.threshold = 0.05, ma.threshold = 0.05,

fdc.maxvar = 1500, overlap.threshold = 0.05,

fracsign.threshold = 0.05,

comparisons = c("auc", "fdr", "tpr", "ma", "correlation"))

runComparison(file.table = file.table, parameters = parameters, output.directory = ".")

By setting incl.nbr.samples, incl.replicates and incl.de.methods to NULL, we ask com-
pcodeR to include all results provided in the file.table. By providing a vector of values for
each of these variables, it is possible to limit the selection to a subset of the provided files.
Please note that the values given to incl.replicates and incl.nbr.samples are matched
with values of the info.parameters$repl.id and info.parameters$samples.per.cond slots
in the data/result objects, and that the values given to incl.de.methods are matched with
values stored in the method.names$full.name slot of the result objects. If the values do
not match, the corresponding result object will not be considered in the comparison. Con-
sult the package manual for the full list of comparison methods available for use with the
runComparison function. Setting parameters = NULL implies that all results provided in the
file.table are used, and that all parameter values are set to their defaults (see the reference
manual). Note that only one dataset identifier can be provided to the comparison (that is,
parameters$incl.dataset must be a single string).

4 Using your own data

The compcodeR package provides a straightforward function for simulating count data (gen
erateSyntheticData). However, it is easy to apply the interfaced differential expression
methods to your own data, given that it is provided in a compData object (see Section 6.1
below for a description of the data format). You can use the function check_compData to
check that your object satisfies the necessary criteria to be fed into the differential expression
methods.
To create a compData object from a count matrix and a data frame with sample annotations,
you can use the function compData. The following code provides a minimal example. Note
that you need to provide a dataset name (a ’description’ of the simulation settings) as well
as a unique data set identifier uID, which has to be unique for each compData object (e.g.,
for each simulation instance, even if the same simulation parameters are used).
count.matrix <- matrix(round(1000*runif(4000)), 1000, 4)

sample.annot <- data.frame(condition = c(1, 1, 2, 2))

info.parameters <- list(dataset = "mytestdata", uID = "123456")

cpd <- compData(count.matrix = count.matrix,

sample.annotations = sample.annot,

info.parameters = info.parameters)

check_compData(cpd)

## [1] TRUE
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5 Providing your own differential expression code

The compcodeR package provides an interface for calling some of the most commonly used
differential expression methods developed for RNAseq data. However, it is easy to incorporate
your own favorite method. In principle, this can be done in one of two ways:

1. Write a XXX.createRmd function (where XXX corresponds to your method), similar to
the ones provided in the package, which creates a .Rmd file containing the code that is
run to perform the differential expression analysis. Then call this function through the
runDiffExp function. When implementing your function, make sure that the output is
a compData object, structured as described in Section 6.2. The *.createRmd functions
provided in the package take the following input arguments:

• data.path – the path to the .rds file containing the compData object to which
the differential expression will be applied.

• result.path – the path to the .rds file where the resulting compData object will
be stored.

• codefile – the name of the code (with extension .Rmd) where the code will be
stored.

• any arguments for setting parameters of the differential expression analysis.
2. Run the differential expression analysis completely outside the compcodeR package,

and save the result in a compData object with the slots described in Section 6.2.
You can use the check_compData_results function to check if your object satisfies the neces-
sary conditions for being used as the output of a differential expression analysis and compared
to results obtained by other methods with compcodeR.

6 The format of the data and result objects

This section details the format of the data and result objects generated and used by the
compcodeR package. Both objects are of the compData class. The format guidelines below
must be be followed if you apply the functions in the package to a data set of your own,
or to differential expression results generated outside the package. Note that for most of
the functionality of the package, the objects should be saved separately to files with a .rds

extension, and the path of this object is provided to the functions.

6.1 The data object

The compData data object used by compcodeR is an S4 object with the following slots:
• count.matrix [class matrix] (mandatory) – the count matrix, with rows representing

genes and columns representing samples.
• sample.annotations [class data.frame] (mandatory) – sample annotations. Each

row corresponds to one sample, and each column to one annotation. The data objects
generated by the generateSyntheticData function have two annotations:
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• condition [class character or numeric] (mandatory) – the class for each sample.
Currently the differential expression implementations in the package supports only
two-group comparisons, hence the condition should have exactly two unique
values.

