Simulating and cleaning gene expression data
using RUVcorr in the context of inferring
gene co-expression

SaSkia Fl’eytag 1 Lfreytag.s@wehi.edu.au

May 2, 2019

The R package RUVcorr allows the simulation and cleaning of gene expression data using
global removal of unwanted variation (RUV) [1] when the aim is the inference of gene co-
expression. Besides the RUV procedure, the package offers extensive plotting options related
to its application and can simulate realistic gene expression data with a known gene correlation
structure. Although the procedures in the RUVcorr package have so far only been applied
to microarray gene expression data it should be feasible to apply it to RNA-seq data as well,
as long as suitable read-count summaries have been generated and the coverage is sufficient,
however this remains untested.

Loading RUVcorr is achieved with the command:

library(RUVcorr)

1 Simulating gene expression data with a known gene
correlation structure

The simulation of gene expression data relies on the linear model framework introduced by
Gagnon-Bartsch and Speed [1]. Briefly, they assume that any gene expression measurement
can be expressed as a linear combination of biological signal X 3, systematic noise Wa, and
random noise € (typically assumed to be iid normally distributed).

Y =XB+Wa+e 1)

where

Y is am X n matrix of observed gene expression data,

X is am X p matrix containing the unobserved factors of interest,

B is ap xmn matrix of regression coefficients associated with X,

W is am X k matrix of unobserved covariates introducing systematic noise,

« is ak x n matrix of regression coefficients associated with W

€ is am X n matrix of random noise.

In the context of this model and for the purposes of simulating gene expression data with
a known gene correlation structure, the true underlying gene structure is assumed to be
¥ = Cor(Xp). The size of the absolute value of the correlations can be somewhat controlled
using the dimensionality of X and 3, p. When p is increased the size of the absolute value of
the correlations in X is reduced. Note that some genes (negative controls) are unaffected by
this, as their correlation with each other as well as other genes is defined to be 0. Negative
control genes are genes that are believed to be unrelated to the factor of interest.

RUVcorr

1.1 Independence of biological signal and systematic noise

The simplest simulation of gene expression data assumes that the biological signal and the
systematic noise are uncorrelated with each other. So X is simulated in a fashion that it
renders it independent from W. After simulating the data, the print command allows you
to get a useful overview of the simulated data as well as some meta data.

set.seed(400)

Yind <- simulateGEdata(n=3000, m=1000, k=10, size.alpha=2,
corr.strength=5, g=NULL, Sigma.eps=0.1,
nc=2000, ne=1000, intercept=TRUE, check=TRUE)

print(Yind)

Simulated Data:
Number of samples: [1] 1000

##

Number of genes: [1] 3000

##

Info: [,1] [,2]

[1,] "k" "10"

[2,] "Mean correlation" "0.37367"

[3,] "Size alpha" A

[4,] "Intercept" 1"

##

##

Truth

[,1] [,2] 1531 [,4] [53]

[1,] 3.447821 3.798722 12.87851 13.89850 4.212844
[2,] 3.855001 3.674299 13.04912 14.05321 3.763207
[3,] 4.124890 4.027222 12.75715 13.81689 3.461644
[4,] 4.096000 3.858704 13.20210 14.52872 3.619737
[5,] 4.274382 4.007947 13.00307 14.22137 3.381000
##

##

Y

[,1] [,2] 053] [,4] [,5]
[1,] 0.9178217 3.144494 13.12859 15.618884 0.5393862
[2,] 3.1760868 2.369838 13.37485 12.801848 5.4446971
[3,] 3.5460899 7.921163 13.06658 16.142114 7.1591649
[4,] 5.9339592 2.374305 14.50340 6.472955 4.1597942
[5,] 2.6708657 5.704914 9.08178 10.086742 5.5447521
##

##

Noise

[,1] [,2] [,3] [,4] [53]

