MetNet: Inferring metabolic networks from
untargeted high-resolution mass spectrom-
etry data

Thomas Naake*

Max Planck Institute of Molecular Plant Physiology 14476 Potsdam-Golm, Germany

*thomasnaake@googlemail.com

May 2, 2019

Abstract

A major bottleneck of mass spectrometry-based metabolomic analysis is still the rapid
detection and annotation of unknown m/z features across biological matrices. Tra-
ditionally, the annotation was done manually imposing constraints in reproducibility
and automatization. Furthermore, different analysis tools are typically used at differ-
ent steps of analyses which requires parsing of data and changing of environments.
| present here MetNet, a novel R package, that is compatible with the output of
the xcms/CAMERA suite and that uses the data-rich output of mass spectrometry
metabolomics to putatively link features on their relation to other features in the
data set. MetNet uses both structural and quantitative information of metabolomics
data for network inference that will guide metabolite annotation.
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Introduction

Among the main challenges in mass spectrometric metabolomic analysis is the high-
throughput analysis of metabolic features, their fast detection and annotation. By
contrast to the screening of known, previously characterized, metabolic features in
these data, the putative annotation of unknown features is often cumbersome and
requires a lot of manual work, hindering the biological information retrieval of these
data. High-resolution mass spectrometric data is often very rich in information con-
tent and metabolic conversions, and reactions can be derived from structural prop-
erties of features [1]. In addition to that, statistical associations between features
(based on their intensity values) can be a valuable ressource to find co-synthesised
or co-regulated metabolites, which are synthesised in the same biosynthetic path-
ways. Given that an analysis tool within the R framework is still lacking that is
integrating the two features of mass spectrometric information commonly acquired
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with mass spectrometers (m/z and intensity values), | developed MetNet to close
this gap. The MetNet package comprises functionalities to infer network topologies
from high-resolution mass spectrometry data. MetNet combines information from
both structural data (differences in m/z values of features) and statistical associa-
tions (intensity values of features per sample) to propose putative metabolic networks
that can be used for further exploration.

The idea of using high-resolution mass spectrometry data for network construc-
tion was first proposed in [1] and followed soon afterwards by a Cytoscape plugin,
MetaNetter [2], that is based on the inference of metabolic networks on molecular
weight differences and correlation (Pearson correlation and partial correlation).

Inspired by the paper of [3] different algorithms for network were implemented in
MetNet to account for biases that are inherent in these statistical methods, followed
by the calculation of a consensus adjacency matrix using the differently computed
individual adjacency matrices.

The two main functionalities of the package include the creation of an adjacency ma-
trix from structual properties, based on losses/addition of functional groups defined
by the user, and statistical associations. Currently, the following statistical models
are implemented to infer a statistical adjacency matrix: Least absolute shrinkage and
selection operator (LASSO, L1l-norm regression, [4]), Random Forest [5], Pearson
and Spearman correlation (including partial and semipartial correlation, see [6] for
a discussion on correlation-based metabolic networks), context likelihood of related-
ness (CLR, [7]), the algorithm for the reconstruction of accurate cellular networks
(ARACNE, [8]) and constraint-based structure learning (Bayes, [9]). Since all of
these methods have advantages and disadvantages, the user has the possibility to
select several of these methods, compute adjacency matrices from these models and
create a consensus matrix from the different statistical frameworks.

After creating the statistical and structural adjaceny matrices these two matrices can
be combined to form a consensus matrix that has both information from structural
and statistical properties of the data. This can be followed by further network analy-
ses (e.g. calculation of topological parameters), integration with other data sources
(e.g. genomic information or transcriptomic data) and/or visualization.

MetNet is currently under active development. If you discover any bugs, typos or
develop ideas of improving MetNet feel free to raise an issue via GitHub or send a
mail to the developer.

2 Prepare the environment and load the data

To install MetNet enter the following to the R console
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install.packages("BiocManager")
BiocManager::install("MetNet")

Before starting with the analysis, load the MetNet package. This will also load
the required packages g/mnet, stabs, randomForest, rfPermute, mpmi, parmigene,
WGCNA and bnlearn that are needed for functions in the statistical adjacency matrix
inference.

library(MetNet)
##

## Registered S3 methods overwritten by ’ggplot2’:

## method from
## [.quosures rlang
## c.quosures rlang

## print.quosures rlang

## Registered S3 methods overwritten by ’‘sna’:
## method from

## plot.bn bnlearn

## print.bn bnlearn

The data format that is compatible with the MetNet framework is in the xcms/ CAMERA
output-like m x n matrix, where columns denote the different samples n and where m
features are present. In such a matrix, information about the masses of the features
and quantitative information of the features (intensity or concentration values) are
needed. The information about the m/z values has to be stored in a vector of length
|m| in the column "mz".