• depth.factor [class numeric] – the depth factor for each sample. This factor,
multiplied by the sequencing depth, corresponds to the target library size of the
sample when simulating the counts.

• info.parameters [class list] – a list detailing the parameter values that have been
used for the simulation.

• dataset [class character] (mandatory) – the name of the data set.
• samples.per.cond [class numeric] – the number of samples in each of the two

conditions.
• n.diffexp [class numeric] – the number of genes that are simulated to be dif-

ferentially expressed between the two conditions.
• repl.id [class numeric] – a replicate number, which can be set to differentiate

between different instances generated with the exact same simulation settings.
• seqdepth [class numeric] – the "base" sequencing depth that was used for the

simulations. For each sample, it is modified by multiplication with a value sampled
uniformly between minfact and maxfact to generate the actual sequencing depth
for the sample.

• minfact [class numeric] – the lower bound on the values used to multiply the
seqdepth to generate the actual sequencing depth for the individual samples.

• maxfact [class numeric] – the upper bound on the values used to multiply the
seqdepth to generate the actual sequencing depth for the individual samples.

• fraction.upregulated [class numeric] – the fraction of the differentially ex-
pressed genes that were simulated to be upregulated in condition 2 compared to
condition 1. Must be in the interval [0, 1]. The remaining differentially expressed
genes are simulated to be downregulated in condition 2.

• between.group.diffdisp [class logical] – whether the counts from the two
conditions were simulated with different dispersion parameters.

• filter.threshold.total [class numeric] – the filter threshold that is applied to
the total count across all samples. All genes for which the total count is below
this number have been excluded from the data set in the simulation process.

• filter.threshold.mediancpm [class numeric] – the filter threshold that is ap-
plied to the median count per million (cpm) across all samples. All genes for
which the median cpm is below this number have been excluded from the data
set in the simulation process.

• fraction.non.overdispersed [class numeric] – the fraction of the genes in the
data set that are simulated according to a model without overdispersion (i.e., a
Poisson model).

• random.outlier.high.prob [class numeric] – the fraction of extremely high ran-
dom outlier counts introduced in the simulated data sets. Please consult (Soneson
& Delorenzi 2013) for a detailed description of the different types of outliers.
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• random.outlier.low.prob [class numeric] – the fraction of extremely low ran-
dom outlier counts introduced in the simulated data sets. Please consult (Soneson
& Delorenzi 2013) for a detailed description of the different types of outliers.

• single.outlier.high.prob [class numeric] – the fraction of extremely high sin-
gle outlier counts introduced in the simulated data sets. Please consult (Soneson
& Delorenzi 2013) for a detailed description of the different types of outliers.

• single.outlier.low.prob [class numeric] – the fraction of extremely low single
outlier counts introduced in the simulated data sets. Please consult (Soneson &
Delorenzi 2013) for a detailed description of the different types of outliers.

• effect.size [class numeric] – the degree of differential expression, i.e., a mea-
sure of the minimal effect size. Alternatively, a vector of provided effect sizes for
each of the variables.

• uID [class character] (mandatory) – a unique identification number given to
each data set. For the data sets simulated with compcodeR, it consists of a
sequence of 10 randomly generated alpha-numeric characters.

• filtering [class character] – a summary of the filtering that has been applied to
the data.

• variable.annotations [class data.frame] – annotations for each of the variables in
the data set. Each row corresponds to one variable, and each column to one annotation.
No annotation is mandatory, however some of them are necessary if the differential
expression results for the data are going to be used for certain comparison tasks. The
data sets simulated within compcodeR have the following named variable annotations:

• truedispersions.S1 [class numeric] – the true dispersions used in the simula-
tions of the counts for the samples in condition 1.

• truedispersions.S2 [class numeric] – the true dispersions used in the simula-
tions of the counts for the samples in condition 2.

• truemeans.S1 [class numeric] – the true mean values used in the simulations of
the counts for the samples in condition 1.

• truemeans.S2 [class numeric] – the true mean values used in the simulations of
the counts for the samples in condition 2.

• n.random.outliers.up.S1 [class numeric] – the number of extremely high ran-
dom outliers introduced for each gene in condition 1.

• n.random.outliers.up.S2 [class numeric] – the number of extremely high ran-
dom outliers introduced for each gene in condition 2.

• n.random.outliers.down.S1 [class numeric] – the number of extremely low ran-
dom outliers introduced for each gene in condition 1.