[1,] -2.3963091 -0.5719278 0.1424810 1.644274 -3.6232646
[2,] -0.6583354 -1.4789223 0.3642906 -1.316678 1.6108319
[3,] -0.5895675 4.0725809 0.3620272 2.399870 3.8290098
[4,] 1.8112245 -1.5876917 1.2016046 -8.077589 0.5674677
[5,] -1.5802649 1.6729883 -3.8756275 -4.200470 2.2899458
##

##

RUVcorr

1.2

Sigma

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.2300757 0.7077388 0.5133700 -0.3523293
[2,] 0.2300757 1.0000000 -0.2131211 0.1073550 0.1087782
[3,] 0.7077388 -0.2131211 1.0000000 0.4973006 0.1772923
[4,] 0.5133700 0.1073550 0.4973006 1.0000000 -0.2652279
[5,] -0.3523293 0.1087782 0.1772923 -0.2652279 1.0000000

Comment: Note that the parameter corr.strength refers to p. The parameters nc and ne
refer to the number of negative control genes and truly expressed genes (i.e. with a mean
true gene expression greater than 0.) The parameter intercept controls whether W contains
an offset or not.

Dependence of biological signal and systematic noise

It is more realistic to assume that there is some dependence between X and W. Using the
parameter g (0 < g < min(k,p)) it is possible to introduce different levels of correlation
between signal and systematic noise. Choosing a larger value for g will introduce more
dependency between X and W. Here g refers to the dimension of the shared subspace of X
and W.

set.seed(400)

Ydep <- simulateGEdata(n=3000, m=1000, k=10, size.alpha=2,
corr.strength=5, g=2, Sigma.eps=0.1,
nc=2000, ne=1000, intercept=TRUE, check=TRUE)

[1] "Need to make positive semi-definite!"
print(Ydep)

Simulated Data:
Number of samples: [1] 1000

##

Number of genes: [1] 3000

##

Info: [,1] [,2]
[1,] "k" "10"

[2,] "Mean correlation" "0.37405"
[3,] "bwx" "0.17538"
[4,] "Size alpha" A

[5,] "Intercept" "t

##

##

Truth

[,1] [,2] 0531 [,4] [,5]

[1,] 10.143886 15.53114 2.546970 3.226404 14.89994
[2,] 9.068776 14.99081 1.582244 1.922911 14.57282
[3,] 10.503293 15.05288 1.728851 3.292824 12.37187
[4,] 11.535333 15.92762 2.611494 3.567288 13.36926
[5,] 11.234852 14.50556 2.998051 2.525897 13.31959
#t

RUVcorr

##

##H Y

[,1] [,2] 1531 [,4] [,5]

[1,] 9.398858 12.59123 0.7883212 -0.63822024 15.857143

[2,] 10.044989 14.27661 1.1739130 -1.00930559 12.391147

[3,] 8.819857 12.60346 2.4811734 0.05810922 13.831401

[4,] 15.546464 14.65987 7.2123839 -0.14543726 13.222961

[5,] 14.562392 16.68100 3.7431212 1.78321722 9.399726

##

##

Noise

[,1] [,2] [,3] [,4] 53]
[1,] -0.6627286 -3.0475014 -1.8347581 -3.8144307 1.1043862
[2,] 0.8017511 -0.6756356 -0.4736520 -3.0028747 -2.0142852

[3,] -1.5047964 -2.3968253 0.8269651 -3.1032253 1.6194624
[4,] 3.9078375 -1.3674478 4.5790674 -3.6853142 -0.3203399
[5,] 3.3035614 2.2211075 0.6792264 -0.6164858 -3.8738138
#i#

#i#

Sigma

[,1] [,2] [,31] [,4] [,5]
[1,] .0000000 0.1855021 0.6649428 4539661 -0.4180683

1 ®
[2,] 0.1855021 .0000000 -0.2848953 0.1226356 0.1077881
[3,] 0.6649428 -0.2848953 1.0000000 0.4802257 0.1512601
0 i,
0 -0.

=

[4,] .4539661 0.1226356 0.4802257 0000000 -0.1990134
[5,] -0.4180683 0.1077881 0.1512601 1990134 1.0000000

Comment: Note that bWX refers to the average correlation between the columns of X and

w.