MetNet does not impose any requirements for data normalization, filtering, etc. How-
ever, the user has to make sure that the data is properly preprocessed. These include
division by internal standard, log2 transformation, noise filtering, removal of features
that do not represent mass features/metabolites, removal of isotopes, etc.

We will load here the object x_test that contains m/z values (in the column "mz"),
together with the corresponding retention time (in the column "rt") and intensity
values. We will use here the object x_test for guidance through the workflow of
MetNet.

data("x_test", package="MetNet")
Xx_test <- as.matrix(x_test)


https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=stabs
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=rfPermute
https://CRAN.R-project.org/package=mpmi
https://CRAN.R-project.org/package=parmigene
https://CRAN.R-project.org/package=WGCNA
https://CRAN.R-project.org/package=bnlearn
http://bioconductor.org/packages/xcms
http://bioconductor.org/packages/CAMERA

MetNet: Inferring metabolic networks from untargeted high-resolution MS data

3 Creating the structural matrix

The function createStructuralAdjacency will create the adjacency matrix based
on structual properties (m/z values) of the features. The function expects a ma-
trix with a column "mz" that contains the mass information of a feature (typically
the m/z value). Furthermore, createStructuralAdjacency takes a data.frame ob-
ject as argument transformations with the colnames "mass", "name" and additional
columns (e.g. "formula"). createStructuralAdjacency looks for transformation (in
the sense of additions/losses of functional groups mediated by biochemical, enzy-
matic reactions) in the data using the mass information.

Following the work of [1] and [2], molecular weight difference wx is defined by
wy = |wa — wpl| 1]

where wy is the molecular weight of substrate A, and wg is the molecular weight
of product B (typically, m/z values will be used as a proxy for the molecular weight
since the molecular weight is not directly derivable from mass spectrometric data).
As examplified in [2] specific enzymatic reactions refer to specific changes in the
molecular weight, e.g. carboxylation reactions will result in a mass difference of
43.98983 (molecular weight of CO3) between metabolic features.

The search space for these transformation is adjustable by the transformation argu-
ment in createStructuralAdjacency allowing to look for specific enzymatic trans-
formations in mind. Hereby, createStructuralAdjacency will take into account the
ppm value, to adjust for inaccuracies in m/z values due to technical reasons according
to the formula

Mezp — Meal _
ppm = —22__eale =6 2]
Mexp

with mey;, the experimentally determined m/z value and mq. the calculated accu-
rate mass of a molecule. Within the function, a lower and upper range is calculated
depending on the supplied ppm value, differences between the m/z feature values are
calculated and matched against the "mass"es of the transformations argument. If
any of the additions/losses defined in transformations is found in the data, it will be
reported as an (unweighted) connection in the returned adjacency matrix. Together
with the adjacency matrix the type of connection (derived from the column "name" in
the transformations) will be written to a character matrix. These two matrices will
be returned as a list (first entry: numerical adjacency matrix, second entry: character
matrix) by the function createStructuralAdjacency.

Before calculating the structural matrix, one must define the search space, i.e. these
transformation that will be looked for in the mass spectrometric data by creating the
transformations object.
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## define the search space for biochemical transformation
transformations <- rbind(
c("Hydroxylation (-H)", "0", 15.9949146221, "-"),
c("Malonyl group (-H20)", "C3H203", 86.0003939305, "?"),
c("C6H1006", "C6H1006", 178.0477380536, "-"),
c("D-ribose (-H20) (ribosylation)", "C5H804", 132.0422587452, "-"),
c("Disaccharide (-H20)", "C12H20011", 340.1005614851, "-"),
c("Glucuronic acid (-H20)", "C6H806", 176.0320879894, "?"),
c("Monosaccharide (-H20)", "C6H1005", 162.0528234315, "-"),
c("Rhamnose (-H20)", "C6H1004", 146.057916, "-"),
c("Trisaccharide (-H20)", "C18H30015", 486.1584702945, "-"),
c("coumaroyl (-H20)", "C9H602", 146.0367794368, "?"),
c("feruloyl (-H20)", "C9H6020CH2", 176.0473441231, "?"),
c("sinapoyl (-H20)", "C9H6020CH20CH2", 206.0579088094, "?"),
c("putrescine to spermidine (+C3H7N)", "C3H7N", 57.0578492299, "?"))