• n.random.outliers.down.S2 [class numeric] – the number of extremely low ran-
dom outliers introduced for each gene in condition 2.

• n.single.outliers.up.S1 [class numeric] – the number of extremely high single
outliers introduced for each gene in condition 1.

• n.single.outliers.up.S2 [class numeric] – the number of extremely high single
outliers introduced for each gene in condition 2.
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• n.single.outliers.down.S1 [class numeric] – the number of extremely low sin-
gle outliers introduced for each gene in condition 1.

• n.single.outliers.down.S2 [class numeric] – the number of extremely low sin-
gle outliers introduced for each gene in condition 2.

• M.value [class numeric] – the estimated log2-fold change between conditions 1
and 2 for each gene. These values were estimated using the edgeR package.

• A.value [class numeric] – the estimated average expression in conditions 1 and
2 for each gene. These values were estimated using the edgeR package.

• truelog2foldchanges [class numeric] – the “true” log2-fold changes between
conditions 1 and 2 for each gene, based on the parameters used for simulation.

• upregulation [class numeric] – a binary annotation (0/1) indicating which genes
are simulated to be upregulated in condition 2 compared to condition 1. (Upreg-
ulated genes are indicated with a 1.)

• downregulation [class numeric] – a binary annotation (0/1) indicating which
genes are simulated to be downregulated in condition 2 compared to condition 1.
(Downregulated genes are indicated with a 1.)

• differential.expression [class numeric] (mandatory for many comparisons,
such as the computation of false discovery rates, true positive rates, ROC curves,
false discovery curves etc.)– a binary annotation (0/1) indicating which genes are
simulated to be differentially expressed in condition 2 compared to condition 1.
In other words, the sum of upregulation and downregulation.

To apply the functions of the package to a compData object of the type detailed above, it needs
to be saved to a file with extension .rds. To save the object cpd to the file saveddata.rds,
simply type
saveRDS(cpd, "saveddata.rds")

6.2 The result object

When applying one of the differential expression methods interfaced through compcodeR, the
compData object is extended with some additional slots. These are described below.

• analysis.date [class character] – the date and time when the differential expression
analysis was performed.

• package.version [class character] – the version of the packages used in the differ-
ential expression analysis.

• method.names [class list] (mandatory) – a list containing the names of the differential
expression method, which should be used to identify the results in the comparison.
Contains two components:

• short.name [class character] – a short name, used for convenience.
• full.name [class character] – a fully identifying name of the differential expres-

sion method, including e.g. version numbers and parameter values. In the method
comparisons, the results will be grouped based on the full.name.
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• code [class character] – the code that was used to run the differential expression
analysis, in R markdown (.Rmd) format.

• result.table [class data.frame] (mandatory) – a data frame containing the results
of the differential expression analysis. Each row corresponds to one gene, and each
column to a value generated by the analysis. The precise columns will depend on
the method applied. The following columns are used by at least one of the methods
interfaced by compcodeR:

• pvalue [class numeric] – the nominal p-values.
• adjpvalue [class numeric] – p-values adjusted for multiple comparisons.
• logFC [class numeric] – estimated log-fold changes between the two conditions.
• score [class numeric] (mandatory) – the score that will be used to rank the genes

in order of significance. Note that high scores always signify differential expression,
that is, a strong association with the predictor. For example, for methods returning
a nominal p-value the score is generally obtained as 1 - pvalue.

• FDR [class numeric] – the false discovery rate estimate.
• posterior.DE [class numeric] – the posterior probability of differential expres-

sion.
• prob.DE [class numeric] – The conditional probability of differential expression.
• lfdr [class numeric] – the local false discovery rate.
• statistic [class numeric] – a test statistic from the differential expression anal-

ysis.
• dispersion.S1 [class numeric] – dispersion estimate in condition 1.
• dispersion.S2 [class numeric] – dispersion estimate in condition 2.

For many of the comparison methods, the naming of the result columns is important.
For example, the p-value column must be named pvalue in order to be recognized by
the comparison method computing type I error. Similarly, either an adjpvalue or an FDR

column must be present in order to apply the comparison methods requiring adjusted
p-value/FDR cutoffs. If both are present, the adjpvalue column takes precedence over
the FDR column.

To be used in the comparison function, the result compData object must be saved to a .rds

file.