Appication of global removal of unwanted variation

RUV is a data-driven method that removes systematic noise from gene expression datasets.
The particular version of RUV is dependent on the goal of the analysis. We have developed
a method, RUVNaiveRidge, for the removal of unwanted variation that focuses on retrieving
the true underlying gene-gene correlations, but at the cost of the specification of the absolute
values of gene expression (paper in preparation).The application of RUVNaiveRidge requires
the analyst to make several descisions, which should be informed by the ultimate research
goal. Here we will demonstrate some of the principles using a dataset on gene expression in
57 samples from the bladder as described in Dyrskjot et al [2]. The dataset can be found in
the Bioconductor package bladderbatch. Note that this dataset is small and co-expression
analysis should ideally be performed on studies with at least 100 samples.

http://bioconductor.org/packages/bladderbatch

RUVcorr

2.1

Investigating the dataset design and getting data into the cor-
rect format

For the application of RUVNaiveRidge it is important to be familar with the experiment design
of the dataset. If the accompanying metadata of the samples is available the experiment
design can be visualized using the function plotDesign.

library(bladderbatch)

Loading required package: Biobase

Loading required package: BiocGenerics
Loading required package: parallel

#i#t
Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

#i# clusterApply, clusterApplylLB, clusterCall, clusterEvalQ,
#i# clusterExport, clusterMap, parApply, parCapply, parLapply,
#i# parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ’package:stats’:
##
IQR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data. frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect,

#i# is.unsorted, lapply, mapply, match, mget, order, paste, pmax,
pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,

setdiff, sort, table, tapply, union, unique, unsplit, which,
which.max, which.min

Welcome to Bioconductor

#t

Vignettes contain introductory material; view with

"browseVignettes()’. To cite Bioconductor, see

‘citation("Biobase")’, and for packages ‘citation("pkgname")’.
data(bladderdata)

expr.meta <- pData(bladderEset)

plotDesign(expr.meta, c("cancer", "outcome", "batch"),

c("Diagnosis", "Outcome", "Batch"), orderby="batch")

Figure 1 illustrates that batches, diagnosis and eventual outcome were substantially con-
founded; ie. not all factors could be fully randomized. Thus, it is likely that the data
contains some systematic noise.

The gene expression data needs to be a matrix with its columns containing the genes and its
rows containing the samples.

RUVcorr

Diagnosis

Outcome

Batch

Figure 1: Experimental design of the gene expression dataset of Dyrskjot et al
Every line in each of the bars represents a sample, which is colored according to the factor displayed on the
left-hand side. The samples in each bar are in the same order.

expr <- exprs(bladderEset)
expr[1:5,1:5]

##t GSM71019.CEL GSM71020.CEL GSM71021.CEL GSM71022.CEL GSM71023.CEL
1007_s_at 10.115170 8.628044 8.779235 9.248569 10.256841
1053_at 5.345168 5.063598 5.113116 5.179410 5.181383
117_at 6.348024 6.663625 6.465892 6.116422 5.980457
121 _at 8.901739 9.439977 9.540738 9.254368 8.798086
1255_g_at 3.967672 4.466027 4.144885 4.189338 4.078509
dim(expr)

[1] 22283 57

expr <- t(expr)
expr <- expr[,1:20000]

library(hgul33a2.db)

Loading required package: AnnotationDbi
Loading required package: stats4

Loading required package: IRanges

Loading required package: S4Vectors

##
Attaching package: ’S4Vectors’

The following object is masked from ’package:base’:
##
expand.grid

RUVcorr

2.2

2.3

Loading required package: org.Hs.eg.db
#i#
#i#

X <- hgul33a2SYMBOL
xX <- as.list(x[colnames(expr)])