## convert to data frame

transformations <- data.frame(group=transformations[,1],
formula=transformations|[, 2],
mass=as.numeric(transformations[,3]),
rt=transformations|[,4])

The function createStructuralAdjacency will then check for those m/z differences
that are stored in the column "mass" in the object transformations. To create the
adjacency matrix derived from these structural information we enter

struct_adj <- createStructuralAdjacency(x=x_test,
transformation=transformations, ppm=10)

in the R console.

Refining the structural adjacency matrix (optional)

Depending on the chemical group added the retention time will differ depending on
the chemical group added, e.g. an addition of a glycosyl group will usually result
in a lower retentiom time in reverse-phase chromatography- This information can
be used in refining the adjacency matrix derived from the structural matrix. The
rtCorrection does this checking, if predicted transformation correspond to the ex-
pected retention time shift, in an automated fashion. It requires information about
the expected retention time shift in the data.frame passed to the transformation
argument (in the "rt" column). Within this columns, information about retention
time shifts is encoded by "-", "+" and "?", which means the feature with higher m/z
value has lower, higher or unknown retention time than the feature with the lower
m/z value. The values for m/z and retention time will be taken from the object
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passed to the x argument. In case there is a discrepancy between the transformation
and the retention time shift the adjacency matrix at the specific position will be set to
0. rtCorrection will return the updated adjacency matrix and the updated character
matrix with the descriptions of the transformation.

To account for retention time shifts we enter

struct_adj <- rtCorrection(struct_adj=struct_adj,
x=x_test, transformation=transformations)

in the R console.

4 Creating the statistical matrix

The function createStatisticalAdjacency will create the adjacency matrix based on
statistical associations. createStatisticalAdjacency is a wrapper function for the
functions createStatisticalAdjacencylList and consensusAdjacency. The former
function will create a list of adjacency matrices using the statistical models defined by
the model argument. Currently, the models LASSO (using stabs, [10,11]), Random
Forest (using rfPermute, CLR, ARACNE (the two latter using the package mpmi
to calculate Mutual Information using a nonparametric bias correction by Bias Cor-
rected Mutual Information, and the functions clr and aracne.a from the parmigene
package), Pearson and Spearman correlation (based on the WGCNA package, [12]),
partial and semipartial Pearson and Spearman correlation (using the ppcor package)
and constraint-based structure learning based on the Fast Incremental Association
(Fast-IAMB, algorithm from the bnlearn package, [9]).

For further information on the different models take a look on the respective help
pages of lasso, randomForest, clr, aracne, correlation and/or bayes. Arguments
that are accepted by the respective underlying functions can be passed directly to
the createStatisticalAdjacency and createStatisticalAdjacencyList functions.
In addition, arguments that are defined in the functions lasso, randomForest, clr,
aracne, correlation and/or bayes can be passed to the functions.

From the list of adjacency matrices the function consensusAdjacency will create a
consensus adjacency matrix using the employed statistical models. The reasoning
behind this step is to circumvent disadvantages arising from each model and creat-
ing a statistically reliable topology that reflects the actual metabolic relations. To
calculate the consensus adjacency matrix, the consensus function from the sna [13]
is employed. The arguments that are accepted by this function can be passed to the
consensusAdjacency and createStatisticalAdjacency function, respectively. Fur-
thermore, in case a method other than "central.graph" is used the argument thresh
old will define if the value a; ; of the consensus adjacency matrix will be reported as
a connection in the returned matrix (if a; ; > threshold) or not. createStatisti
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calAdjacency and consensusAdjacency will return an unweighted adjancency matrix
with connections inferred from the respective models.

