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1 Introduction

Power and sample size analysis or sample size determination is concerned with the question
of determining the minimum number of samples necessary to demonstrate the existence (or
absence) of a difference between two or more populations of interest. The number of samples
should be sufficient in that the statistical test will reject the null hypothesis, when there really
exists a difference, with high probability or power.

Sample size determination for experiments involving high-dimensional data has several chal-
lenges as a multiple testing problem is involved, furthermore the occurrence of differentially
and nondifferentialy expressed genes and that each gene individually has an effect size and a
standard deviation leading to a distribution of effect sizes and standard deviations complicates
the problem even further.

Power and sample size analysis for high-dimensional data was initiated by [1]. The multiple
testing problem was controlled using the easy to apply family-wise error rate. Since controlling
the family-wise error rate is too conservative for microarray data, methods were proposed that
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control the multiple testing problem using the false discovery rate [2, 3, 4]. Recently, those
methods were adapted for using pilot-data in order to obtain more realistic estimates of the
power [5, 6, 7].

This vignette describes SSPA, a package implementing a general pilot data-based method
for power and sample size determination for high-dimensional genomic data, such as those
obtained from microarray or next-generation sequencing experiments. The method is based
on the work of Ferreira and Zwinderman [5] and generalized as described by van Iterson et
al. [8, 9].

By means of two simple commands (pilotData(), sampleSize()), a researcher can read in
their data —a vector of test statistics— and compute the desired estimates. Other functions
are provided that facilitate interpretation of results. Simulation data is used to show the
general functionality and flexibility of the package and two interesting biological case study
are shown.

Simulated data

2.1

This simulation study represents a two group microarray experiment with m = 5000 features
and N = 10 samples per group. Let R;; and S;;, ¢ =1,...,m, j = 1,..., N be random
variables where S;; ~ N(-#i/2,1) and R;; ~ N(ni/2,1) with the first y; = 0 for i =
1,...,mg and the remaining p; for i = mg + 1,...,m were drawn from a symmetric bi-
triangular distribution as described by [10]. A total of 25 data sets were simulated with
the proportion of non-differentially expressed features fixed at my = 0.8. Additional technical
noise is added to the model using X ~ log(eff+e€) and Y ~ log(e¥+¢) with € ~ N(0,0.12),
so that the noise is positive and additive.

library(SSPA)

library(genefilter)

set.seed(12345)

m <- 5000

J <- 10

pid <- 0.8

mO <- as.integer(mxpi0)

mu <- rbitri(m - m@, a = log2(1.2), b = log2(4), m = log2(2))

data <- simdat(mu, m=m, pi@=piO, J=J, noise=0.01)

statistics <- rowttests(data, factor(rep(c(0, 1), each=J)))$statistic

V V.V V VvV V V V VvV V

Deconvolution

The first step in doing the sample size and power analysis is creating a object of class PilotData
which will contain all the necessary information needed for the following power and sample
size analysis; a vector of test-statistics and the sample sizes used to compute them. A
user-friendly interface for creating an object of PilotData is available as pilotDatal().

Several ways of viewing the content of the PilotData object are possible either graphically or
using a show-method by just typing the name of the created object of PilotData:
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> pdD <- pilotData(statistics = statistics,

+ samplesize = sqrt(1/(1/J +1/3)),
+ distribution="norm")
> pdD

Formal class 'PilotData' [package "SSPA"] with 5 slots
..@ statistics : num [1:5000] -1.98854 -0.00589 -1.26628 0.74421 -0.76088 ...

..@ samplesize : num 2.24

..@ pvalues : num [1:5000] 0.0468 0.9953 0.2054 0.4567 0.4467 ..
..@ distribution: chr "norm"

..@ args : list()

> plot(pdD)
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Figure 1: Exploratory plots of the pilot-data: Upper left panel shows a histogram of the test statis-
tics, upper right panel a histogram of the p-values

Lower left panel shows a qg-plot for the test statistics using the user-defined null distributions. Lower right
panel shows the sorted p-values against their ranks.

Now we can create an object of class SampleSize which will perform the estimation of the
proportion of non-differentially expressed genes and the density of effect sizes. Several options
are available see ?sampleSize.

The density of effect size can be shown by a call to plot(). When there are both up- and
down-regulated genes a bimodal density is observed.