Selecting negative control genes

Ideally, negative control genes should be selected with the help of a priori information. Unfor-
tunately, when the aim is estimating gene coexpression and the factor of interest is unknown,
a suitable set of negative control genes is seldomly known. Because of this it is advisable to
choose negative control genes empirically. Using the RUVcorr package this can be accom-
plished using the function empNegativeControls. Note that it is necessary to exclude the
genes that pertain to your research question from being selected as negative controls. For
demonstration purposes let us assume we are interested in the following 10 random genes:

na_genes <- c("SCN1A", "SCN3A", "SCN4A", "SCN5A", "SCN7A", "SCN8A", "SCN11A",
"SCN1B", "SCN2B", "SCN3B", "SCN4B")

Since the genes in the dataset is uing Affymetrix identifiers, we have to find the corresponding
Affymetrix probe names for our genes of interest.

na_affy <- names(which(unlist(lapply(xx, function(x) is.element(x, na_genes)[1]))))
na_index <- which(is.element(colnames(expr),na_affy))
nc_index <- empNegativeControls(expr, exclude=na_index, nc=3000)

Usefully, the selection can also be visualized (see Figure 2):

genePlot(expr, index=nc_index,
legend="Negative Control Genes", title="IQR-Mean Plot")

Effective application of RUVNaiveRidge

Besides negative control genes the application of RUVNaiveRidge also requires the input of
two user-selected parameters, the ridge parameter v and the dimensionality of W, k. Since
these parameters determine the strength of the cleaning, the user is adviced to carefully
assess her choices. It is recommended to run RUVRidgeNaive with several different choices
of the parameters and then assess the results. In order to do this efficiently it is advisable to
RUVNaiveRidge in parallel. This can be achieved with a package such as snowfall.

library(snowfall)
Loading required package: snow

#i#
Attaching package: ’snow’

https://CRAN.R-project.org/package=snowfall

RUVcorr

IQR-Mean Plot

Negative Control Genes

IQR

ML

-,]

T T T T T
4 6 8 10 12

Means

Figure 2: Inter-quantile range vs. mean plot of the expression of all genes
The genes highlighted in red are the empirically chosen negative control genes.

The following objects are masked from ’package:BiocGenerics’:
##

#i# clusterApply, clusterApplylLB, clusterCall, clusterEvalQ,

#t clusterExport, clusterMap, clusterSplit, parApply, parCapply,
parLapply, parRapply, parSapply

The following objects are masked from ’package:parallel’:

##

#i# clusterApply, clusterApplylLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, clusterSplit, makeCluster, parApply,
parCapply, parLapply, parRapply, parSapply, splitIndices,

stopCluster

k <- c(1,2,3,4)

nu <- c(0,500,1000,5000)

k.nu.matrix <- cbind(rep(k, each=4), rep(nu, 4))
k.nu.matrix <- as.list(as.data.frame(t(k.nu.matrix)))

sfInit(parallel=TRUE, cpus=4)

R Version: R version 3.6.0 (2019-04-26)

snowfall 1.84-6.1 initialized (using snow 0.4-3): parallel execution on 4 CPUs.
sfLibrary(RUVcorr)

Library RUVcorr loaded.

Library RUVcorr loaded in cluster.

sfExport("expr", "k.nu.matrix", "nc_index")

expr_AllRUV <- sflLapply(k.nu.matrix, function(x)
RUVNaiveRidge (expr, center=TRUE, nc_index, x[2], x[1]))

sfStop()

RUVcorr

2.4

#i#
Stopping cluster

Plotting options to help make parameter choices

Choosing the parameter values is not always easy and there might be more than one possible
choice. It is therefore vital to thoroughly investigate different combinations of parameter
choices using genes that are a priori known to be uncorrelated with each other and a priori
known to be correlated, also referred to as positive controls. Here, we will use the sodium
channel genes as positive controls, because we expect some of these genes to be correlated
with each other.

cor_AllRUV_na <- lapply(expr_AllRUV, function(x) cor(x[,na_index]))
cor_Raw_na <- cor(expr[,na_index])

par(mfrow=c(2,2))

lapply(1l:4, function(i) histogramPlot(cor_AllRUV_na[seq(0,15,4)+i], cor_Raw_na,
title=paste("nu=", nul[i]),
legend=c(paste("k=", k), "Raw")))

