
TSRchitect User’s Guide

TSRchitect User’s Guide

R. Taylor Raborn and Volker P. Brendel

Department of Biology, Indiana University

First edition 25 January 2017

Updated 10 July 2018

TSRchitect is an R package for analyzing diverse types of high-throughput
transcription start site (TSS) profiling datasets. In recent years, large-scale TSS
profiling data has characterized the landscape of transcription initiation at high
resolution, identifying promoter architecture in a number of eukaryotic model
systems, including human, mouse, fruit fly and worm. TSRchitect can handle
TSS profiling experiments that contain either single-end or paired-end sequence
reads.

Examples of TSS profiling data types that TSRchitect is capable of handling
are:

• CAGE (Cap Analysis of Gene Expression) [Single-end]
• PEAT (Paired-end Analysis of Transcription) [Paired-end]
• RAMPAGE (RNA Annotation and Mapping of Promoters for Analysis of

Gene Expression) [Paired-end]
• CapSeq [Single-end]
• TSS-seq [Single-end]
• STRIPE-seq (Survey of Transcription Initiation at Promoters and En-

hancers) [Single-end or Paired-end]

TSRchitect provides the capability to efficiently identify putative promoters---
which we call transcription start regions (TSRs)---from TSS profiling experiments.
TSRchitect can accommodate multiple datasets, including biological replicates
and multiple tissues/conditions, that were generated in a variety of model organ-
isms and genome assemblies, requiring only aligned TSS profiling information (in

1

BAM format) as the initial input. To aid the downstream analysis of identified
promoters, TSRchitect calculates a variety of TSR properties that have been
shown to be associated with promoter architecture, including TSR activity, width,
Shape Index (SI), modified Shape Index (mSI) and torque. Finally, TSRchitect’s
output is compatible with popular differential expression software such as edgeR,
assisting in downstream analysis to identify TSRs that are differentially active
in one sample versus another. In addition to this vignette, the TSRchitect
Reference Manual is available as part of the package’s online documentation.
Please note that this document will guide you through a few examples of analysis;
if you’re intrested in a detailed discussion of individual functions, please see
the TSRchitect Reference Manual, which is found in man/TSRchitect.pdf and
online here.

Getting started

In your current directory, create subdirectories as follows on the command line.

mkdir downloads
cd downloads
mkdir HsRAMPAGEbam

Now that this is complete, we proceed with the first of the three examples
contained in this vignette.

Example 1: Identifying promoters from RAMPAGE data
derived from two human cell lines.

RAMPAGE is a TSS profiling method that identifies promoters at large-scale
using a cap-based library construction method that is adapted for paired-end
sequencing. Developed recently by Batut and Gingeras (2013), it has become
a popular method for promoter identification and is currently part of the data
compredium in the latest edition of the ENCODE project.

In this example we will process RAMPAGE data derived from two immortalized
human cell lines with TSRchitect. The experiments selected for this vignette
are part of the ENCODE project and are publically available online at the
ENCODE Experiment matrix. The two samples come from HT1080 cells, which
is a well-characterized fibrosarcoma cell line, and NCI-H460 cells, which are
derived from a large cell lung carcinoma in a male patient.

To begin, we must first download the RAMPAGE datasets (which were aligned
to GRCh38 and are in BAM format) to our local system. To accomplish this
we will utilize the "ENCODExplorer" package, which is part of the Biocon-
ductor suite. More information on ENCODExplorer package can be found at
the following link: https://www.bioconductor.org/packages/release/bioc/html/
ENCODExplorer.html.

2

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/manuals/TSRchitect/man/TSRchitect.pdf
https://www.encodeproject.org/matrix/?type=Experiment
https://www.bioconductor.org/packages/release/bioc/html/ENCODExplorer.html
https://www.bioconductor.org/packages/release/bioc/html/ENCODExplorer.html

Now we can proceed (in the R console) with downloading the data:

#Downloading the files:
library(ENCODExplorer)
data(encode_df, package="ENCODExplorer")
datasets <- fuzzySearch(searchTerm=c("ENCFF214GWH", "ENCFF265SGZ", "ENCFF242UWH", "ENCFF348EKW"), database=encode_df, filterVector=c("file_accession"), multipleTerm=TRUE)
downloadEncode(datasets, df=encode_df, format="bam")

Once the above steps are complete, we will move the files into the subdirectory
downloads/ to keep a record of data provenance. To use TSRchitect in this
example, we coveniently use symbolic links to give more intuitive names to the
datasets (as well as ordering them in proper order; see below):

#The following are to be executed in your shell terminal:
mv *.bam downloads
cd downloads
cd HsRAMPAGEbam
ln -s ../downloads/ENCFF214GWH.bam H460-rep1.bam
ln -s ../downloads/ENCFF265SGZ.bam H460-rep2.bam
ln -s ../downloads/ENCFF242UWH.bam HT1080-rep1.bam
ln -s ../downloads/ENCFF348EKW.bam HT1080-rep2.bam
cd ..