In the following example, we will create a consensus adjacency matrix using Pearson
and Spearman correlation using the intensity values as input data. The p-values that
will be used for assigning edges in the unweighted adjacency matrix will be adjusted
by the Benjamini & Hochberg (False Discovery rate) method and the default g-value
of 0.05.

x_int <- x_test[,3:dim(x_test)[2]]
stat_adj <- createStatisticalAdjacency(x_int,
model=c("pearson", "spearman"), correlation_adjust="BH")

## [1] "pearson finished."
## [1] "spearman finished."

To create the same adjacency matrix without using the wrapper function, one can
call the two functions createStatisticalAdjacencylist and consensusAdjacency
individually:

1 <- createStatisticalAdjacencyList(x_int,
model=c("pearson", "spearman"), correlation_adjust="BH")

## [1] "pearson finished."
## [1] "spearman finished."

stat_adj <- consensusAdjacency(1l=1)

5 Combining the structural and statistical matrix

After creating the structural and statistical matrix, it is time to combine these two
matrices. The function combine structural statistical will combine the matrices
to the consensus matrix. The function accepts the arguments structure and sta
tistical for the two matrices, respectively, and the argument threshold, that is a
numerical value (default=1). After adding the matrices, the entries will be checked
if they are greater or equal than threshold and 1 or 0 will be returned, respectively.
The argument threshold needs to be adjusted by the user if another method than
"central.graph" in createStatisticalAdjacency/consensusAdjacency is used.

cons_adj <- combineStructuralStatistical(structure=struct_adj[[1]],
statistical=stat_adj)
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Figure 1: Ab initio network inferred from structural and quantitative mass spectrometry
data. Verteces are connected that are separated by given metabolic transformation and
statistical association

6 Visualization and further analyses

To display the created consensus adjacency matrix, existing visualisation tools avail-
able in the R framework can be employed or any other visualisation tool after export-
ing the consensus matrix as a text file. In this example We will use the igraph [14]
package to visualize the adjacency matrix.

g <- igraph::graph_from_adjacency_matrix(cons_adj, mode="undirected")
plot(g, edge.width=5, vertex.label.cex=0.5, edge.color="grey")

Furthermore, the network can be analysed by network analysis techniques (topological
parameters such as centrality, degree, clustering indices) that are implemented in
different packages in R(e.g. igraph or sna) or other software tools outside of the
R environment.
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Appendix

Session information

All software and respective versions to build this vignette are listed here:

## R version 3.6.0 (2019-04-26)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS

Matrix products: default
/home/biocbuild/bbs-3.9-bioc/R/1lib/1ibRblas.so
LAPACK: /home/biocbuild/bbs-3.9-bioc/R/1lib/1libRlapack.so

BLAS:

locale:

[1]
[3]
[5]
[7]
[91]
[11]

LC_CTYPE=en_US.UTF-8
LC_TIME=en_US.UTF-8

LC_MONETARY=en_US.UTF-8

LC_PAPER=en_US.UTF-8
LC_ADDRESS=C

LC_NUMERIC=C
LC_COLLATE=C

LC_MESSAGES=en_US.

LC_NAME=C
LC_TELEPHONE=C

UTF-8

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils

other attached packages:

[1] MetNet_1.2.0 knitr_1.22

loaded via a namespace (and not attached):

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]

nlme_3.1-139
fit.models_0.5-14
RColorBrewer_1.1-2
backports_1.1.4
KernSmooth_2.23-15
DBI_1.0.0
colorspace_1.4-1
gridExtra_2.3

matrixStats_0.54.0

bit64_0.9-7

dynamicTreeCut_1.63-1

R6_2.4.0

mgcv_1.8-28

lazyeval _0.2.2
nnet_7.3-12
bit_1.1-14

preprocessCore_1.46.0 WGCNA_1.67

htmlTable 1.13.1
checkmate_1.9.1
mvtnorm_1.0-10
goftest 1.1-1
digest 0.6.18
rmarkdown_1.12

network 1.15
spatstat.data_1.4-0
robustbase_0.93-4
spatstat_1.59-0
spatstat.utils_1.13-0
rrcov_1.4-7

datasets methods base

robust_0.4-18
doParallel_1.0.14
tools _3.6.0
rpart_4.1-15

Hmisc 4.2-0
BiocGenerics_0.30.0
tidyselect_0.2.5
compiler_3.6.0
Biobase 2.44.0
scales_1.0.0
DEoptimR_1.0-8
randomForest_4.6-14
stringr_1.4.0
foreign_0.8-71
base64enc_0.1-3
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##
##
##
##
##
#i#
##
##
##
##
#H#
H##
##
##
##
##
##
##
##
##
##
##
H##
##

