
MLSeq: Machine Learning Interface to RNA-
Seq Data

Dincer Goksuluk ∗1, Gokmen Zararsiz 2, Selcuk Korkmaz 3,
Vahap Eldem 4, Bernd Klaus 5, Ahmet Ozturk 2 and Ahmet
Ergun Karaagaoglu 1

1 Hacettepe University, Faculty of Medicine, Department of Biostatistics, Ankara, TURKEY
2 Erciyes University, Faculty of Medicine, Department of Biostatistics, Kayseri, TURKEY
3 Trakya University, Faculty of Medicine, Department of Biostatistics, Edirne, TURKEY
4 Istanbul University, Faculty of Science, Department of Biology, Istanbul, TURKEY
5 EMBL Heidelberg, Heidelberg, Germany
∗dincer.goksuluk@hacettepe.edu.tr

May 4, 2019

NOTE: MLSeq has major changes from version 1.20.1 and this will bump following versions
to 2.y.z in the next release of Bioconductor (ver. 3.8). Most of the functions from previous
versions were changed and new functions are included. Please see Beginner’s Guide before
continue with the analysis.

Abstract

MLSeq is a comprehensive package for application of machine-learning algorithms in clas-
sification of next-generation RNA-Sequencing (RNA-Seq) data. Researchers have appealed
to MLSeq for various purposes, which include prediction of disease outcomes, identifica-
tion of best subset of features (genes, transcripts, other isoforms), and sorting the features
based on their predictive importance. Using this package, researchers can upload their raw
RNA-seq count data, preprocess their data and perform a wide range of machine-learning
algorithms. Preprocessing approaches include deseq median ratio and trimmed mean of M
means (TMM) normalization methods, as well as the logarithm of counts per million reads
(log-cpm), variance stabilizing transformation (vst), regularized logarithmic transformation
(rlog) and variance modeling at observational level (voom) transformation approaches. Nor-
malization approaches can be used to correct systematic variations. Transformation ap-
proaches can be used to bring discrete RNA-seq data hierarchically closer to microarrays and
conduct microarray-based classification algorithms. Currently, MLSeq package contains 90
microarray-based classifiers including the recently developed voom-based discriminant analy-
sis classifiers. Besides these classifiers, MLSeq package also includes discrete-based classifiers,
such as Poisson linear discriminant analysis (PLDA) and negative binomial linear discriminant
analysis (NBLDA). Over the preprocessed data, researchers can build classification models,
apply parameter optimization on these models, evaluate the model performances and compare
the performances of different classification models. Moreover, the class labels of test samples
can be predicted with the built models. MLSeq is a user friendly, simple and currently the
most comprehensive package developed in the literature for RNA-Seq classification. To start
using this package, users need to upload their count data, which contains the number of reads
mapped to each transcript for each sample. This kind of count data can be obtained from

mailto:dincer.goksuluk@hacettepe.edu.tr
http://bioconductor.org/packages/MLSeq
http://bioconductor.org/packages/MLSeq

MLSeq: Machine Learning Interface to RNA-Seq Data

RNA-Seq experiments, also from other sequencing experiments such as ChIP-sequencing or
metagenome sequencing. This vignette is presented to guide researchers how to use this
package.

MLSeq version: 2.2.1

Contents

1 Introduction . 3

2 Preparing the input data . 3

3 Splitting the data . 4

4 Available machine-learning models 5

5 Normalization and transformation 6

6 Model building . 7

6.1 Optimizing model parameters 8

6.2 Defining control list for selected classifier 9

7 Predicting the class labels of test samples 11

8 Comparing the performance of classifiers 12

9 Determining possible biomarkers using sparse classifiers . . . 14

10 Updating an MLSeq object using update. 15

10.1 Transitions between continuous, discrete and voom-based classi-
fiers . 17

11 Session info . 18

2

MLSeq: Machine Learning Interface to RNA-Seq Data

1 Introduction

With the recent developments in molecular biology, it is feasible to measure the expression
levels of thousands of genes simultaneously. Using this information, one major task is the
gene-expression based classification. With the use of microarray data, numerous classification
algorithms are developed and adapted for this type of classification. RNA-Seq is a recent
technology, which uses the capabilities of next-generation sequencing (NGS) technologies. It
has some major advantages over microarrays such as providing less noisy data and detecting
novel transcripts and isoforms. These advantages can also affect the performance of classi-
fication algorithms. Working with less noisy data can improve the predictive performance of
classification algorithms. Further, novel transcripts may be a biomarker in related disease or
phenotype. MLSeq package includes several classification algorithms, also normalization and
transformation approaches for RNA-Seq classification.
In this vignette, you will learn how to build machine-learning models from raw RNA-Seq
count data. MLSeq package can be loaded as below:

library(MLSeq)