Please download and uncompress the human gene annoation file found at the
following location:

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.
v19.annotation.gff3.gz.

Please move the uncompressed file into the downloads/ directory, e.g. with

cd downloads
wget --content-disposition ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz
gunzip gencode.v19.annotation.gff3.gz
cd ..

Now that we have our input and annotation files prepared, we can load TSRchitect
into our R workspace:

#loading TSRchitect
library(TSRchitect)

Next we’ll initialize our dedicated S4 object---called the tssObject---on which
TSRchitect’s functions are applied, using loadTSSobj. We also need to supply
other information about the experiment as arguments. This will attach Ge-
nomicAlignments objects (representing the four bam files in this example) to
your tssObject. Note that we must specify isPairedBAM=FALSE because this is
single-end CAGE data.

Hs_RAMPAGE <- loadTSSobj(experimentTitle ="Human RAMPAGE", inputDir="HsRAMPAGEbam/", /
isPairedBAM=TRUE, sampleNames=c("H460-rep1", /

3

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz

"H460-rep2", "HT1080-rep1", "HT1080-rep2"), replicateIDs=c(1,1,2,2))

Next we need to provide the sample names and specify which samples are biolog-
ical replicates. In this case we are working with 4 total datasets and 2 samples in
duplicate. Please note that, because the alignments on our bamData slot are or-
ganized in ascending alphabetical order (as are the file names on the fileNames
slot), we must provide our identifiers in sampleNames and replicateIDs to
directly correspond to this. To check this on the tssObject S4 object you have
created, simply check the list of .bam files as follows using one of TSRchitect’s
accessor methods.

#obtaining a list of bam files loaded to the tssObject S4 object
getFileNames(experimentName=Hs_RAMPAGE)

Now that the alignment files have been imported and attached to our tssObject
S4 object, we continue by computing the TSSs from the alignment (in this case
.bam) files.

Hs_RAMPAGE <- inputToTSS(experimentName=Hs_RAMPAGE)

Next we will calculate the abundance of each tag in our TSS datasets. TSRchitect
provides the option to run this function in parallel, so for this example we chose
to run this on 4 cores. Please adjust this as your compute resource permits.

Hs_RAMPAGE <- processTSS(experimentName=Hs_RAMPAGE, n.cores=4, tssSet="all", writeTable=TRUE)

Since we specified ’writeTable=TRUE’, files (entitled "TSSset-1.txt" to "TSSset-
4.txt") containing TSS abundance will be written into your working directory.
Now that we have calculated the abundance for each TSS in the previous step
we can calculate TSRs (promoters) on each of the 4 separate datasets using the
function determineTSR. We select a tagCount threshold of 25 tags in order for
a TSS to be considered. The option clustDist is critical for the identification
of TSRs and refers to the minimum distance between distinct TSRs (in other
words, adjacent TSSs seperated by more than clustDist nucleotides will be in
different TSRs). As with the previous step, we select ’writeTable=TRUE’, and
therefore we will find the output files ("TSRset-1" to "TSRset-4") written to the
working directory. As for processTSS, we can run this function in parallel. We
have specified 4 cores.

Hs_RAMPAGE <- determineTSR(experimentName=Hs_RAMPAGE, n.cores=4, /
tsrSetType="replicates", tssSet="all", tagCountThreshold=25, clustDist=20, /
writeTable=TRUE)

To calculate TSRs from each sample (as opposed to each replicate) we need to
combine our replicate data. This will be done using the identifiers we specified
on our tssObject S4 object using loadTSSobj.

Hs_RAMPAGE <- mergeSampleData(experimentName=Hs_RAMPAGE)

Having combined the TSS abundance of replicate data into samples, we next
proceed with identifying TSRs for the two samples individually. We specify this

4

http://adv-r.had.co.nz/S4.html

with ’tsrSetType="merged"’.