> ssD <- sampleSize(pdD, control=list(from=-6, to=6))
> ssD

Formal class 'SampleSize' [package "SSPA"] with 10 slots

..@ pi0d : num 0.781
..@ lambda :num [1:512] 0 OO OO0 OO0O0OO ..
..@ theta : num [1:512] -6 -5.98 -5.95 -5.93 -5.91 ..
..@ control :List of 11
..$ method . chr "deconv"

..$ piOMethod : chr "Langaas"
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..$ pio : num [1:90] 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 ..
..$ adjust : logi TRUE
..$ a : num 0.5
..$ bandwith : NULL
..$ kernel : chr "fan"
..$ from : num -6
.$ to : num 6
..$ resolution: num 512
.. ..$ verbose : logi FALSE
..@ info :List of 1

.. ..$ pi0: num 0.767
..@ statistics : num [1:5000] -1.98854 -0.00589 -1.26628 0.74421 -0.76088 ...

..@ samplesize : num 2.24
..@ pvalues : num [1:5000] 0.0468 0.9953 0.2054 0.4567 0.4467 ..

..@ distribution: chr "norm"
..@ args : list()

> plot(ssD, panel = function(x, y, ...)
+ {

+ panel.xyplot(x, y)

+ panel.curve(dbitri(x), lwd=2, lty=2, n=500)
+ }, ylim=c(0, 0.6))
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Figure 2: Estimated density of effect sizes: True density of effect sizes, the bitriangular distribution,
and estimated density of effect sizes in blue

Estimating the average power for other sample sizes then that of the pilot-data can be per-
formed with the predictpower()-function. The user can also give the desired false discovery

rate level.

> Jpred <- seq(10, 20, by=2)

> N <- sqrt(Jpred/2)

> pwrD <- predictpower(ssD, samplesizes=N, alpha=0.05)
> matplot(Jpred, pwrD, type="b", pch=16, ylim=c(0, 1),
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+ ylab="predicted power", xlab="sample size (per group)")
> grid()
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Figure 3: Predicted power curve: For sample sizes from 10 to 20 the power is predicted based on
the information obtained from the pilot-data

The deconvolution estimator of the density of effect sizes is only applicable for two-group
comparisons when the test statistics is (approximate) normally distributed. Note that in this
situation we use the effective sample size. In all other cases e.g. two group comparison using
the ¢ statistics with the Conjugate Gradient estimator for the density of effect sizes the total
sample size is used.

2.2  Conjugate Gradient

> pdC <- pilotData(statistics = statistics,

+ samplesize = sqrt(2+J),

+ distribution="t",

+ df=2xJ-2)

> ssC <- sampleSize(pdC,

+ method="congrad",

+ control=list(from=-6, to=6, resolution=250))
> plot(ssC, panel = function(x, y, ...)

+ {

+ panel.xyplot(x, y)

+ panel.curve(2xdbitri(2+x), lwd=2, lty=2, n=500)
+ }, xlim=c(-2,2), ylim=c(0, 1.2))
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density of effect sizes

Figure 4: Conjugate gradient method: Estimated density of effect sizes using the conjugate gradient
method

2.3  Tikhonov regularization

> ssT <- sampleSize(pdC,

+ method="tikhonov",

+ control=list(resolution=250,

+ scale="pdfstat",

+ lambda = 10"seq(-10, 10, length=50),
+ verbose=FALSE,

+ modelselection="1curve"))

> plot(ssT, panel = function(x, y, ...)

@ {

+ panel.xyplot(x, y, type="b")

+ panel.curve(2xdbitri(2+x), lwd=2, lty=2, n=500)
+ }, xlim=c(-2,2), ylim=c(0, 1.2))

density of effect sizes

Figure 5: Tikohonov regularization: Estimated density of effect sizes using the Tikohonov regular-
ization