For the set of uncorrelated genes, the negative control genes cannot be used. This is because
negative controls used during RUV will have zero correlation by definition. A good choice
for a set of uncorrelated genes is a set of random genes. Picking these can be accomplished
using the function background.

bg_index <- background(expr, nBG=100, exclude=na_index, nc_index=nc_index)

cor_AllRUV_bg <- lapply(expr_Al1RUV, function(x) cor(x[,bg_index]))
cor_Raw_bg <- cor(expr[,bg_index])

par(mfrow=c(2,2))

lapply(1:4, function(i) histogramPlot(cor_AllRUV_bg[seq(0,15,4)+i], cor_Raw_bg,
title=paste("nu=", nul[i]),
legend=c(paste("k=", k), "Raw")))

From Figures 3 and 4 it seems a choice of k = 2 corrects the wide range of the distribution
of the correlations between random genes, but leaves some interesting non-zero correlations
for the sodium-channel genes. Other plots that are informative for the choise of %k include
the eigenvaluePlot. The choice for the correct v however remains difficult because of the
little change in the overall results. Further assessments are required.

Besides looking at histogram plots studying relative log expression (RLE) plots is useful.
Specifically, parameter choices that overcorrect the data can be spotted. Such parameter
choices will have gene expression variances that are too low. The RLE plots offered differ
from the originally proposed RLE plot by combining all samples and are suited to large (> 100
arrays) gene expression data sets where visualisation of individual arrays becomes impractical.
The option displayed here shows the boxplots for the 1st and 3rd quantile of the difference
between the gene expression and the study median for all samples (compare Figure 5).

nu=0 nu= 500

P
(]
ENEANNI
oo o
(RG]
ENFARNI

15
1

wn
o 7| == Raw — Raw "
|
o
1) > |
g2 21 g2 4
c e
@ o1
a) a
[t} w
o 7 o
o | o | |“
[S) o
I T T T 1 I T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Correlation Size Correlation Size
nu= 1000 nu= 5000
k=1 k=1
k=2 0 _ k=2
o _ = k=3 - — k=3
Al k=4 k=4
— Raw — Raw H“\lul‘)
e
o | —
2 - 2
£ 2
c c
3 @
[a] [a] ‘
0 w0 H
S <)
< <
o o
r T T T 1 r
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 .0 0.
Correlation Size Correlation Size

Figure 3: Impact of different parameter choices on the correlations of a set of sodium channel genes
Correlation densities for different parameter choices. The histogram in the background of each panel shows
the denisty of the correlations of the random genes calculated using the raw data.

par(mfrow=c(2,2))

lapply(1:4, function(i) RLEPlot(expr, expr_ALLRUV[[4+i]],
name=c("Raw", "RUV"), title=paste("nu=", nu[il),
method="IQR.boxplots"))

A parameter choice of v = 500 seems to offer the best choice. In order to check whether the
selected parameter at least removes all the known sources of variation, there is yet another
version of the RLE plot. Here we plot the median and the inter-quantile-range (IQR) of the
difference between the gene expression and the study median for all samples. Furthermore,
it is useful to color these plots according to a known source of unwanted variation, such as
batches (see Figure 6).

par(mfrow=c(1,1))

RLEPlot (expr, expr_AlLlLRUV[[6]], name=c("Raw", "RUV"),
title="Batches", method="IQR.points", anno=expr.meta,
Factor="batch", numeric=TRUE)