#Generating the TSRs for the merged datasets:
Hs_RAMPAGE <- determineTSR(experimentName=Hs_RAMPAGE, n.cores=4, tsrSetType="merged" /
tssSet="all", tagCountThreshold=40, clustDist=20, writeTable=TRUE)

Now calculating the number of tags from each experiment within the combined
set of TSRs:

Hs_RAMPAGE <- addTagCountsToTSR(experimentName=Hs_RAMPAGE, tsrSetType="merged", /
tsrSet=3, tagCountThreshold=40, writeTable=TRUE)

Associating identified TSRs with gene annotations

Now that identifying TSRs are complete, an obvious and biologically useful step
is to determine which TSRs are adjacent to annotated genes, and to retrieve the
appropriate gene IDs. Before doing this, it is imperative to select an annotation
file that was generated for the assembly to which the reads were aligned. For this
example we will retrieve the appropriate annotation files from the Bioconductor
package AnnotationHub.

Please install AnnotationHub if you haven’t already done so.

source("https://bioconductor.org/biocLite.R")
biocLite("AnnotationHub")

In our case we need to download the Gencode annotation. We do this in the
following manner:

library(AnnotationHub)
hub <- AnnotationHub()
query(hub, c("gencode", "gff", "human"))

This reveals nine gff3 annotations from Gencode that we can choose from. We
will select the full annotation, which has the identifier "AH49555".

AnnotationHub with 9 records
snapshotDate(): 2017-01-05
$dataprovider: Gencode
$species: Homo sapiens
$rdataclass: GRanges
additional mcols(): taxonomyid, genome, description,
coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
sourceurl, sourcetype
retrieve records with, e.g., 'object[["AH49554"]]'

title
AH49554 | gencode.v23.2wayconspseudos.gff3.gz
AH49555 | gencode.v23.annotation.gff3.gz

5

https://www.gencodegenes.org/

AH49556 | gencode.v23.basic.annotation.gff3.gz
AH49557 | gencode.v23.chr_patch_hapl_scaff.annotation.gff3.gz
AH49558 | gencode.v23.chr_patch_hapl_scaff.basic.annotation.gff3.gz
AH49559 | gencode.v23.long_noncoding_RNAs.gff3.gz
AH49560 | gencode.v23.polyAs.gff3.gz
AH49561 | gencode.v23.primary_assembly.annotation.gff3.gz
AH49562 | gencode.v23.tRNAs.gff3.gz

Using TSRchitect, We can use the function importAnnotationHub to import
our desired annotated record and attach it our tssObject. We accomplish this
as follows:

Hs_RAMPAGE <- importAnnotationHub(experimentName=Hs_RAMPAGE, provider="gencode", /
annotType="gff3", species="human", annotID="AH49555")

Next, we associate the gene annotation to the TSRs within our two merged
samples. We selected the feature ’transcript’ from the Gencode annotation.

Hs_RAMPAGE <- addAnnotationToTSR(experimentName=Hs_RAMPAGE, tsrSetType="merged", /
tsrSet=1, upstreamDist=1000, downstreamDist=200, feature="transcript", /
featureColumnID="ID", writeTable=TRUE)

Hs_RAMPAGE <- addAnnotationToTSR(experimentName=Hs_RAMPAGE, tsrSetType="merged", /
tsrSet=2, upstreamDist=1000, downstreamDist=200, feature="transcript", /
featureColumnID="ID", writeTable=TRUE)

Finally, we will repeat the two commands above, instead associating the gene
annotation to the "combined" set of TSRs, which is found in the 3rd position on
the tsrDataMerged slot.

Hs_RAMPAGE <- addAnnotationToTSR(experimentName=Hs_RAMPAGE, tsrSetType="merged", /
tsrSet=3, upstreamDist=1000, downstreamDist=200, feature="transcript", /
featureColumnID="ID", writeTable=TRUE)

Let’s briefly look at the sets of TSRchitect-identified TSRs.

Using the accessor methods we applied in earlier examples, let’s take a quick
glance at our set of identified TSRs.

HT1080.tsrs <- getTSRdata(Hs_RAMPAGE, slotType="merged", slot=1)
dim(HT1080.tsrs)

H460.tsrs <- getTSRdata(Hs_RAMPAGE, slotType="merged", slot=2)
dim(H460.tsrs)

combined.tsrs <- getTSRdata(Hs_RAMPAGE, slotType="merged", slot=3)
dim(combined.tsrs)

Let’s look at some of the tsrs we identified on our ’combined’ set.

head(combined.tsrs)

6

We see that there are 22750 TSRs identified in the combined set, and 15904
and 18040 TSRs in the H460 and HT1080 samples, respectively. We also
notice that there are 5 additional columns in the combined set. This is due
to us previouly having added tag counts to the combined set of TSRs using
‘addTagCountsToTSR’, something we did not do in this vignette for the two
individual samples.