2 Preparing the input data

MLSeq package expects a count matrix that contains the number of reads mapped to each
transcript for each sample and class label information of samples in an S4 class DESeq-
DataSet.
After mapping the RNA-Seq reads to a reference genome or transcriptome, number of reads
mapped to the reference genome can be counted to measure the transcript abundance. It
is very important that the count values must be raw sequencing read counts to implement
the methods given in MLSeq. There are a number of functions in Bioconductor packages
which summarizes mapped reads to a count data format. These tools include featureCounts

in Rsubread [1], summarizeOverlaps in GenomicRanges [2] and easyRNASeq [3]. It is also
possible to access this type of count data from Linux-based softwares as htseq-count function
in HTSeq [4] and multicov function in bedtools [5] softwares. In this vignette, we will work
with the cervical count data. Cervical data is from an experiment that measures the ex-
pression levels of 714 miRNAs of human samples [6]. There are 29 tumor and 29 non-tumor
cervical samples and these two groups can be treated as two separate classes for classification
purpose. We can define the file path with using system.file:

filepath <- system.file("extdata/cervical.txt", package = "MLSeq")

Next, we can load the data using read.table:

cervical <- read.table(filepath, header=TRUE)

After loading the data, one can check the counts as follows. These counts are the number
of mapped miRNA reads to each transcript.

3

http://bioconductor.org/packages/Rsubread
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/easyRNASeq

MLSeq: Machine Learning Interface to RNA-Seq Data

head(cervical[,1:10]) # Mapped counts for first 6 features of 10 subjects.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

let-7a 865 810 5505 6692 1456 588 9 4513 1962 10167

let-7a* 3 12 30 73 6 2 0 199 10 173

let-7b 975 2790 4912 24286 1759 508 33 6162 1455 18110

let-7b* 15 18 27 119 11 3 0 116 17 233

let-7c 828 1251 2973 6413 713 339 23 2002 476 3294

let-7c* 0 0 0 1 0 0 0 3 0 3

Cervical data is a data.frame containing 714 miRNA mapped counts given in rows, belonging
to 58 samples given in columns. First 29 columns of the data contain the miRNA mapped
counts of non-tumor samples, while the last 29 columns contain the count information of
tumor samples. We need to create a class label information in order to apply classification
models. The class labels are stored in a DataFrame object generated using DataFrame from
S4Vectors. Although the formal object returned from data.frame can be imported into DE-
SeqDataSet, we suggest using DataFrame in order to prevent possible warnings/errors during
downstream analyses.

class <- DataFrame(condition = factor(rep(c("N","T"), c(29, 29))))

class

DataFrame with 58 rows and 1 column

condition

<factor>

1 N

2 N

3 N

4 N

5 N

... ...

54 T

55 T

56 T

57 T

58 T

3 Splitting the data

We can split the data into two parts as training and test sets. Training set can be used to
build classification models, and test set can be used to assess the performance of each model.
The ratio of splitting data into two parts depends on total sample size. In most studies, the
amount of training set is taken as 70% and the remaining part is used as test set. However,
when the number of samples is relatively small, the split ratio can be decreased towards 50%.
Similarly, if the total number of samples are large enough (e.g 200, 500 etc.), this ratio might
be increased towards 80% or 90%. The basic idea of defining optimum splitting ratio can
be expressed as: ‘define such a value for splitting ratio where we have enough samples in
the training and test set in order to get a reliable fitted model and test predictions.’ For our
example, cervical data, there are 58 samples. One may select 90% of the samples (approx.

4

http://bioconductor.org/packages/S4Vectors

MLSeq: Machine Learning Interface to RNA-Seq Data

52 subjects) for training set. The fitted model is evantually reliable, however, test accuracies
are very sensitive to unit misclassifications. Since there are only 6 observations in the test
set, misclassifying a single subject would decrease test set accuracy approximately 16.6%.
Hence, we should carefully define the splitting ratio before continue with the classification
models.

library(DESeq2)

set.seed(2128)

We do not perform a differential expression analysis to select differentially

expressed genes. However, in practice, DE analysis might be performed before

fitting classifiers. Here, we selected top 100 features having the highest

gene-wise variances in order to decrease computational cost.

vars <- sort(apply(cervical, 1, var, na.rm = TRUE), decreasing = TRUE)

data <- cervical[names(vars)[1:100],]

nTest <- ceiling(ncol(data) * 0.3)

ind <- sample(ncol(data), nTest, FALSE)

Minimum count is set to 1 in order to prevent 0 division problem within

classification models.

data.train <- as.matrix(data[,-ind] + 1)

data.test <- as.matrix(data[,ind] + 1)

classtr <- DataFrame(condition = class[-ind,])

classts <- DataFrame(condition = class[ind,])

Now, we have 40 samples which will be used to train the classification models and have
remaining 18 samples to be used to test the model performances. The training and test sets
are stored in a DESeqDataSet using related functions from DESeq2 [7]. This object is then
used as input for MLSeq.

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr,

design = formula(~condition))

data.testS4 = DESeqDataSetFromMatrix(countData = data.test, colData = classts,

design = formula(~condition))

4 Available machine-learning models

MLSeq contains more than 90 algorithms for the classification of RNA-Seq data. These
algorithms include both microarray-based conventional classifiers and novel methods specif-
ically designed for RNA-Seq data. These novel algorithms include voom-based classifiers
[8], Poisson linear discriminant analysis (PLDA) [9] and Negative-Binomial linear discrim-
inant analysis (NBLDA) [10]. Run availableMethods for a list of supported classification
algorithm in MLSeq.