[46]
[49]
[52]
[55]
[58]
[61]
[64]
[67]
[70]
[73]
[76]
[79]
[82]
[85]
[88]
[91]
[94]
[971]
[100]
[103]
[106]
[109]
[112]
[115]

pkgconfig_2.0.2
maps_3.3.0
rlang_0.3.4
impute_1.58.0
acepack _1.4.1
G0.db_3.8.2
Rcpp-1.0.1
abind_1.4-5
yaml_2.2.0
grid_3.6.0
crayon_1.3.4
lattice_0.20-38
sna_2.4
swfscMisc_ 1.2
codetools_0.2-16
evaluate 0.13
parmigene_1.0.2
rfPermute_2.1.7
gtable_0.3.0
ggplot2_3.1.1
survival_2.44-1.1
iterators_1.0.10
IRanges_2.18.0
BiocStyle_2.12.0

htmltools_0.3.6
highr_0.8
rstudioapi_0.10
statnet.common_4.2.0
dplyr_0.8.0.1
Formula_1.2-3
munsell_0.5.0
stringi_1.4.3
MASS_7.3-51.4
blob_1.1.1
ppcor_1.1
splines_3.6.0
pillar_1.3.1
fastcluster_1.1.25
stats4_3.6.0
latticeExtra_0.6-28
data.table_1.12.2
foreach_1.4.4
purrr_0.3.2
xfun_0.6
pcaPP_1.9-73
AnnotationDbi 1.46.0
cluster_2.0.9

mpmi_0.43
htmlwidgets_ 1.3
RSQLite 2.1.1
BiocParallel 1.18.0
magrittr_1.5
Matrix_ 1.2-17
S4Vectors_0.22.0
bnlearn_4.4.1
plyr_1.8.4
parallel_3.6.0
deldir_0.1-16
tensor_1.5
igraph_1.2.4.1
reshape2_1.4.3
glue_1.3.1
mapdata_2.3.0
BiocManager_1.30.4
polyclip_1.10-0
assertthat 0.2.1
coda_0.19-2
tibble_2.1.1
memoise 1.1.0
stabs_0.6-3
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Transformations

The list of transformations is taken from [1]. The numerical m/z values were calcu-
lated by using the structural formula and the Biological Magnetic Resonance Data
Bank web tool.

transformations <- rbind(
c("Alanine", "C3H5NO", "71.0371137878"),
c("Arginine", "C6H12N40", "156.1011110281"),
c("Asparagine", "C4H6N202", "114.0429274472"),
c("Guanosine 5-diphosphate (-H20)", "C1@H13N5010P2", "425.0137646843"),
c("Guanosine 5-monophosphate (-H20)", "ClOH12N507P", "345.0474342759"),
c("Guanine (-H)", "C5H4N50", "150.0415847765"),
c("Aspartic acid", "C4H5NO3", "115.0269430320"),
c("Guanosine (-H20)", "C1OH11N504", "265.0811038675"),
c("Cysteine", "C3H5NOS", "103.0091844778"),
c("Deoxythymidine 5'-diphosphate (-H20)", "C10H14N2010P2", "384.01236770"),
c("Cystine", "C6H1ON203S2", "222.0132835777"),
c("Thymidine (-H20)", "C1OH12N204", "224.0797068840"),
c("Glutamic acid", "C5H7NO3", "129.0425930962"),
c("Thymine (-H)", "C5H5N202", "125.0351024151"),
c("Glutamine", "C5H8N202", "128.0585775114"),
c("Thymidine 5'-monophosphate (-H20)", "C1OH13N207P", "304.0460372924"),
c("Glycine", "C2H3NO", "57.0214637236"),
c("Uridine 5'-diphosphate (-H20)", "C9H12N2011P2", "385.9916322587"),
c("Histidine", "CG6H7N30", "137.0589118624"),
c("Uridine 5'-monophosphate (-H20)", "C9H11N208P", "306.0253018503"),
c("Isoleucine", "C6H1INO", "113.0840639804"),
c("Uracil (-H)", "C4H3N202", "111.0194523509"),
c("Leucine", "C6HLINO", "113.0840639804"),
c("Uridine (-H20)", "C9H1ON205", "226.0589714419"),
c("Lysine", "C6H12N20", "128.0949630177"),
c("Acetylation (-H)", "C2H302", "59.0133043405"),
c("Methionine", "C5H9NOS", "131.0404846062"),
c("Acetylation (-H20)", "C2H20", "42.0105646863"),
c("Phenylalanine", "C9HONO", "147.0684139162"),
c("C2H2", "C2H2", "26.0156500642"),
c("Proline", "C5H7NO", "97.0527638520"),
c("Carboxylation", "C02", "43.9898292442"),
c("Serine", "C3H5N02", "87.0320284099"),
c("CHO2", "CHO2", "44.9976542763"),
c("Threonine", "C4H7NO2", "101.0476784741"),
c("Condensation/dehydration", "H20", "18.0105646863"),
c("Tryptophan", "C11H10N20", "186.0793129535"),
c("Diphosphate", "H306P2", "160.9404858489"),