You now have a complete set of TSS and TSR data attached to your tssObject
S4 object, in addition the tables that were already written to your working
directory.

To better understand our data, let’s explore some of the characteristics of the
TSRs we have identified. TSRchitect calculates the Shape Index (SI) of each
TSR; the SI provides a quantitative measure of TSR (and thus promoter) shape
by representing the entropy of the distribution of TSSs associated with it. An SI
of 2 (which is the maximum value possible) will have only a single unique TSS
coordinate, whereas a TSR with a negative SI value will have an diversity of
mapped 5’ ends at distinct TSS positions. We can use SI values to classify TSRs
into ’peaked’ and ’broad’ classes, having high and low SI values, respectively.
As of TSRchitect version 1.8.0, we have included the Modified Shape Index
(mSI) as an additional metric defining TSR shape. The mSI is a metric of TSR
shape scaled by TSS tag abundance that can return possible values from 0 to
1 inclusive, where 1 is the most peaked (i.e. a TSR with a single unique TSS
position) and 0 is the most broad TSR.

We can visualize the shape distribution of our identified TSRs quite easily using
Hadley Wickham’s ggplot2 graphics package, as follows. For these plots we
filter will out TSRs at lower abundances (100 tags/TSR) to show only the SI
values from reasonably well-sampled TSRs.

require(ggplot2)
HT1080.tsrs.filtered <- HT1080.tsrs[HT1080.tsrs$nTAGs > 100,]
t <- ggplot(HT1080.tsrs.filtered, aes(tsrSI))
t + geom_histogram(binwidth=0.1, fill="blue2") /
+ ylab("Number of Tags per TSR") + xlab("Shape Index (SI)")
ggsave(file="HT1080_SI.png")

H460.tsrs.filtered <- H460.tsrs[H460.tsrs$nTAGs > 100,]
p <- ggplot(H460.tsrs.filtered, aes(tsrSI))
p + geom_histogram(binwidth=0.1, fill="darkgreen") /
+ ylab("Number of Tags per TSR") + xlab("Shape Index (SI)")
ggsave(file="H460_SI.png")

From both histograms we can see that there appears to be a bimodal distribution
of TSRs within our samples; the class of ’completely peaked’ TSRs with an SI
value of 2, and another distribution of more broad TSRs with SI values centered
just below 0. This is consistent with two major shape classes of TSRs known in
metazoans, particularily human and mouse.

7

Similarly, we could use the same code framework above to plot the distributions
of TSR width (tsrWdth), number of unique TSSs per TSR (nTSSs), the mSI
and torque (balance of the TSR according to tag counts; tsrTrq); to do this we
would select the appropriate column in the data frame. For example: equivalent
plots can generated for mSI simply by replacing the term "tsrSI" with "tsrMSI"
in the two code snippets above.

This concludes Example 1. Should we wish to save our tssObject and return to
our work later, we simply type the following, which will write an R binary to
your working directory.

save(Hs_RAMPAGE, file="Hs_RAMPAGE.RData")

Important note: before you continue with another example, please move the
output files generated in your working directory to a separate, dedicated folder.
Otherwise some or all of the files you generate in subsequent examples will be
overwritten.

Example 2: Identifying promoters in the model plant A.
thaliana using a PEAT dataset.

For our second example will process TSS profiling data from Arabidopsis root
tissue. These data come from the Megraw Lab at Oregon State University as
reported in Morton et al., 2014. Link to paper:

As with the previous example, first we must download the raw data. In this
case we have only a single alignment file to retrieve, which is found here:
https://oregonstate.app.box.com/s/3lb3spmqbiuofhbubovc1z8bfthmxh6f Once
download of the file peat.sorted.bam is complete, please move it to subdirectory
"PEATbam/".

The annotation file is available from the TAIR10 database: ftp://ftp.arabidopsis.
org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_
GFF3_genes.gff. Please move it into the downloads/ folder you have created,
e.g.

mkdir downloads
cd downloads
wget --content-disposition ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
cd ..