5

http://bioconductor.org/packages/DESeq2

MLSeq: Machine Learning Interface to RNA-Seq Data

5 Normalization and transformation

Normalization is a crucial step of RNA-Seq data analysis. It can be defined as the determina-
tion and correction of the systematic variations to enable samples to be analyzed in the same
scale. These systematic variations may arise from both between-sample variations including
library size (sequencing depth) and the presence of majority fragments; and within-sample
variations including gene length and sequence composition (GC content). In MLSeq, two
effective normalization methods are available. First one is the “deseq median ratio normal-
ization”, which estimates the size factors by dividing each sample by the geometric means of
the transcript counts [7]. Median statistic is a widely used statistics as a size factor for each
sample. Another normalization method is “trimmed mean of M values (TMM)”. TMM first
trims the data in both lower and upper side by log-fold changes (default 30%) to minimize the
log-fold changes between the samples and by absolute intensity (default 5%). After trimming,
TMM calculates a normalization factor using the weighted mean of data. These weights are
calculated based on the inverse approximate asymptotic variances using the delta method
[11]. Raw counts might be normalized using either deseq-median ratio or TMM methods.
After the normalization process, it is possible to directly use the discrete classifiers, e.g.
PLDA and NBLDA. In addition, it is possible to apply an appropriate transformation on raw
counts and bring the data hierarchically closer to microarrays. In this case, we can transform
the data and apply a large number of classifiers, e.g. nearest shrunken centroids, penalized
discriminant analysis, support vector machines, etc. One simple approach is the logarithm of
counts per million reads (log-cpm) method, which transforms the data from the logarithm of
the division of the counts by the library sizes and multiplication by one million (Equation 1).
This transformation is simply an extension of the shifted-log transformation zij = log2 xij+1.

zij = log2

(
xij + 0.5

X.j + 1
× 106

)
1

Although log-cpm transformation provides less-skewed distribution, the gene-wise variances
are still unequal and possibly related with the distribution mean. Hence, one may wish
to transform data into continuous scale while controlling the gene-wise variances. Anders
and Huber [12] presented variance stabilizing transformation (vst) which provides variance
independent from mean. Love et al. [7] presented regularized logarithmic (rlog) transforma-
tion. This method uses a shrinkage approach as used in DESeq2 paper. Rlog transformed
values are similar with vst or shifted-log transformed values for genes with higher counts,
while shrunken together for genes with lower counts. MLSeq allows researchers perform one
of transformations log-cpm, vst and rlog. The possible normalization-transformation

combinations are:
• deseq-vst: Normalization is applied with deseq median ratio method. Variance stabi-

lizing transformation is applied to the normalized data
• deseq-rlog: Normalization is applied with deseq median ratio method. Regularized

logarithmic transformation is applied to the normalized data
• deseq-logcpm: Normalization is applied with deseq median ratio method. Log of

counts-per-million transformation is applied to the normalized data
• tmm-logcpm: Normalization is applied with trimmed mean of M values (TMM) method.

Log of counts-per-million transformation is applied to the normalized data.

6

http://bioconductor.org/packages/DESeq2

MLSeq: Machine Learning Interface to RNA-Seq Data

The normalization-transformation combinations are controlled by preProcessing argument
in classify. For example, we may apply rlog transformation on deseq normalized counts
by setting preProcessing = "deseq-rlog". See below code chunk for a minimal working
example.

Support Vector Machines with Radial Kernel

fit <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-rlog", ref = "T",

control = trainControl(method = "repeatedcv", number = 2,

repeats = 2, classProbs = TRUE))

show(fit)

Furthermore, Zararsiz et al. [8] presented voomNSC classifier, which integrates voom trans-
formation [13] and NSC method [14, 15] into a single and powerful classifier. This classifier
extends voom method for RNA-Seq based classification studies. VoomNSC also makes NSC
algorithm available for RNA-Seq technology. The authors also presented the extensions of
diagonal discriminant classifiers [16], i.e. voom-based diagonal linear discriminant analysis
(voomDLDA) and voom based diagonal quadratic discriminant analysis (voomDQDA) clas-
sifiers. All three classifiers are able to work with high-dimensional (n < p) RNA-Seq counts.
VoomDLDA and voomDQDA approaches are non-sparse and use all features to classify the
data, while voomNSC is sparse and uses a subset of features for classification. Note that the
argument preProcessing has no effect on voom-based classifiers since voom transformation
is performed within classifier. However, we may define normalization method for voom-based
classifiers using normalize arguement. As an example, consider fitting a voomNSC model
on deseq normalized counts:

set.seed(2128)

Voom based Nearest Shrunken Centroids.

fit <- classify(data = data.trainS4, method = "voomNSC",

normalize = "deseq", ref = "T",

control = voomControl(tuneLength = 20))

trained(fit) ## Trained model summary

We will cover trained model in section Optimizing model parameters.