7 The evaluation/comparison methods

This section provides an overview of the methods that are implemented in compcodeR for
comparing differential expression results obtained by different methods. The selection of
which methods to apply is made through a graphical user interface that is opened when the
runComparisonGUI function is called (see Figure 2). Alternatively, the selection of methods
can be supplied to the runComparison function directly, to circumvent the GUI.
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7.1 ROC (one replicate/all replicates)

This method computes a ROC curve for either a single representative among the replicates
of a given data set, or for all replicates (in separate plots). The ROC curves are generated
by plotting the true positive rate (TPR, on the y-axis) versus the false positive rate (FPR,
on the x-axis) when varying the cutoff on the score (see the description of the result object
above). A good ranking method gives a ROC curve which passes close to the upper left
corner of the plot, while a bad method gives a ROC curve closer to the diagonal. Calculation
of the ROC curves requires that the differential expression status of each gene is provided
(see the description of the data object in Section 6.1). Figure 3 shows an example of ROC
curves for a single replicate.

Figure 3:

7.2 AUC

This comparison method computes the area under the ROC curve (see section 7.1) and
represents the result in boxplots, where each box summarizes the results for one method
across all replicates of a data set. A good ranking method gives to a large value of the
AUC. This requires that the differential expression status of each gene is provided (see the
description of the data object in Section 6.1). Figure 4 shows an example.

Figure 4:
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7.3 Type I error

This approach computes the type I error (the fraction of the genes that are truly non-
differentially expressed that are called significant at a given nominal p-value threshold) for
each method and sample size separately, and represent it in boxplots, where each box sum-
marizes the results for one method across all replicates of a data set. This requires that the
differential expression status of each gene is provided (see the description of the data object
above) and that the pvalue column is present in the result.table of the included result
objects (see the description of the result object above). An example is given in Figure 5. The
dashed vertical line represents the imposed nominal p-value threshold, and we wish that the
observed type I error is lower than this threshold.

Figure 5:

7.4 FDR

Here, we compute the observed false discovery rate (the fraction of the genes called significant
that are truly non-differentially expressed at a given adjusted p-value/FDR threshold) for each
method and sample size separately, and represent the estimates in boxplots, where each box
summarizes the results for one method across all replicates of a data set. This requires that
the differential expression status of each gene is provided (see the description of the data
object above) and that the adjpvalue or FDR column is present in the result.table of the
included result objects (see the description of the result object above). An example is given
in Figure 6. The dashed vertical line represents the imposed adjusted p-value threshold (that
is, the level at which we wish to control the false discovery rate).

Figure 6:
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7.5 FDR as a function of expression level

Instead of looking at the overall false discovery rate, this method allows us to study the FDR
as a function of the average expression level of the genes. For each data set, the average
expression levels are binned into 10 bins of equal size (i.e., each containing 10% of the genes),
and the FDR is computed for each of them. The results are shown by means of boxplots,
summarizing the results across all replicates of a data set. Figure 7 shows an example.

Figure 7:

7.6 TPR

With this approach, we compute the observed true positive rate (the fraction of the truly
differentially expressed genes that are called significant at a given adjusted p-value/FDR
threshold) for each method and sample size separately, and represent the estimates in box-
plots, where each box summarizes the results for one method across all replicates of a data
set. This requires that the differential expression status of each gene is provided (see the
description of the data object above) and that the adjpvalue or FDR column is present in the
result.table of the included result objects (see the description of the result object above).
Figure 8 shows an example. There is often a trade-off between achieving a high TPR (which
is desirable) and controlling the number of false positives, and hence the TPR plots should
typically be interpreted together with the type I error and/or FDR plots.

Figure 8:
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7.7 False discovery curves (one replicate/all replicates)

This choice plots the false discovery curves, depicting the number of false discoveries (i.e.,
truly non-differentially expressed genes) that are encountered when traversing the ranked
list of genes ordered in decreasing order by the score column of the result.table (see the
description of the result object above). As for the ROC curves, the plots can be made for a
single replicate or for all replicates (each in a separate figure). Figure 9 shows an example for
a single replicate. A well-performing method is represented by a slowly rising false discovery
curve (in other words, few false positives among the top-ranked genes).