http://www.bmrb.wisc.edu/metabolomics/mol_mass.php

MetNet: Inferring metabolic networks from untargeted high-resolution MS data

c("Tyrosine", "C9HI9NO2", "163.0633285383"),
c("Ethyl addition (-H20)", "C2H4", "28.0313001284"),
c("Valine", "C5H9NO", "99.0684139162"),
c("Formic Acid (-H20)", "CO", "27.9949146221"),
c("Acetotacetate (-H20)", "C4H402", "84.0211293726"),
("Glyoxylate (-H20)", "C202", "55.9898292442"),
("Acetone (-H)", "C3H50", "57.0340397826"),
("Hydrogenation/dehydrogenation", "H2", "2.0156500642"),
("Adenylate (-H20)", "C1lOH12N506P", "329.0525196538"),
c("Hydroxylation (-H)", "0", "15.9949146221"),
c("Biotinyl (-H)", "C1OH15N203S", "243.0803380482"),
c("Inorganic phosphate", "P", "30.9737615100"),
c("Biotinyl (-H20)", "ClOH14N202S", "226.0775983940"),
c("Ketol group (-H20)", "C2H20", "42.0105646863"),
c("Carbamoyl P transfer (-H2P04)", "CH20N", "44.0136386915"),
c("Methanol (-H20)", "CH2", "14.0156500642"),
"Co-enzyme A (-H)", "C21H34N7016P3S", "765.0995583014"),
"Phosphate", "HP03", "79.9663304084"),
"Co-enzyme A (-H20)", "C21H33N7015P3S", "748.0968186472"),
("Primary amine", "NH2", "16.0187240694"),
c("Glutathione (-H20)", "C1OH15N305S", "289.0732412976"),
c("Pyrophosphate", "PP", "61.9475230200"),
c("Isoprene addition (-H)", "C5H7", "67.0547752247"),
c("Secondary amine", "NH", "15.0108990373"),
c("Malonyl group (-H20)", "C3H203", "86.0003939305"),
c("Sulfate (-H20)", "S03", "79.9568145563"),
c("Palmitoylation (-H20)", "C16H300", "238.2296655851"),
"Tertiary amine", "N", "14.0030740052"),
"Pyridoxal phosphate (-H20)", "C8H8NO5P", "229.0140088825"),
"C6H1005", "C6H1005", "162.0528234315"),
("Urea addition (-H)", "CH3N20", "59.0245377288"),
c("C6H1006", "C6H1006", "178.0477380536"),
c("Adenine (-H)", "C5H4N5", "134.0466701544"),
c("D-ribose (-H20) (ribosylation)", "C5H804", "132.0422587452"),
c("Adenosine (-H20)", "C1lOH11N503", "249.0861892454"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Adenosine 5'-diphosphate (-H20)", "C1OH13N509P2", "409.0188500622"),
c("Glucose-N-phosphate (-H20)", "C6H1108P", "242.0191538399"),
("Adenosine 5'-monophosphate (-H20)", "ClOH12N506P", "329.0525196538"),
(
(
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"Glucuronic acid (-H20)", "C6H806", "176.0320879894"),

"Cytidine 5'-diphosphate (-H20)", "C9H13N3010P2", "385.0076166739"),
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),

c("Cytidine 5'-monophsophate (-H20)", "C9H12N307P", "305.0412862655"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"),

c("Cytosine (-H)", "C4H4N30", "110.0354367661"))
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transformations <- data.frame(name=transformations[,1],
formula=transformations[,2],
mass=as.numeric(transformations[,3]))
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