6 Model building

The MLSeq has a single function classify for the model building and evaluation process.
This function can be used to evaluate selected classifier using a set of values for model param-
eter (aka tuning parameter) and return the optimal model. The overall model performances
for training set are also returned.

7

MLSeq: Machine Learning Interface to RNA-Seq Data

6.1 Optimizing model parameters

MLSeq evaluates k-fold repeated cross-validation on training set for selecting the optimal
value of tuning parameter. The number of parameters to be optimized depends on the se-
lected classifier. Some classifiers have two or more tuning parameter, while some have no
tuning parameter. Suppose we want to fit RNA-Seq counts to Support Vector Machines with
Radial Basis Function Kernel (svmRadial) using deseq normalization and vst transformation,

set.seed(2128)

Support vector machines with radial basis function kernel

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = trainControl(method = "repeatedcv", number = 5,

repeats = 10, classProbs = TRUE))

show(fit.svm)

##

An object of class "MLSeq"

Model Description: Support Vector Machines with Radial Basis Function Kernel (svmRadial)

##

Method : svmRadial

##

Accuracy(%) : 95

Sensitivity(%) : 94.12

Specificity(%) : 95.65

##

Reference Class : T

The model were trained using 5-fold cross validation repeated 10 times. The number of levels
for tuning parameter is set to 10. The length of tuning parameter space, tuneLength, may be
increased to be more sensitive while searchin optimal value of the parameters. However, this
may drastically increase the total computation time. The tuning results are obtained using
setter function trained as,

trained(fit.svm)

Support Vector Machines with Radial Basis Function Kernel

##

40 samples

100 predictors

2 classes: 'N', 'T'

##

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 10 times)

Summary of sample sizes: 31, 33, 32, 32, 32, 32, ...

Resampling results across tuning parameters:

##

C Accuracy Kappa

0.25 0.8424603 0.6937976

8

MLSeq: Machine Learning Interface to RNA-Seq Data

0.50 0.9103571 0.8204990

1.00 0.9329365 0.8639560

2.00 0.9486508 0.8933900

4.00 0.9433730 0.8801816

8.00 0.9505952 0.8975496

16.00 0.9461508 0.8889782

32.00 0.9458730 0.8870002

64.00 0.9360714 0.8668239

128.00 0.9405159 0.8725831

##

Tuning parameter 'sigma' was held constant at a value of 0.006054987

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.006054987 and C = 8.

The optimal values for tuning parameters were sigma = 0.00605 and C = 8. The effect of
tuning parameters on model accuracies can be graphically seen in Figure 1.

plot(fit.svm)

Cost

Ac
cu

ra
cy

 (R
ep

ea
te

d
C

ro
ss

-V
al

id
at

io
n)

0.84

0.86

0.88

0.90

0.92

0.94

0 50 100

Figure 1: Tuning results for fitted model (svmRadial)

6.2 Defining control list for selected classifier

For each classifier, it is possible to define how model should be created using control lists. We
may categorize available classifiers into 3 partitions, i.e continuous, discrete and voom-based
classifiers. Continuous classifiers are based on caret’s library while discrete and voom-based

9

https://CRAN.R-project.org/package=caret

MLSeq: Machine Learning Interface to RNA-Seq Data

classifiers use functions from MLSeq’s library. Since each classifier category has different
control parameters to be used while building model, we should use corresponding control
function for selected classifiers. We provide three different control functions, i.e (i) trainCon
trol for continuous, (ii) discreteControl for discrete and (iii) voomControl for voom-based
classifiers as summarized in Table 1.

Table 1: Control functions for classifiers

Function Classifier
discreteControl PLDA, PLDA2, NBLDA
voomControl voomDLDA, voomDQDA, voomNSC
trainControl All others.

Now, we fit svmRadial, voomDLDA and PLDA classifiers to RNA-seq data and find the opti-
mal value of tuning parameters, if available, using 5-fold cross validation without repeats. We
may control model building process using related function for the selected classifier (Table 1).

Define control list

ctrl.svm <- trainControl(method = "repeatedcv", number = 5, repeats = 1)

ctrl.plda <- discreteControl(method = "repeatedcv", number = 5, repeats = 1,

tuneLength = 10)

ctrl.voomDLDA <- voomControl(method = "repeatedcv", number = 5, repeats = 1,

tuneLength = 10)

Support vector machines with radial basis function kernel

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.svm)

Poisson linear discriminant analysis

fit.plda <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl.plda)

Voom-based diagonal linear discriminant analysis

fit.voomDLDA <- classify(data = data.trainS4, method = "voomDLDA",

normalize = "deseq", ref = "T", control = ctrl.voomDLDA)

The fitted model for voomDLDA, for example, is obtained using folowing codes. Since
voomDLDA has no tuning parameters, the training set accuracy is given over cross-validated
folds.

trained(fit.voomDLDA)

##

Voom-based Diagonal Linear Discriminant Analysis (voomDLDA)

##

40 samples

100 predictors

2 classes: 'N', 'T' (Reference category: 'T')

##

10

http://bioconductor.org/packages/MLSeq

MLSeq: Machine Learning Interface to RNA-Seq Data

Normalization: DESeq median ratio.