Because there is only a single experiment, setting the sample IDs is simple in
this example:

At_PEAT <- loadTSSobj(experimentTitle ="Arabidopsis PEAT dataset", inputDir="PEATbam", /
isPairedBAM=TRUE, sampleNames=c("experiment1"), replicateIDs=c(1))

Now we convert the alignment data (in this case, in .bam format) into TSS
coordinates:

8

http://www.plantcell.org/content/26/7/2746
https://oregonstate.app.box.com/s/3lb3spmqbiuofhbubovc1z8bfthmxh6f
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff

At_PEAT <- inputToTSS(At_PEAT)

As in the previous example, now we can calculate the tag abundance at each
location using processTSS and the identify TSRs within the sample using
determineTSR. Note that we do not need to use mergeSampleData because
there is only a single sample. As there is only a single sample we set n.cores=1.

At_PEAT <- processTSS(experimentName=At_PEAT, n.cores=1, tssSet="all", writeTable=TRUE)

At_PEAT <- determineTSR(experimentName=At_PEAT, n.cores=1, tsrSetType="replicates", /
tssSet="all", tagCountThreshold=25, clustDist=20, writeTable=TRUE)

Associating identified TSRs with gene annotations

We continue by associating our newly-identified TSRs with genes from the
TAIR10 annotation. Note that we use different parameters for upstreamDist
and downstreamDist than we did in Example 1. This is due to the high degree
of compactness in the A. thaliana genome.

At_PEAT <- importAnnotationExternal(experimentName=At_PEAT, fileType="gff3", /
annotFile="downloads/TAIR10_GFF3_genes.gff")

At_PEAT <- addAnnotationToTSR(experimentName=At_PEAT, tsrSetType="replicates", tsrSet=1, /
upstreamDist=500, downstreamDist=200, feature="gene", featureColumnID="ID", writeTable=TRUE)

Now we have a complete set of TSRs on our tssObj object. Let’s take a look at
them using one of our accessor methods.

At.tsrs <- getTSRdata(At_PEAT, slotType="replicates", slot=1)
dim(At.tsrs)
head(At.tsrs)

We can optionally save the tssObject as we have previously.

save(At_PEAT, file="At_PEAT_vignette.RData")

Example 3: Analysis of CAGE datasets from the ENCODE
project

As we stated in the introduction of this vignette, TSRchitect is capable of
handling diverse forms of TSS profiling data. In the first two examples, we
analyze two distinct paired-end datasets: RAMPAGE and PEAT, respectively.
In this example we will process data from CAGE, which is the most widely-used
TSS profiling method to date. We will analyze CAGE data generated in two
well-characterized immortalized cell lines, MCF-7 and A549. MCF-7 cells are
derived from a breast cancer tumor, and A549 originates from an adenocarinoma
isolated from lung tissue. Both datasets are part of the ENCODE project, and

9

therefore we can make use of the ENCODExplorer package that we originally
introduced in Example 1.

#Downloading the files:
library(ENCODExplorer)
data(encode_df, package="ENCODExplorer")
cage_data <- fuzzySearch(searchTerm=c("ENCFF552BXH","ENCFF288VTZ","ENCFF265RSX", /
"ENCFF944PCJ"), database=encode_df, /
filterVector=c("file_accession"), multipleTerm=TRUE)
downloadEncode(cage_data, df=encode_df, format="bam")

Now that the files have been downloaded, we will create symbolic links with the
appropriate sample names. Please run the following commands from a linux
command line:

mkdir downloads # ignore if the directory already exists
mv *.bam downloads
mkdir HsCAGEbam
cd HsCAGEbam
ln -s ../downloads/ENCFF265RSX.bam A549-rep1.bam
ln -s ../downloads/ENCFF944PCJ.bam A549-rep2.bam
ln -s ../downloads/ENCFF552BXH.bam MCF7-rep1.bam
ln -s ../downloads/ENCFF288VTZ.bam MCF7-rep2.bam
cd ..

As in Example 1, we also need to provide human gene annotation. Please
download and uncompress the annoation file found at the following location
[Note: you may ignore this if you have already downloaded the file from Example
1]:

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.
v19.annotation.gff3.gz.

Please move the uncompressed file into the downloads/ directory if it does not
already exist there, e.g. with

cd downloads
wget --content-disposition ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz
gunzip gencode.v19.annotation.gff3.gz
cd ..

Now we can set up the tssObject S4 object. Note that we must specify
isPairedBAM=FALSE because this is single-end CAGE data.

initializing the tssObject, setting the sample IDs and importing the CAGE data
CAGEhuman <- loadTSSobj(experimentTitle ="Human CAGE", inputDir="HsCAGEbam", /
isPairedBAM=FALSE, sampleNames=c("A549-rep1","A549-rep2", /
"MCF7-rep1","MCF7-rep2"), replicateIDs=c(1,1,2,2))

As before, it is vital to provide arguments to sampleNames and replicateIDs
in the order of the files on the fileNames slot to they exactly correspond to the

10

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gff3.gz

alignment files (in this case .bam) that we imported.