3 Case Study: Nutrigenomics microarray data

In this first example a set consisted of Affymetrix array data derived from a nutrigenomics
experiment in which weak, intermediate and strong PPAR« agonists were administered to
wild-type and PPARa-null mice is used. The power and sample size analysis confirms the hi-
erarchy of PPARa-activating compounds previously reported and the general idea that larger
effect sizes positively contribute to the average power of the experiment.
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PPAR« is a transcription factor that is activated upon binding by a variety of agonists, both
of synthetic and natural origin. In this experiment the outcome of specific PPAR« activation
on murine small intestinal gene expression was examined using Affymetrix GeneChip Mouse
430 2.0 arrays. PPAR« was activated by several PPARa-agonists that differed in activating
potency. Data of three agonists were used, namely Wy14,643, fenofibrate and trilinolenin
(C18:3). The first two compounds belong to the fibrate class of drugs that are widely
prescribed to treat dyslipidemia, whereas trilinolenin is an agonist frequently found in the
human diet. For intestinal PPARq, Wy14,643 is the most potent agonist followed by C18:3
and fenofibrate. Since time of exposure also affects the effect size, intestines were collected 6
hrs (all three agonists) or 5 days (Wy14,643 and fenofibrate only) after exposure. Expression
estimates of probesets were obtained by GC-robust multi-array (GCRMA) analysis, employing
the empirical Bayes approach for background adjustment, followed by quantile normalization
and summarization. For each compound and exposure time, lists of moderated t-test statistics
were computed, using the empirical Bayes linear regression model as implemented in limma,
for each contrast representing the effect of compound in PPARa-null mice compared to
wild-type mice. For more details see [8].

> library(lattice)
> data(Nutrigenomics)
> str(Nutrigenomics)

'data.frame': 16540 obs. of 5 variables:

$wySd : num 2 1.22 1.19 -1.14 1 0.86 4 -1.83 -2.64 3.04 ...

$ feno5d: num 2 -1.03 -1.11 0.33 0.22 0.22 0.24 0.36 1.73 0.54 ...

$ X1836h: num 2.5 -2.3 -0.56 0.06 -0.89 -0.09 2 -2.12 -1.47 -1.69 ...
$ wy6h : num 2 1.12 0.21 -0.68 -1.06 -0.4 1.82 -1.71 1.2 1.03 ...

$ feno6bh: num 2.22 0.76 -0.37 -0.07 -1.9 ...

pd <- apply(Nutrigenomics, 2,
function(x) pilotData(statistics=x[-1],
samplesize=sqrt(x[1]),
distribution="norm"))
ss <- lapply(pd, sampleSize,
control=list(piOMethod="Storey", a=0, resolution=2"10, verbose=FALSE))
##ss <- lapply(pd, sampleSize,
#i# method = "congrad",
## control=list(verbose=FALSE, resolution=2"10, from=-10, to=10))

compounds <- c("Wyl4,643", "fenofibrate", "trilinolenin (C18:3)", "Wyl4,643", "fenofibrate")
exposure <- c("5 Days", "6 Hours")
effectsize <- data.frame(exposure = factor(rep(rep(exposure, c(2, 3)), each=1024)),
compound = factor(rep(compounds, each=1024)),
lambda = as.vector(sapply(ss,
function(x)x@lambda)),
theta = as.vector(sapply(ss,
function(x)x@theta)))
print(xyplot(lambda~theta|exposure, group=compound, data=effectsize,
type=c("g", "l"), layout=c(1,2), lwd=2, xlab="effect size", ylab="",
auto.key=list(columns=3, lines=TRUE, points=FALSE, cex=0.7)))

+ + V + 4+ 4+ + +VVVVVVV+V + + + V

\

samplesize <- seq(2, 8)
> averagepower <- data.frame(power = as.vector(sapply(ss,
function(x) as.numeric(predictpower(x, samplesize=sqrt(samplesize))))),
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Figure 6: Nutrigenomic example: Estimated density of effect sizes for the five treatment exposure
conditions

exposure = factor(rep(rep(exposure, c(2, 3)), each=length(samplesize))),

compound = factor(rep(compounds, each=length(samplesize))),

samplesize = rep(2xsamplesize, 5))
print(xyplot(power~samplesize|exposure, group=compound, data=averagepower, type=c("g", "b"),

layout=c(1,2), lwd=2, pch=16, xlab="sample size (per group)", ylab="",
auto.key=list(columns=3, lines=TRUE, points=FALSE, cex=0.7)))
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Figure 7: Nutrigenomic example: Predicted power curves for the five treatment exposure conditions
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4 Case Study: deepSAGE of wild-type vs Dclk1 trans-
genic mice

In this example we will show how our method can be applied to count data of an RNA-seq
experiment. We will use the data described by [11] comparing gene expression profiles in the
hippocampi of transgenic §C-doublecortin-like kinase mice with that of wild-type mice. Data
is available from GEO (GSE10782).

and analyzed using the generalized linear model approach implemented in edgeR. A tag-wise
dispersion parameter was estimated using the Cox-Reid adjusted profile likelihood approach
for generalized linear models as implemented in edgeR. Using a treatment contrast, we tested
per tag if there was a genotype effect using the likelihood ratio statistic. This test statistic
follow asymptotically a x? distribution with one degree of freedom.