Resampling: Cross-Validated (5 fold, repeated 1 times)

Summary of sample sizes: 32, 32, 32, 32, 32

Summary of selected features: All features are selected.

##

Model %10-s

voomDLDA %10.7-f

##

There is no tuning parameter for selected method.

Cross-validated model accuracy is given.

7 Predicting the class labels of test samples

Class labels of the test cases are predicted based on the model characteristics of the trained
model, e.g. discriminating function of the trained model in discriminant-based classifiers.
However, an important point here is that the test set must have passed the same steps with
the training set. This is especially true for the normalization and transformation stages for
RNA-Seq based classification studies. Same preprocessing parameters should be used for
both training and test sets to affirm that both sets are on the same scale and homoscedastic
each other. If we use deseq median ratio normalization method, then the size factor of a test
case will be estimated using gene-wise geometric means, mj , from training set as follows:

ŝ∗ =
m∗∑n
j=1 mj

, m∗ = mediani

{
x∗
i

(
∏n

j=1 xij)1/n

}
2

A similar procedure is applied for the transformation of test data. If vst is selected as the
transformation method, then the test set will be transformed based on the dispersion function
of the training data. Otherwise, if rlog is selected as the transformation method, then the
test set will be transformed based on the dispersion function, beta prior variance and the
intercept of the training data.
MLSeq predicts test samples using training set parameters. There are two functions in MLSeq
to be used for predictions, predict and predictClassify. The latter function is an alias for
the generic function predict and was used as default method in MLSeq up to package version
1.14.z. Default function for predicting new observations replaced with predict from version
1.16.z and later. Hence, both can be used for same purpose.
Likely training set, test set should be given in DESeqDataSet class. The predictions can be
done using following codes,

#Predicted class labels

pred.svm <- predict(fit.svm, data.testS4)

pred.svm

[1] T T N T N N T T T T T T N N N N T T

Levels: N T

11

MLSeq: Machine Learning Interface to RNA-Seq Data

Finally, the model performance for the prediction is summarized as below using confusionMa

trix from caret.

pred.svm <- relevel(pred.svm, ref = "T")

actual <- relevel(classts$condition, ref = "T")

tbl <- table(Predicted = pred.svm, Actual = actual)

confusionMatrix(tbl, positive = "T")

Confusion Matrix and Statistics

##

Actual

Predicted T N

T 11 0

N 1 6

##

Accuracy : 0.9444

95% CI : (0.7271, 0.9986)

No Information Rate : 0.6667

P-Value [Acc > NIR] : 0.006766

##

Kappa : 0.88

##

Mcnemar's Test P-Value : 1.000000

##

Sensitivity : 0.9167

Specificity : 1.0000

Pos Pred Value : 1.0000

Neg Pred Value : 0.8571

Prevalence : 0.6667

Detection Rate : 0.6111

Detection Prevalence : 0.6111

Balanced Accuracy : 0.9583

##

'Positive' Class : T

##

8 Comparing the performance of classifiers

In this section, we discuss and compare the performance of the fitted models in details.
Before we fit the classifiers, a random seed is set for reproducibility as set.seed(2128).
Several measures, such as overall accuracy, sensitivity, specificity, etc., can be considered for
comparing the model performances. We compared fitted models using overall accuracy and
sparsity measures since the prevalence of positive and negative classes are equal. Sparsity is
used as the measure of proportion of features used in the trained model. As sparsity goes to
0, less features are used in the classifier. Hence, the aim might be selecting a classifier which
is sparser and better in predicting test samples, i.e higher in overall accuracy.

12

https://CRAN.R-project.org/package=caret

MLSeq: Machine Learning Interface to RNA-Seq Data

We selected SVM, voomDLDA and NBLDA as non-sparse classifiers and PLDA with power
transformation, voomNSC and NSC as sparse classifiers for the comparison of fitted models.
Raw counts are normalized using deseq method and vst transformation is used for continuous
classifiers (NSC and SVM).

set.seed(2128)

Define control lists.

ctrl.continuous <- trainControl(method = "repeatedcv", number = 5, repeats = 10)

ctrl.discrete <- discreteControl(method = "repeatedcv", number = 5, repeats = 10,

tuneLength = 10)

ctrl.voom <- voomControl(method = "repeatedcv", number = 5, repeats = 10,

tuneLength = 10)

1. Continuous classifiers, SVM and NSC

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.continuous)

fit.NSC <- classify(data = data.trainS4, method = "pam",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.continuous)

2. Discrete classifiers

fit.plda <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl.discrete)

fit.plda2 <- classify(data = data.trainS4, method = "PLDA2", normalize = "deseq",

ref = "T", control = ctrl.discrete)

fit.nblda <- classify(data = data.trainS4, method = "NBLDA", normalize = "deseq",

ref = "T", control = ctrl.discrete)

3. voom-based classifiers

fit.voomDLDA <- classify(data = data.trainS4, method = "voomDLDA",

normalize = "deseq", ref = "T", control = ctrl.voom)

fit.voomNSC <- classify(data = data.trainS4, method = "voomNSC",

normalize = "deseq", ref = "T", control = ctrl.voom)

4. Predictions

pred.svm <- predict(fit.svm, data.testS4)

pred.NSC <- predict(fit.NSC, data.testS4)

... truncated

Among selected predictors, we can select one of them by considering overall accuracy and
sparsity at the same time. Table 2 showed that SVM has the highest classification accuracy.
Similarly, voomNSC gives the lowest sparsity measure comparing to other classifiers. Using
the performance measures from Table 2, one may decide the best classifier to be used in
classification task.