As in the prior two examples, we then extract TSS information from the attached
alignment data (which was placed on slot @bamData):

#Converting the alignment data into TSS information and attaching it to the tssObject:
CAGEhuman <- inputToTSS(experimentName=CAGEhuman)

Next we must calculate the CAGE tag abundance at each TSS position, followed
by identification of TSRs within our 4 replicate datasets. As in the first example,
we choose to run processTSS and determineTSR in parallel on 4 cores. Please
adjust this parameter as needed.

#Constructing the tag count per TSS data matrix:
CAGEhuman <- processTSS(experimentName=CAGEhuman, n.cores=4, tssSet="all", /
writeTable=TRUE)

#Finding TSRs for the replicate datasets:
CAGEhuman <- determineTSR(experimentName=CAGEhuman, n.cores=4, /
tsrSetType="replicates", tssSet="all", tagCountThreshold=25, /
clustDist=20, writeTable=TRUE)

Now we merge data from replicates into their two corresponding samples.

#Merging TSS data from the replicates:
CAGEhuman <- mergeSampleData(experimentName=CAGEhuman)

Once this is complete, we can complete TSR identification on the merged samples.

#Finding TSRs for the merged samples and adding tag counts:
CAGEhuman <- determineTSR(experimentName=CAGEhuman, n.cores=4, tsrSetType="merged", /
tssSet="all", tagCountThreshold=40, clustDist=20, writeTable=TRUE)

CAGEhuman <- addTagCountsToTSR(experimentName=CAGEhuman, tsrSetType="merged", /
tsrSet=3, tagCountThreshold=40, writeTable=TRUE)

Now we need to import the annotation file and attach it to our tssObj S4 object.
To do this, we will to use the same record (Gencode v. 23) that we referred to
in Example 1.

CAGEhuman <- importAnnotationHub(experimentName=CAGEhuman, provider="gencode", /
annotType="gff3", species="human", annotID="AH49555")

Next we associate the gene annotation to the TSRs within our two merged
samples i) MCF7 cells and ii) A549 cells. As we did in Example 1, we select the
feature ’transcript’ from the Gencode annotation.

CAGEhuman <- addAnnotationToTSR(experimentName=CAGEhuman, tsrSetType="merged", tsrSet=1,/
upstreamDist=1000, downstreamDist=200, feature="transcript", featureColumnID="ID", /
writeTable=TRUE) #A549 cells

CAGEhuman <- addAnnotationToTSR(experimentName=CAGEhuman, tsrSetType="merged", tsrSet=2, /

11

upstreamDist=1000, downstreamDist=200, feature="transcript", featureColumnID="ID", /
writeTable=TRUE) #MCF7 cells

Associating the selected annotation features with the TSRs on the ’combined’
slot:

CAGEhuman <- addAnnotationToTSR(experimentName=CAGEhuman, tsrSetType="merged", tsrSet=3,/
upstreamDist=1000, downstreamDist=200, feature="transcript", featureColumnID="ID",/
writeTable=TRUE)

Using the accessor methods we applied in earlier examples, let’s take a quick
glance at our set of identified TSRs.

getTSRdata(CAGEhuman, slotType="merged", slot=1) -> MCF7.tsrs

dim(MCF7.tsrs)

getTSRdata(CAGEhuman, slotType="merged", slot=2) -> A549.tsrs

dim(A549.tsrs)

getTSRdata(CAGEhuman, slotType="merged", slot=3) -> CAGEhuman.tsrs

dim(CAGEhuman.tsrs)

Let’s look at some of the tsrs we identified on our ’combined’ set.

head(CAGEhuman.tsrs)

We can optionally save the tssObject for future use:

save(CAGEhuman, file="CAGEhuman-vignette.RData")

12

	TSRchitect User's Guide
	R. Taylor Raborn and Volker P. Brendel
	Department of Biology, Indiana University
	First edition 25 January 2017
	Updated 10 July 2018
	Getting started
	Example 1: Identifying promoters from RAMPAGE data derived from two human cell lines.
	Associating identified TSRs with gene annotations

	Example 2: Identifying promoters in the model plant A. thaliana using a PEAT dataset.
	Associating identified TSRs with gene annotations

	Example 3: Analysis of CAGE datasets from the ENCODE project