10

RUVcorr

nu=0 nu= 500
L
k=1 o k=1
k=2 /‘ k=2
O _ e k=3 — k=3
N k=4 o | k=4
— Raw N —— Raw ’
|
o | [
- | wn
/ =7
2 l 2z \
5 ’ \ 5 ‘
a 3 o o {
S
wn
| w0
o o
o | <
o (=}
r T T T 1 r T T T 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Correlation Size Correlation Size
nu= 1000 nu= 5000
oo
o
k=1 o k=1
k=2 E k=2
o k=3 o k=3
o | k=4 [k=4 y
R — Raw — Raw / \
o /
2 E M |
2 2
\
2 2
@ I
a o a
=7 J
o I
2 4 i
w0 i
o
V
| | ‘
il
<o o -1
o o
r T T T 1 r T T T 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Correlation Size Correlation Size

Figure 4: Impact of different parameter choices on the correlations of a set of random genes
Correlation densities for different parameter choices. The histogram in the background of each panel shows
the denisty of the correlations of the random genes calculated using the raw data.

Comment: Principal component plots (PCAPLlot) provide a similar way of assessing parameter
choices for RUV.

Figure 6 demonstrates that at least most of the systematic noise introduced via the batch ef-
fect has been removed. Hence, it is now possible to examine gene-gene correlations, construct
gene networks or else using this new dataset.

CleanData <- expr_ALLRUV[[6]]

11

RUVcorr

nu=0 nu= 500
. o
H H
0.4 0.4
—_e 1
2] = 2] ==
——
0.0 0.0
N _
-0.2 = -0.2 —_—
———]
-0.4 : -0.4 :
' Raw ' Raw
0 RUV) RUV
T T T T
5 s 5 5
& & & &
4 B] S
— o - o™
nu= 1000 nu= 5000
. o
H 8
0.4 } 0.4 }
= 1
02 7 — 0.2
I
[— ——
0.0 0.0
N
-0.2 -0.2 4 _
[/ 1
-0.4 -0.4
' Raw ' Raw
0 RUV ’ RUV
T T T T
5 3 3 5
& & & &
3 2 3 z
- (v} - ™

Figure 5: RLE plots comparing different options of v for ki = 3
The boxplots summarize the 25% and 75% quantile of all samples. The red boxplots display the raw data,

while the black boxplots refer to the RUV applied with £ = 2 and v as in the title of the panel.

Batches Raw RUV
1
2
3
:
5 o o
2 E
© o
ST o
['4 ['q
13 <3
© o
o7 o
< <
S S
T T T T T T T T T T
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Median

Median

Figure 6: RLE plots for data cleaned with RUV using v = 500 for & = 2
Every sample is represented by the median and inter-quantile-range of the difference between observed gene

expressions and study mean. The samples are colored according to their batches.

RUVcorr

Gene prioritisation

3.1

3.2

One of the methods that can be applied given a cleaned version of the dataset is gene
prioritisation. Gene prioritisation identifies candidate genes that are likely to be involved in
the same biological pathways or related pathways than a set of known genes. The gene
prioritisation method in this package is very similar to the approach described in the paper
by Oliver et al [3]. For demonstration purposes assume that the following genes involved in
the synaptic vesicle cycle are in fact candidates:

cand_genes <- c("CACNA1A", "CACNA1B", "SNAP25", "STX1A")

cand_affy <- names(which(unlist(lapply(xx, function(x) is.element(x, cand_genes)[11))))

cand_index <- which(is.element(colnames(CleanData),cand_affy))

Finding the correlation threshold of significant co-expression

In order to prioritise genes, typically a correlation threshold is determined. The absolute
values of correlations between genes that exceed this threshold are considered to be truly co-
expressed. Here, we use a threshold that corresponds to a proportion of prioritised random
genes of 0.3. However, this requires extensive estimation for all possible thresholds. This can
be achieved using the function calculateThreshold:

Prop <- calculateThreshold(CleanData, exclude=c(nc_index, cand_index),
index.ref=na_index, set.size=length(cand_index),
Weights=NULL)

threshold <- predict(Prop$loess.estimate, 0.3)

threshold

[1] 0.3722723

Comment: It is important to exclude genes that could bias the estimation of the proportion
of prioritised genes.