13

MLSeq: Machine Learning Interface to RNA-Seq Data

Table 2: Classification results for cervical data

Classifier Accuracy Sparsity
SVM 0.944
NSC 0.889 0.910
PLDA (Transformed) 0.889 1.000
NBLDA 0.833
voomDLDA 0.889
voomNSC 0.722 0.020

In this tutorial, we compared only few classifiers and showed how to train models and predict
new samples. We should note that the model performances depends on several criterias, e.g
normalization and transformation methods, gene-wise overdispersions, number of classes etc.
Hence, the model accuracies given in this tutorial should not be considered as a generalization
to any RNA-Seq data. However, generalized results might be considered using a simulation
study under different scenarios. A comprehensive comparison of several classifiers on RNA-
Seq data can be accessed from Zararsiz et al. [17].

9 Determining possible biomarkers using sparse clas-
sifiers

In an RNA-Seq study, hundreds or thousands of features are able to be sequenced for a spe-
cific disease or condition. However, not all features but usually a small subset of sequenced
features might be differentially expressed among classes and contribute to discrimination func-
tion. Hence, determining differentially expressed (DE) features are one of main purposes in
an RNA-Seq study. It is possible to select DE features using sparse algorithm in MLSeq such
as NSC, PLDA and voomNSC. Sparse models are able to select significant features which
mostly contributes to the discrimination function by using built-in variable selection criterias.
If a selected classifier is sparse, one may return selected features using getter function select

edGenes. For example, voomNSC selected 2% of all features. The selected features can be
extracted as below:

selectedGenes(fit.voomNSC)

[1] "miR-143" "miR-125b"

We showed selected features from sparse classifiers on a venn-diagram in Figure 2. Some
of the features are common between sparse classifiers. voomNSC, PLDA, PLDA2 (Power
transformed) and NSC, for example, commonly discover 2 features as possible biomarkers.

14

MLSeq: Machine Learning Interface to RNA-Seq Data

Figure 2: Venn-diagram of selected features from sparse classifiers

10 Updating an MLSeq object using update

MLSeq is developed using S4 system in order to make it compatible with most of the BIO-
CONDUCTOR packages. We provide setter/getter functions to get or replace the contents of
an S4 object returned from functions in MLSeq. Setter functions are useful when one wishes
to change components of an S4 object and carry out its effect on the remaining components.
For example, a setter function method<- can be used to change the classification method of
a given MLSeq object. See following code chunks for an example.

set.seed(2128)

ctrl <- discreteControl(method = "repeatedcv", number = 5, repeats = 2,

tuneLength = 10)

PLDA without power transformation

fit <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl)

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis (PLDA)

##

Method : PLDA

##

Accuracy(%) : 92.68

Sensitivity(%) : 94.12

Specificity(%) : 91.67

##

Reference Class : T

15

MLSeq: Machine Learning Interface to RNA-Seq Data

Now, we may wish to see the results from PLDA classifier with power transformation. We
can either change the corresponding arguement as method = "PLDA2" and run above codes
or simply use the generic function update after related replacement method method<-. Once
the method has been changed, a note is returned with MLSeq object.

method(fit) <- "PLDA2"

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis with Power Transformation (PLDA2)

##

NOTE: MLSeq object is modified but not updated.

Update 'MLSeq' object to get true classification accuracies.

##

Method : PLDA2

##

Accuracy(%) : 92.68

Sensitivity(%) : 94.12

Specificity(%) : 91.67

##

Reference Class : T

It is also possible to change multiple arguments at the same time using related setter func-
tions. In such cases, one may run metaData(...) for a detailed information on fitted object.

ref(fit) <- "N"

normalization(fit) <- "TMM"

metaData(fit)

class: MLSeqMetaData, in S4 class

Updated: NO

Modified: YES

Modified Elements (3): method, ref, normalization

Initial Data: A DESeqDataSet object

It can bee seen from metaData(fit) that several modifications have been requested for fitted
model but it is not updated. We should run update to carry over the effect of modified object
into MLSeq object. One should note that the updated object should be assigned to the same
or different object since update does not overwrite fitted model.

fit <- update(fit)

##

##

Update is successfull...