Figure 9:

7.8 Fraction/number of significant genes

We can also compute the fraction and/or number of the genes that are called significant
at a given adjusted p-value/FDR threshold for each method and sample size separately, and
represent the estimates in boxplots, where each box summarizes the results for one method
across all replicates of a data set. This requires that the adjpvalue or FDR column is present
in the result.table of the included result objects (see the description of the result object
above). An example is given in Figure 10. Since this plot does not incorporate information
about the number of the identity of the truly differentially expressed genes, we can not
conclude whether a large or small fraction of significant genes is preferable. Thus, the plot is
merely an indication of which methods are more liberal (giving more significantly differentially
expressed genes) and which are more conservative.
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Figure 10:

7.9 Overlap, one replicate

For each pair of methods, this approach computes the overlap between the sets of genes
called differentially expressed by each of them at a given adjusted p-value/FDR threshold.
Only one representative of the replicates of a data set is used. This requires that the adjp

value or FDR column is present in the result.table of the included result objects (see the
description of the result object above). Since the overlap depends on the number of genes
called differentially expressed by the different methods, a normalized overlap measure (the
Sorensen index) is also provided (see Section 7.10 below). The results are represented as a
table of the sizes of the overlaps between each pair of methods.

7.10 Sorensen index, one replicate

For each pair of methods, this approach computes a normalized pairwise overlap value between
the sets of genes called differentially expressed by each of them at a given adjusted p-
value/FDR threshold. Only one representative of the replicates of a data set is used. This
requires that the adjpvalue or FDR column is present in the result.table of the included
result objects (see the description of the result object above). The Sorensen index (also called
the Dice coefficient) for two sets A and B is given by

S(A,B) =
2|A ∩B|
|A|+ |B|

,

where | · | denotes the cardinality of a set (the number of elements in the set). The results are
represented in the form of a table, and also as a colored heatmap, where the color represents
the degree of overlap between the sets of differentially expressed genes found by different
methods. An example is shown in Figure 11.
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Figure 11:

7.11 MA plot

With this approach we can construct MA-plots (one for each differential expression method)
for one replicate of a data set, depicting the estimated log-fold change (on the y-axis) versus
the estimated average expression (on the x-axis). The genes that are called differentially
expressed are marked with color. Figure 12 shows an example.

Figure 12:
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7.12 Spearman correlation

This approach computes the pairwise Spearman correlation between the gene scores obtained
by different differential expression methods (the score component of the result.table, see
the description of the result object above). The correlations are visualized by means of a
color-coded table and used to construct a dissimilarity measure for hierarchical clustering of
the differential expression methods. Examples are given in Figures 13 and 14.

Figure 13:
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Figure 14:

7.13 Score distribution vs number of outliers

This method plots the distribution of the gene scores obtained by different differential expres-
sion methods (the score component of the result.table, see the description of the result
object above) as a function of the number of outliers imposed for the genes. The distribu-
tions are visualized by means of violin plots. Figure 15 shows an example, where there are
no outliers introduced. Recall that a high score corresponds to more significant genes. In the
presence of outliers, the score distribution plots can be used to examine whether the presence
of an outlier count for a gene shifts the score distribution towards higher or lower values.

Figure 15:
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7.14 Score distribution vs average expression level

This method plots the gene scores (the score component of the result.table, see the
description of the result object above) as a function of the average expression level of the gene.
An example is shown in Figure 16. Recall that high scores correspond to more significant
genes. The colored line shows the trend in the relationship between the two variables by
means of a loess fit. These plots can be used to examine whether highly expressed genes
tend to have (e.g.) higher scores than lowly expressed genes, and more generally to provide
a useful characteristic of the methods. However, it is not clear what would be the "optimal"
behavior.

Figure 16:

7.15 Score vs ’signal’ for genes expressed in only one condition

This method plots the gene scores (the score component of the result.table, see the
description of the result object above) as a function of the ’signal strength’ for genes that
are detected in only one of the two conditions. The signal strength can be defined either
as the average (log-transformed) normalized pseudo-count in the condition where the gene
is expressed, or as the signal-to-noise ratio in this condition, that is, as the average log-
transformed normalized pseudo-count divided by the standard deviation of the log-transformed
normalized pseudo-count. Typically, we would expect that the score increases with the signal
strength. Figure 17 shows an example.
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Figure 17:

7.16 Matthew’s correlation coefficient

Matthew’s correlation coefficient summarizes the result of a classification task in a single
number, incorporating the number of false positives, true positives, false negatives and true
negatives. A correlation coefficient of +1 indicates perfect classification, while a correlation
coefficient of -1 indicates perfect "anti-classification", i.e., that all objects are misclassified.
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