Thresholds can also be visualized using (see Figure 7):

plotThreshold(Prop)

Prioritising candidate genes

Having determined the threshold we can use the function prioritise in order to establish
which candidates are also likely to be involved in the sodium-channel:

prior<-prioritise(CleanData, na_index, cand_index, Weight=NULL, threshold=threshold)
print(prior)

prioritisedGenes strength strength2
202507_s_at "202507_s_at" "2 "0.928856858297064"
206399_x_at "206399_x_at" "2 "0.943806430876702"

xx[which(is.element(names(xx), prior[,1]))]

13

RUVcorr

1.0

Proportion Prioritised
0.4 0.6
! !

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Figure 7: Proportion of prioritised random genes for every possible threshold

$°202507_s_at’
[1] "SNAP25"
##

$°206399_x_at"
[1] "CACNALA"

This analysis prioritises SNAP25 and CACNALA.

Session info

Here is the output of sessionInfo on the system on which this document was compiled:

toLatex(sessionInfo())

R version 3.6.0 (2019-04-26), x86_64-pc-linux-gnu

= lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

= Running under: Ubuntu 18.04.2 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.9-bioc/R/1ib/1ibRblas.so

= LAPACK: /home/biocbuild/bbs-3.9-bioc/R/1ib/1ibRlapack.so

= Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,
utils

= Other packages: AnnotationDbi 1.46.0, Biobase 2.44.0, BiocGenerics 0.30.0,
IRanges 2.18.0, RUVcorr 1.16.0, S4Vectors 0.22.0, bladderbatch 1.21.0,
hgul33a2.db 3.2.3, org.Hs.eg.db 3.8.2, snow 0.4-3, snowfall 1.84-6.1

14

RUVcorr

= Loaded via a namespace (and not attached): BiocManager 1.30.4,
BiocParallel 1.18.0, BiocStyle 2.12.0, DBI 1.0.0, MASS 7.3-51.4, RSQLite 2.1.1,
Rcpp 1.0.1, bit 1.1-14, bit64 0.9-7, blob 1.1.1, compiler 3.6.0, corrplot 0.84,
digest 0.6.18, evaluate 0.13, foreign 0.8-71, grid 3.6.0, gridExtra 2.3, gtable 0.3.0,
highr 0.8, htmltools 0.3.6, knitr 1.22, lattice 0.20-38, magrittr 1.5, memoise 1.1.0,
mnormt 1.5-5, nlme 3.1-139, pkgconfig 2.0.2, plyr 1.8.4, psych 1.8.12, reshape2 1.4.3,
rmarkdown 1.12, stringi 1.4.3, stringr 1.4.0, tools 3.6.0, xfun 0.6, yaml 2.2.0

References

1]

2]

(3]

Johann A Gagnon-Bartsch and Terence P Speed. Using control genes to correct for
unwanted variation in microarray data. Biostatistics, 13(3):539-552, 2012.

Lars Dyrskjgt, Mogens Kruhgffer, Thomas Thykjaer, Niels Marcussen, Jens L Jensen,
Klaus Mgller, and Torben F @rntoft. Gene expression in the urinary bladder a common
carcinoma in situ gene expression signature exists disregarding histopathological
classification. Cancer Research, 64(11):4040-4048, 2004.

Karen L Oliver, Vesna Lukic, Natalie P Thorne, Samuel F Berkovic, Ingrid E Scheffer,
and Melanie Bahlo. Harnessing gene expression networks to prioritize candidate epileptic
encephalopathy genes. PloS one, 9(7):€102079, 2014.

15

	1 Simulating gene expression data with a known gene correlation structure
	1.1 Independence of biological signal and systematic noise
	1.2 Dependence of biological signal and systematic noise

	2 Appication of global removal of unwanted variation
	2.1 Investigating the dataset design and getting data into the correct format
	2.2 Selecting negative control genes
	2.3 Effective application of [functioncolor]RUVNaiveRidge
	2.4 Plotting options to help make parameter choices

	3 Gene prioritisation
	3.1 Finding the correlation threshold of significant co-expression
	3.2 Prioritising candidate genes

	4 Session info