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis with Power Transformation (PLDA2)

16

MLSeq: Machine Learning Interface to RNA-Seq Data

##

Method : PLDA2

##

Accuracy(%) : 95

Sensitivity(%) : 95.65

Specificity(%) : 94.12

##

Reference Class : N

10.1 Transitions between continuous, discrete and voom-based
classifiers

The control lists and some of the arguments in classify need to be specified depending on
the selected classifier. This constraint should be carefully taken into account while updat-
ing an MLSeq object. We may wish to move from continuous based classifier to discrete or
voom-based classifier, and vice versa. Consider we want to change classifier to “rpart” for fit.

method(fit) <- "rpart"

update(fit)

Warning in stop(warning("Incorrect elements in ’control’ argument. It should

be defined using ’trainControl(...)’ function.")): Incorrect elements in ’control’

argument. It should be defined using ’trainControl(...)’ function.

Error in .local(object, ...) :

Incorrect elements in 'control' argument. It should be defined using 'trainControl(...)' function.

Since the control list for continuous and discrete classifiers should be specified using related
control function, the update process will end up with an error unless the control list is also
modified. First, we specify appropriate control list and then change the classifier. Next, we
may update fitted object as given below:

control(fit) <- trainControl(method = "repeatedcv", number = 5, repeats = 2)

'normalize' is not valid for continuous classifiers. We use 'preProcessing'

rather than 'normalize'.

preProcessing(fit) <- "tmm-logcpm"

fit <- update(fit)

##

##

Update is successfull...

show(fit)

##

An object of class "MLSeq"

Model Description: Classification and Regression Tree (CART) (rpart)

17

MLSeq: Machine Learning Interface to RNA-Seq Data

##

Method : rpart

##

Accuracy(%) : 85.37

Sensitivity(%) : 83.33

Specificity(%) : 88.24

##

Reference Class : N

Similar transitions can be done for voom-based classifiers. For a complete list of package
functions, please see package manuals.

11 Session info

sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.2 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid parallel stats4 stats graphics grDevices utils

[8] datasets methods base

##

other attached packages:

[1] xtable_1.8-4 pamr_1.56.1

[3] survival_2.44-1.1 cluster_2.0.9

[5] VennDiagram_1.6.20 futile.logger_1.4.3

[7] edgeR_3.26.0 limma_3.40.0

[9] DESeq2_1.24.0 SummarizedExperiment_1.14.0

[11] DelayedArray_0.10.0 BiocParallel_1.18.0

[13] matrixStats_0.54.0 Biobase_2.44.0

[15] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0

[17] IRanges_2.18.0 S4Vectors_0.22.0

[19] BiocGenerics_0.30.0 MLSeq_2.2.1

[21] caret_6.0-84 ggplot2_3.1.1

[23] lattice_0.20-38 knitr_1.22

18

MLSeq: Machine Learning Interface to RNA-Seq Data

##

loaded via a namespace (and not attached):

[1] colorspace_1.4-1 class_7.3-15 htmlTable_1.13.1

[4] XVector_0.24.0 base64enc_0.1-3 rstudioapi_0.10

[7] bit64_0.9-7 AnnotationDbi_1.46.0 prodlim_2018.04.18

[10] lubridate_1.7.4 codetools_0.2-16 splines_3.6.0

[13] geneplotter_1.62.0 Formula_1.2-3 annotate_1.62.0

[16] kernlab_0.9-27 BiocManager_1.30.4 compiler_3.6.0

[19] backports_1.1.4 assertthat_0.2.1 Matrix_1.2-17

[22] lazyeval_0.2.2 formatR_1.6 acepack_1.4.1

[25] htmltools_0.3.6 tools_3.6.0 gtable_0.3.0

[28] glue_1.3.1 GenomeInfoDbData_1.2.1 reshape2_1.4.3

[31] dplyr_0.8.0.1 Rcpp_1.0.1 nlme_3.1-139

[34] iterators_1.0.10 timeDate_3043.102 gower_0.2.0

[37] xfun_0.6 stringr_1.4.0 XML_3.98-1.19

[40] zlibbioc_1.30.0 MASS_7.3-51.4 scales_1.0.0

[43] ipred_0.9-9 BiocStyle_2.12.0 lambda.r_1.2.3

[46] RColorBrewer_1.1-2 yaml_2.2.0 memoise_1.1.0

[49] gridExtra_2.3 rpart_4.1-15 latticeExtra_0.6-28

[52] stringi_1.4.3 RSQLite_2.1.1 highr_0.8

[55] genefilter_1.66.0 foreach_1.4.4 e1071_1.7-1

[58] checkmate_1.9.3 lava_1.6.5 rlang_0.3.4

[61] pkgconfig_2.0.2 bitops_1.0-6 evaluate_0.13

[64] purrr_0.3.2 recipes_0.1.5 htmlwidgets_1.3

[67] bit_1.1-14 tidyselect_0.2.5 sSeq_1.22.0

[70] plyr_1.8.4 magrittr_1.5 R6_2.4.0

[73] generics_0.0.2 Hmisc_4.2-0 DBI_1.0.0

[76] pillar_1.3.1 foreign_0.8-71 withr_2.1.2

[79] RCurl_1.95-4.12 nnet_7.3-12 tibble_2.1.1

[82] crayon_1.3.4 futile.options_1.0.1 rmarkdown_1.12

[85] locfit_1.5-9.1 data.table_1.12.2 blob_1.1.1

[88] ModelMetrics_1.2.2 digest_0.6.18 munsell_0.5.0

References

[1] Yang Liao, Gordon K Smyth, and Wei Shi. featurecounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics, 30(7):
923–930, 2014. URL https://doi.org/10.1093/bioinformatics/btt656.