##files contains the full path and file names of each sample

targets <- data.frame(files=files,
group=rep(c("DCLK", "WT"), 4),
description=rep(c("transgenic (Dclkl) mouse hippocampus",

"wild-type mouse hippocampus"), 4))

d <- readDGE(targets) ##reading the data

##filter out low read counts

cpm.d <- cpm(d)

d <- d[rowSums(cpm.d > 1) >= 4, ]

design <- model.matrix(~group, data=d$samples)

##estimate dispersion

disp <- estimateGLMCommonDisp(d, design)

disp <- estimateGLMTagwiseDisp(disp, design)

##fit model

glmfit.hoen <- glmFit(d, design, dispersion = disp$tagwise.dispersion)

##perform likelihood ratio test

Lrt.hoen <- glmLRT(glmfit.hoen)

##extract results

tbl <- topTags(lrt.hoen, n=nrow(d))[[1]]

statistics <- tbl$LR

V V.V V V V V VYV V V VYV VYV + + + V V

> library(lattice)
> data(deepSAGE)
> str(deepSAGE)

num [1:44882] 133.5 93.8 89.5 88.8 87.4 ...

> pd <- pilotData(statistics=deepSAGE,
samplesize=8, distribution="chisq", df=1)
Ss <- sampleSize(pd, method="congrad",
control=list(trim=c(0, 0.98), symmetric=FALSE, from=0, to=10))
pwr <- predictpower(ss, samplesize=c(8, 16, 32))
op <- par(mfcol=c(2,1), mar=c(5,4,1,1))
plot(ss@theta, ss@lambda,
xlab="effect size", ylab="", type="1")
plot(c(8, 16, 32), pwr,

vV + VvV V V + V +
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+ xlab="sample size", ylab="power", type="b", ylim=c(0,1))
> grid(col=1)
> par(op)
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Figure 8: Deep SAGE example: Estimated density of effect size and predicted power curve
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5 Session info

The version number of R and packages loaded for generating the vignette were:
= R version 3.6.0 (2019-04-26), x86_64-pc-linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

= Running under: Ubuntu 18.04.2 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.9-bioc/R/1ib/1ibRblas.so

= LAPACK: /home/biocbuild/bbs-3.9-bioc/R/1ib/1ibRlapack.so

= Base packages: base, datasets, grDevices, graphics, methods, stats, utils

= Other packages: SSPA 2.24.0, genefilter 1.66.0, lattice 0.20-38, limma 3.40.0,
qvalue 2.16.0

= Loaded via a namespace (and not attached): AnnotationDbi 1.46.0, Biobase 2.44.0,
BiocGenerics 0.30.0, BiocManager 1.30.4, BiocStyle 2.12.0, DBI 1.0.0,
IRanges 2.18.0, Matrix 1.2-17, R6 2.4.0, RCurl 1.95-4.12, RSQLite 2.1.1, Rcpp 1.0.1,
S4Vectors 0.22.0, XML 3.98-1.19, annotate 1.62.0, assertthat 0.2.1, bit 1.1-14,
bit64 0.9-7, bitops 1.0-6, blob 1.1.1, colorspace 1.4-1, compiler 3.6.0, crayon 1.3.4,
digest 0.6.18, dplyr 0.8.0.1, evaluate 0.13, ggplot2 3.1.1, glue 1.3.1, grid 3.6.0,
gtable 0.3.0, htmltools 0.3.6, knitr 1.22, lazyeval 0.2.2, magrittr 1.5, memoise 1.1.0,
munsell 0.5.0, parallel 3.6.0, pillar 1.3.1, pkgconfig 2.0.2, plyr 1.8.4, purrr 0.3.2,
reshape2 1.4.3, rlang 0.3.4, rmarkdown 1.12, scales 1.0.0, splines 3.6.0, stats4 3.6.0,
stringi 1.4.3, stringr 1.4.0, survival 2.44-1.1, tibble 2.1.1, tidyselect 0.2.5, tools 3.6.0,
xfun 0.6, xtable 1.8-4, yaml| 2.2.0
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