[2] Michael Lawrence, Wolfgang Huber, Hervé Pages, Patrick Aboyoun, Marc Carlson,
Robert Gentleman, Martin T Morgan, and Vincent J Carey. Software for computing
and annotating genomic ranges. PLoS Comput Biol, 9(8):e1003118, 2013. URL
https://doi.org/10.1371/journal.pcbi.1003118.

[3] Nicolas Delhomme, Ismaël Padioleau, Eileen E Furlong, and Lars M Steinmetz.
easyRNASeq: a bioconductor package for processing RNA-seq data. Bioinformatics,
28(19):2532–2533, 2012. URL https://doi.org/10.1093/bioinformatics/bts477.

19

https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1093/bioinformatics/bts477

MLSeq: Machine Learning Interface to RNA-Seq Data

[4] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq–a Python framework
to work with high-throughput sequencing data. Bioinformatics, 31(2):166–169, Jan
2015. URL https://doi.org/10.1093/bioinformatics/btu638.

[5] Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26(6):841–842, 2010. URL
https://doi.org/10.1093/bioinformatics/btq033.

[6] Daniela Witten, Robert Tibshirani, Sam Guoping Gu, Andrew Fire, and Weng-Onn
Lui. Ultra-high throughput sequencing-based small RNA discovery and discrete
statistical biomarker analysis in a collection of cervical tumours and matched controls.
BMC Biology, 8(1):1, 2010. URL https://doi.org/10.1186/1741-7007-8-58.

[7] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):1,
2014. URL https://doi.org/10.1186/s13059-014-0550-8.

[8] Gokmen Zararsiz, Dincer Goksuluk, Bernd Klaus, Selcuk Korkmaz, Vahap Eldem,
Erdem Karabulut, and Ahmet Ozturk. voomDDA: discovery of diagnostic biomarkers
and classification of RNA-seq data. PeerJ, 5:e3890, 2017. URL
https://doi.org/10.7717/peerj.3890.

[9] Daniela M. Witten. Classification and clustering of sequencing data using a poisson
model. The Annals of Applied Statistics, 5(4):2493–2518, 2011. URL
https://doi.org/10.1214/11-AOAS493.

[10] Kai Dong, Hongyu Zhao, Tiejun Tong, and Xiang Wan. NBLDA: negative binomial
linear discriminant analysis for RNA-seq data. BMC Bioinformatics, 17(1):369, Sep
2016. URL https://doi.org/10.1186/s12859-016-1208-1.

[11] Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biology, 11(3):1, 2010. URL
https://doi.org/10.1186/gb-2010-11-3-r25.

[12] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count
data. Genome Biol, 11(10):R106, 2010. URL
https://doi.org/10.1186/gb-2010-11-10-r106.

[13] Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. Voom: precision
weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology,
15(2):1, 2014. URL https://doi.org/10.1186/gb-2014-15-2-r29.

[14] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu.
Class prediction by nearest shrunken centroids, with applications to DNA microarrays.
Statistical Science, 18(1):104–117, 2003. URL
https://doi.org/10.1214/ss/1056397488.

[15] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu.
Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl
Acad Sci U S A, 99(10):6567–72, May 2002. URL
https://doi.org/10.1073/pnas.082099299.

[16] Sandrine Dudoit, Jane Fridlyand, and Terence P. Speed. Comparison of discrimination
methods for the classification of tumors using gene expression data. Journal of the
American Statistical Association, 97(457):77–87, 2002. URL
https://doi.org/10.1198/016214502753479248.

20

https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1186/1741-7007-8-58
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.7717/peerj.3890
https://doi.org/10.1214/11-AOAS493
https://doi.org/10.1186/s12859-016-1208-1
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1214/ss/1056397488
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1198/016214502753479248

MLSeq: Machine Learning Interface to RNA-Seq Data

[17] Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Gozde Erturk
Zararsiz, Izzet Parug Duru, and Ahmet Ozturk. A comprehensive simulation study on
classification of RNA-seq data. PLoS One, 12(8):e0182507, 2017. URL
https://doi.org/10.1371/journal.pone.0182507.

21

https://doi.org/10.1371/journal.pone.0182507

	1 Introduction
	2 Preparing the input data
	3 Splitting the data
	4 Available machine-learning models
	5 Normalization and transformation
	6 Model building
	6.1 Optimizing model parameters
	6.2 Defining control list for selected classifier

	7 Predicting the class labels of test samples
	8 Comparing the performance of classifiers
	9 Determining possible biomarkers using sparse classifiers
	10 Updating an MLSeq object using [functioncolor]update
	10.1 Transitions between continuous, discrete and voom-based classifiers

	11 Session info

